
Generic Security Service
GSS-API Library for the GNU system

for version 0.0.7, 26 November 2003

Simon Josefsson

This manual is last updated 26 November 2003 for version 0.0.7 of GNU GSS.
Copyright c© 2003 Simon Josefsson.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with the Invariant Sections being
“Commercial Support” and “Criticism of GSS”, the Front-Cover texts being
“A GNU Manual”, and with the Back-Cover Texts being “You have freedom to
copy and modify this GNU Manual, like GNU software”. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 GSS-API Overview . 1
1.4 Supported Platforms . 2
1.5 Commercial Support . 4
1.6 Downloading and Installing . 4
1.7 Bug Reports . 5
1.8 Contributing . 5
1.9 Planned Features . 6

2 Preparation . 7
2.1 Header . 7
2.2 Initialization . 7
2.3 Version Check . 7
2.4 Building the source . 8
2.5 Out of Memory handling . 8

3 Standard GSS API . 10
3.1 Error Handling . 10

3.1.1 GSS status codes . 10
3.1.2 Mechanism-specific status codes . 12

3.2 Credential Management . 12
3.3 Context-Level Routines . 19
3.4 Per-Message Routines . 30
3.5 Name Manipulation. 32
3.6 Miscellaneous Routines . 36

4 Extended GSS API . 41

5 Acknowledgements . 42

Appendix A Criticism of GSS 43

Concept Index . 45

API Index . 46

Chapter 1: Introduction 1

1 Introduction

GSS is an implementation of the Generic Security Service Application Program Interface
(GSS-API). GSS-API is used by network servers to provide security services, e.g., to au-
thenticate SMTP/IMAP clients against SMTP/IMAP servers. GSS consists of a library
and a manual.

GSS is developed for the GNU/Linux system, but runs on over 20 platforms includ-
ing most major Unix platforms and Windows, and many kind of devices including iPAQ
handhelds and S/390 mainframes.

GSS is a GNU project, and is licensed under the GNU General Public License.

1.1 Getting Started

This manual documents the GSS programming interface. All functions and data types
provided by the library are explained.

The reader is assumed to possess basic familiarity with GSS-API and network program-
ming in C or C++. For general GSS-API information, and some programming examples,
there is a guide available online at http://docs.sun.com/db/doc/816-1331.

This manual can be used in several ways. If read from the beginning to the end, it gives
a good introduction into the library and how it can be used in an application. Forward
references are included where necessary. Later on, the manual can be used as a reference
manual to get just the information needed about any particular interface of the library.
Experienced programmers might want to start looking at the examples at the end of the
manual, and then only read up those parts of the interface which are unclear.

1.2 Features

GSS might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License.

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallell.

It’s internationalized
It handles non-ASCII names and user visible strings used in the library (e.g.,
error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows.

1.3 GSS-API Overview

This section describes GSS-API from a protocol point of view.
The Generic Security Service Application Programming Interface provides security ser-

vices to calling applications. It allows a communicating application to authenticate the user

Chapter 1: Introduction 2

associated with another application, to delegate rights to another application, and to apply
security services such as confidentiality and integrity on a per-message basis.

There are four stages to using the GSS-API:
1. The application acquires a set of credentials with which it may prove its identity to

other processes. The application’s credentials vouch for its global identity, which may
or may not be related to any local username under which it may be running.

2. A pair of communicating applications establish a joint security context using their
credentials. The security context is a pair of GSS-API data structures that contain
shared state information, which is required in order that per-message security services
may be provided. Examples of state that might be shared between applications as part
of a security context are cryptographic keys, and message sequence numbers. As part
of the establishment of a security context, the context initiator is authenticated to the
responder, and may require that the responder is authenticated in turn. The initiator
may optionally give the responder the right to initiate further security contexts, acting
as an agent or delegate of the initiator. This transfer of rights is termed delegation,
and is achieved by creating a set of credentials, similar to those used by the initiating
application, but which may be used by the responder.
To establish and maintain the shared information that makes up the security context,
certain GSS-API calls will return a token data structure, which is an opaque data
type that may contain cryptographically protected data. The caller of such a GSS-API
routine is responsible for transferring the token to the peer application, encapsulated
if necessary in an application- application protocol. On receipt of such a token, the
peer application should pass it to a corresponding GSS-API routine which will decode
the token and extract the information, updating the security context state information
accordingly.

3. Per-message services are invoked to apply either: integrity and data origin authenti-
cation, or confidentiality, integrity and data origin authentication to application data,
which are treated by GSS-API as arbitrary octet-strings. An application transmit-
ting a message that it wishes to protect will call the appropriate GSS-API routine
(gss get mic or gss wrap) to apply protection, specifying the appropriate security con-
text, and send the resulting token to the receiving application. The receiver will pass
the received token (and, in the case of data protected by gss get mic, the accompanying
message-data) to the corresponding decoding routine (gss verify mic or gss unwrap)
to remove the protection and validate the data.

4. At the completion of a communications session (which may extend across several trans-
port connections), each application calls a GSS-API routine to delete the security con-
text. Multiple contexts may also be used (either successively or simultaneously) within
a single communications association, at the option of the applications.

1.4 Supported Platforms

GSS has at some point in time been tested on the following platforms.
1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,
hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, i686-pc-linux-gnu,

Chapter 1: Introduction 3

ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips-unknown-linux-gnu,
mipsel-unknown-linux-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

2. Debian GNU/Linux 2.1
GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

3. Tru64 UNIX
Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec-
osf5.1.

4. SuSE Linux 7.1
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

5. SuSE Linux 7.2a
GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

6. RedHat Linux 7.2
GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

7. RedHat Linux 8.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

8. RedHat Advanced Server 2.1
GCC 2.96 and GNU Make. i686-pc-linux-gnu.

9. Slackware Linux 8.0.01
GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

10. Mandrake Linux 9.0
GCC 3.2 and GNU Make. i686-pc-linux-gnu.

11. IRIX 6.5
MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

12. AIX 4.3.2
IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

13. Microsoft Windows 2000 (Cygwin)
GCC 3.2, GNU make. i686-pc-cygwin.

14. HP-UX 11
HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.

15. SUN Solaris 2.8
Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.

16. NetBSD 1.6
GCC 2.95.3 and GNU Make. alpha-unknown-netbsd1.6, i386-unknown-
netbsdelf1.6.

17. OpenBSD 3.1 and 3.2
GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, i386-unknown-
openbsd3.1.

Chapter 1: Introduction 4

18. FreeBSD 4.7
GCC 2.95.4 and GNU Make. alpha-unknown-freebsd4.7, i386-unknown-
freebsd4.7.

If you use GSS on, or port GSS to, a new platform please report it to the author.

1.5 Commercial Support

Commercial support is available for users of GNU GSS. The kind of support that can be
purchased may include:
• Implement new features. Such as a new GSS-API mechanism.
• Port GSS to new platforms. This could include porting to an embedded platforms that

may need memory or size optimization.
• Integrating GSS as a security environment in your existing project.
• System design of components related to GSS-API.

If you are interested, please write to:
Simon Josefsson Datakonsult
Drottningholmsv. 70
112 42 Stockholm
Sweden

E-mail: simon@josefsson.org

If your company provide support related to GNU GSS and would like to be mentioned
here, contact the author (see Section 1.7 [Bug Reports], page 5).

1.6 Downloading and Installing

The package can be downloaded from several places, including http://josefsson.org/gss/releases/.
The latest version is stored in a file, e.g., ‘gss-0.0.7.tar.gz’ where the ‘0.0.7’ indicate
the highest version number.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that download, configure, build and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q http://josefsson.org/gss/releases/gss-0.0.7.tar.gz
$ tar xfz gss-0.0.7.tar.gz
$ cd gss-0.0.7/
$./configure
...
$ make
...
$ make install
...

After that GSS should be properly installed and ready for use.

Chapter 1: Introduction 5

1.7 Bug Reports

If you think you have found a bug in GSS, please investigate it and report it.
• Please make sure that the bug is really in GSS, and preferably also check that it hasn’t

already been fixed in the latest version.
• You have to send us a test case that makes it possible for us to reproduce the bug.
• You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gss@josefsson.org’

1.8 Contributing

If you want to submit a patch for inclusion – from solve a typo you discovered, up to adding
support for a new feature – you should submit it as a bug report (see Section 1.7 [Bug
Reports], page 5). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.

For code contributions, a number of style guides will help you:
• Coding Style. Follow the GNU Standards document (see 〈undefined〉 [top], page 〈un-

defined〉).
If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see 〈undefined〉 [top], page 〈undefined〉)
before submitting your work.

• Use the unified diff format ‘diff -u’.
• Return errors. No reason whatsoever should abort the execution of the library. Even

memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

Chapter 1: Introduction 6

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

1.9 Planned Features

This is also known as the “todo list”. If you like to start working on anything, please let
me know so work duplication can be avoided.
• Support non-blocking mode. This would be an API extension. It could work by

forking a process and interface to it, or by using a user-specific daemon. E.g., h =
START(accept sec context(...)), FINISHED(h), ret = FINISH(h), ABORT(h).

• Support loadable modules via dlopen, a’la Solaris GSS.
• Port to Cyclone? CCured?

Chapter 2: Preparation 7

2 Preparation

To use GSS, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of
this chapter, it is described how the library is initialized, and how the requirements of the
library are verified.

A faster way to find out how to adapt your application for use with GSS may be to look
at the examples at the end of this manual.

2.1 Header

All standard interfaces (data types and functions) of the official GSS API are defined in
the header file ‘gss/api.h’. The file is taken verbatim from the RFC (after correcting a
few typos) where it is known as ‘gssapi.h’. However, to be able to co-exist gracefully with
other GSS-API implementation, the name ‘gssapi.h’ was changed.

The header file ‘gss.h’ includes ‘gss/api.h’, add a few non-standard extensions (by
including ‘gss/ext.h’), takes care of including header files related to all supported mech-
anisms (e.g., ‘gss/krb5.h’) and finally add C++ namespace protection of all definitions.
Therefore, including ‘gss.h’ in your project is recommended over ‘gss/api.h’. If using
‘gss.h’ instead of ‘gss/api.h’ causes problems, it should be regarded a bug.

You must include either file in all programs using the library, either directly or through
some other header file, like this:

#include <gss.h>

The name space of GSS is gss_* for function names, gss_* for data types and GSS_*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

Each supported GSS mechanism may want to expose mechanism specific functionality,
and can do so through one or more header files under the ‘gss/’ directory. The Kerberos 5
mechanism uses the file ‘gss/krb5.h’, but again, it is included (with C++ namespace fixes)
from ‘gss.h’.

2.2 Initialization

GSS does not need to be initialized before it can be used.
In order to take advantage of the internationalisation features in GSS, e.g. translated

error messages, the application must set the current locale using setlocale() before calling,
e.g., gss_display_status(). This is typically done in main() as in the following example.

#include <gss.h>
#include <locale.h>
...
setlocale (LC_ALL, "");

2.3 Version Check

It is often desirable to check that the version of GSS used is indeed one which fits all
requirements. Even with binary compatibility new features may have been introduced but

Chapter 2: Preparation 8

due to problem with the dynamic linker an old version is actually used. So you may want
to check that the version is okay right after program startup. The function is called gss_
check_version() and is described formally in See Chapter 4 [Extended GSS API], page 41.

The normal way to use the function is to put something similar to the following early in
your main():

#include <gss.h>
...
if (!gss_check_version (GSS_VERSION))
{

printf ("gss_check_version() failed:\n"
"Header file incompatible with shared library.\n");

exit(1);
}

2.4 Building the source

If you want to compile a source file that includes the ‘gss.h’ header file, you must make
sure that the compiler can find it in the directory hierarchy. This is accomplished by adding
the path to the directory in which the header file is located to the compilers include file
search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, GSS uses the external package pkg-config that knows the path to
the include file and other configuration options. The options that need to be added to the
compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gss. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config gss --cflags‘

Adding the output of ‘pkg-config gss --cflags’ to the compilers command line will
ensure that the compiler can find the ‘gss.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config
gss can be used. For convenience, this option also outputs all other options that are
required to link the program with the GSS libarary (for instance, the ‘-lshishi’ option).
The example shows how to link ‘foo.o’ with GSS into a program foo.

gcc -o foo foo.o ‘pkg-config gss --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config gss --cflags --libs‘

2.5 Out of Memory handling

The GSS API does not have a standard error code for the out of memory error condition.
Instead of adding a non-standard error code, this library has chosen to adopt a different
strategy. Out of memory handling happens in rare situations, but performing the out of
memory error handling after almost all API function invocations pollute your source code

Chapter 2: Preparation 9

and might make it harder to spot more serious problems. The strategy chosen improve code
readability and robustness.

For most applications, aborting the application with an error message when the out of
memory situation occur is the best that can be wished for. This is how the library behaves
by default.

However, we realize that some applications may not want to have the GSS library abort
execution in any situation. The GSS library support a hook to let the application regain
control and perform its own cleanups when an out of memory situation has occured. The
application can define a function (having a void prototype, i.e., no return value and no
parameters) and set the library variable xalloc_fail_func to that function. The variable
should be declared as follows.

extern void (*xalloc_fail_func) (void);

The GSS library will invoke this function if an out of memory error occurs. Note that
after this the GSS library is in an undefined state, so you must unload or restart the
application to continue call GSS library functions. The hook is only intended to allow the
application to log the situation in a special way. Of course, care must be taken to not
allocate more memory, as that will likely also fail.

Chapter 3: Standard GSS API 10

3 Standard GSS API

3.1 Error Handling

Every GSS-API routine returns two distinct values to report status information to the caller:
GSS status codes and Mechanism status codes.

3.1.1 GSS status codes

GSS-API routines return GSS status codes as their OM uint32 function value. These codes
indicate errors that are independent of the underlying mechanism(s) used to provide the
security service. The errors that can be indicated via a GSS status code are either generic
API routine errors (errors that are defined in the GSS-API specification) or calling errors
(errors that are specific to these language bindings).

A GSS status code can indicate a single fatal generic API error from the routine and
a single calling error. In addition, supplementary status information may be indicated via
the setting of bits in the supplementary info field of a GSS status code.

These errors are encoded into the 32-bit GSS status code as follows:
MSB LSB
|--|
| Calling Error | Routine Error | Supplementary Info |
|--|

Bit 31 24 23 16 15 0

Hence if a GSS-API routine returns a GSS status code whose upper 16 bits contain a
non-zero value, the call failed. If the calling error field is non-zero, the invoking application’s
call of the routine was erroneous. Calling errors are defined in table 3-1. If the routine error
field is non-zero, the routine failed for one of the routine- specific reasons listed below in
table 3-2. Whether or not the upper 16 bits indicate a failure or a success, the routine may
indicate additional information by setting bits in the supplementary info field of the status
code. The meaning of individual bits is listed below in table 3-3.

Table 3-1 Calling Errors

Name Value in field Meaning
---- -------------- -------
GSS_S_CALL_INACCESSIBLE_READ 1 A required input parameter

could not be read
GSS_S_CALL_INACCESSIBLE_WRITE 2 A required output parameter

could not be written.
GSS_S_CALL_BAD_STRUCTURE 3 A parameter was malformed

Table 3-2 Routine Errors

Name Value in field Meaning
---- -------------- -------
GSS_S_BAD_MECH 1 An unsupported mechanism

was requested
GSS_S_BAD_NAME 2 An invalid name was

Chapter 3: Standard GSS API 11

supplied
GSS_S_BAD_NAMETYPE 3 A supplied name was of an

unsupported type
GSS_S_BAD_BINDINGS 4 Incorrect channel bindings

were supplied
GSS_S_BAD_STATUS 5 An invalid status code was

supplied
GSS_S_BAD_MIC GSS_S_BAD_SIG 6 A token had an invalid MIC
GSS_S_NO_CRED 7 No credentials were

supplied, or the
credentials were
unavailable or
inaccessible.

GSS_S_NO_CONTEXT 8 No context has been
established

GSS_S_DEFECTIVE_TOKEN 9 A token was invalid
GSS_S_DEFECTIVE_CREDENTIAL 10 A credential was invalid
GSS_S_CREDENTIALS_EXPIRED 11 The referenced credentials

have expired
GSS_S_CONTEXT_EXPIRED 12 The context has expired
GSS_S_FAILURE 13 Miscellaneous failure (see

text)
GSS_S_BAD_QOP 14 The quality-of-protection

requested could not be
provided

GSS_S_UNAUTHORIZED 15 The operation is forbidden
by local security policy

GSS_S_UNAVAILABLE 16 The operation or option is
unavailable

GSS_S_DUPLICATE_ELEMENT 17 The requested credential
element already exists

GSS_S_NAME_NOT_MN 18 The provided name was not a
mechanism name

Table 3-3 Supplementary Status Bits

Name Bit Number Meaning
---- ---------- -------
GSS_S_CONTINUE_NEEDED 0 (LSB) Returned only by

gss_init_sec_context or
gss_accept_sec_context. The
routine must be called again
to complete its function.
See routine documentation for
detailed description

GSS_S_DUPLICATE_TOKEN 1 The token was a duplicate of
an earlier token

Chapter 3: Standard GSS API 12

GSS_S_OLD_TOKEN 2 The token’s validity period
has expired

GSS_S_UNSEQ_TOKEN 3 A later token has already been
processed

GSS_S_GAP_TOKEN 4 An expected per-message token
was not received

The routine documentation also uses the name GSS S COMPLETE, which is a zero
value, to indicate an absence of any API errors or supplementary information bits.

All GSS S xxx symbols equate to complete OM uint32 status codes, rather than to
bitfield values. For example, the actual value of the symbol GSS S BAD NAMETYPE
(value 3 in the routine error field) is 3<<16. The macros GSS CALLING ERROR(),
GSS ROUTINE ERROR() and GSS SUPPLEMENTARY INFO() are provided, each of
which takes a GSS status code and removes all but the relevant field. For example, the
value obtained by applying GSS ROUTINE ERROR to a status code removes the call-
ing errors and supplementary info fields, leaving only the routine errors field. The values
delivered by these macros may be directly compared with a GSS S xxx symbol of the ap-
propriate type. The macro GSS ERROR() is also provided, which when applied to a GSS
status code returns a non-zero value if the status code indicated a calling or routine error,
and a zero value otherwise. All macros defined by GSS-API evaluate their argument(s)
exactly once.

A GSS-API implementation may choose to signal calling errors in a platform-specific
manner instead of, or in addition to the routine value; routine errors and supplementary
info should be returned via major status values only.

The GSS major status code GSS S FAILURE is used to indicate that the underly-
ing mechanism detected an error for which no specific GSS status code is defined. The
mechanism-specific status code will provide more details about the error.

3.1.2 Mechanism-specific status codes

GSS-API routines return a minor status parameter, which is used to indicate specialized
errors from the underlying security mechanism. This parameter may contain a single
mechanism-specific error, indicated by a OM uint32 value.

The minor status parameter will always be set by a GSS-API routine, even if it returns
a calling error or one of the generic API errors indicated above as fatal, although most other
output parameters may remain unset in such cases. However, output parameters that are
expected to return pointers to storage allocated by a routine must always be set by the
routine, even in the event of an error, although in such cases the GSS-API routine may
elect to set the returned parameter value to NULL to indicate that no storage was actually
allocated. Any length field associated with such pointers (as in a gss buffer desc structure)
should also be set to zero in such cases.

3.2 Credential Management
Table 2-1 GSS-API Credential-management Routines

Routine Section Function
------- ------- --------

Chapter 3: Standard GSS API 13

gss_acquire_cred 5.2 Assume a global identity; Obtain
a GSS-API credential handle for
pre-existing credentials.

gss_add_cred 5.3 Construct credentials
incrementally

gss_inquire_cred 5.21 Obtain information about a
credential

gss_inquire_cred_by_mech 5.22 Obtain per-mechanism information
about a credential.

gss_release_cred 5.27 Discard a credential handle.

[Function]OM_uint32 gss_acquire_cred (OM_uint32 *minor_status, const
gss_name_t desired_name, OM_uint32 time_req, const
gss_OID_set desired_mechs, gss_cred_usage_t cred_usage,
gss_cred_id_t *output_cred_handle, gss_OID_set
*actual_mechs, OM_uint32 *time_rec)

minor status: Integer, modify. Mechanism specific status code.

desired name: gss name t, read. Name of principal whose credential should be ac-
quired.

time req: Integer, read, optional number of seconds that credentials should remain
valid. Specify GSS C INDEFINITE to request that the credentials have the maxi-
mum permitted lifetime.

desired mechs: Set of Object IDs, read, optional set of underlying security
mechanisms that may be used. GSS C NO OID SET may be used to obtain an
implementation-specific default.

cred usage: gss cred usage t, read. GSS C BOTH - Credentials may be used either
to initiate or accept security contexts. GSS C INITIATE - Credentials will only be
used to initiate security contexts. GSS C ACCEPT - Credentials will only be used
to accept security contexts.

output cred handle: gss cred id t, modify. The returned credential handle. Re-
sources associated with this credential handle must be released by the application
after use with a call to gss release cred().

actual mechs: Set of Object IDs, modify, optional. The set of mechanisms for which
the credential is valid. Storage associated with the returned OID-set must be released
by the application after use with a call to gss release oid set(). Specify NULL if not
required.

time rec: Integer, modify, optional. Actual number of seconds for which the returned
credentials will remain valid. If the implementation does not support expiration of
credentials, the value GSS C INDEFINITE will be returned. Specify NULL if not
required

Allows an application to acquire a handle for a pre-existing credential by name. GSS-
API implementations must impose a local access-control policy on callers of this
routine to prevent unauthorized callers from acquiring credentials to which they are
not entitled. This routine is not intended to provide a "login to the network" function,
as such a function would involve the creation of new credentials rather than merely

Chapter 3: Standard GSS API 14

acquiring a handle to existing credentials. Such functions, if required, should be
defined in implementation-specific extensions to the API.

If desired name is GSS C NO NAME, the call is interpreted as a request for a cre-
dential handle that will invoke default behavior when passed to gss init sec context()
(if cred usage is GSS C INITIATE or GSS C BOTH) or gss accept sec context() (if
cred usage is GSS C ACCEPT or GSS C BOTH).

Mechanisms should honor the desired mechs parameter, and return a credential that
is suitable to use only with the requested mechanisms. An exception to this is the
case where one underlying credential element can be shared by multiple mechanisms;
in this case it is permissible for an implementation to indicate all mechanisms with
which the credential element may be used. If desired mechs is an empty set, behavior
is undefined.

This routine is expected to be used primarily by context acceptors, since implemen-
tations are likely to provide mechanism-specific ways of obtaining GSS-API initia-
tor credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS C INITIATE or GSS C BOTH credentials via
gss acquire cred for any name other than GSS C NO NAME, or a name produced
by applying either gss inquire cred to a valid credential, or gss inquire context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism
may choose to delay the actual acquisition until the credential is required (e.g.
by gss init sec context or gss accept sec context). Such mechanism-specific
implementation decisions should be invisible to the calling application; thus a call
of gss inquire cred immediately following the call of gss acquire cred must return
valid credential data, and may therefore incur the overhead of a deferred credential
acquisition.

Valid return values and their meaning:

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE: Type contained within desired name parameter is not sup-
ported.

GSS_S_BAD_NAME: Value supplied for desired name parameter is ill formed.

GSS_S_CREDENTIALS_EXPIRED: The credentials could not be acquired Because they
have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.

[Function]OM_uint32 gss_add_cred (OM_uint32 *minor_status, const
gss_cred_id_t input_cred_handle, const gss_name_t
desired_name, const gss_OID desired_mech, gss_cred_usage_t
cred_usage, OM_uint32 initiator_time_req, OM_uint32
acceptor_time_req, gss_cred_id_t *output_cred_handle,
gss_OID_set *actual_mechs, OM_uint32 *initiator_time_rec,
OM_uint32 *acceptor_time_rec)

minor status: Integer, modify. Mechanism specific status code.

Chapter 3: Standard GSS API 15

input cred handle: gss cred id t, read, optional. The credential to which a
credential-element will be added. If GSS C NO CREDENTIAL is specified, the
routine will compose the new credential based on default behavior (see description
above). Note that, while the credential-handle is not modified by gss add cred(),
the underlying credential will be modified if output credential handle is NULL.

desired name: gss name t, read. Name of principal whose credential should be ac-
quired.

desired mech: Object ID, read. Underlying security mechanism with which the cre-
dential may be used.

cred usage: gss cred usage t, read. GSS C BOTH - Credential may be used either
to initiate or accept security contexts. GSS C INITIATE - Credential will only be
used to initiate security contexts. GSS C ACCEPT - Credential will only be used to
accept security contexts.

initiator time req: Integer, read, optional. number of seconds that the credential
should remain valid for initiating security contexts. This argument is ignored if the
composed credentials are of type GSS C ACCEPT. Specify GSS C INDEFINITE to
request that the credentials have the maximum permitted initiator lifetime.

acceptor time req: Integer, read, optional. number of seconds that the credential
should remain valid for accepting security contexts. This argument is ignored if the
composed credentials are of type GSS C INITIATE. Specify GSS C INDEFINITE
to request that the credentials have the maximum permitted initiator lifetime.

output cred handle: gss cred id t, modify, optional. The returned credential han-
dle, containing the new credential-element and all the credential-elements from in-
put cred handle. If a valid pointer to a gss cred id t is supplied for this parameter,
gss add cred creates a new credential handle containing all credential-elements from
the input cred handle and the newly acquired credential-element; if NULL is spec-
ified for this parameter, the newly acquired credential-element will be added to the
credential identified by input cred handle.

The resources associated with any credential handle returned via this parameter must
be released by the application after use with a call to gss release cred().

actual mechs: Set of Object IDs, modify, optional. The complete set of mechanisms
for which the new credential is valid. Storage for the returned OID-set must be freed
by the application after use with a call to gss release oid set(). Specify NULL if not
required.

initiator time rec: Integer, modify, optional. Actual number of seconds for which
the returned credentials will remain valid for initiating contexts using the specified
mechanism. If the implementation or mechanism does not support expiration of
credentials, the value GSS C INDEFINITE will be returned. Specify NULL if not
required

acceptor time rec: Integer, modify, optional. Actual number of seconds for which
the returned credentials will remain valid for accepting security contexts using the
specified mechanism. If the implementation or mechanism does not support expiration
of credentials, the value GSS C INDEFINITE will be returned. Specify NULL if not
required

Chapter 3: Standard GSS API 16

Adds a credential-element to a credential. The credential-element is identified by the
name of the principal to which it refers. GSS-API implementations must impose a
local access-control policy on callers of this routine to prevent unauthorized callers
from acquiring credential-elements to which they are not entitled. This routine is not
intended to provide a "login to the network" function, as such a function would in-
volve the creation of new mechanism-specific authentication data, rather than merely
acquiring a GSS-API handle to existing data. Such functions, if required, should be
defined in implementation-specific extensions to the API.

If desired name is GSS C NO NAME, the call is interpreted as a request to add a cre-
dential element that will invoke default behavior when passed to gss init sec context()
(if cred usage is GSS C INITIATE or GSS C BOTH) or gss accept sec context() (if
cred usage is GSS C ACCEPT or GSS C BOTH).

This routine is expected to be used primarily by context acceptors, since implemen-
tations are likely to provide mechanism-specific ways of obtaining GSS-API initia-
tor credentials from the system login process. Some implementations may therefore
not support the acquisition of GSS C INITIATE or GSS C BOTH credentials via
gss acquire cred for any name other than GSS C NO NAME, or a name produced
by applying either gss inquire cred to a valid credential, or gss inquire context to an
active context.

If credential acquisition is time-consuming for a mechanism, the mechanism
may choose to delay the actual acquisition until the credential is required (e.g.
by gss init sec context or gss accept sec context). Such mechanism-specific
implementation decisions should be invisible to the calling application; thus a call
of gss inquire cred immediately following the call of gss add cred must return valid
credential data, and may therefore incur the overhead of a deferred credential
acquisition.

This routine can be used to either compose a new credential containing all credential-
elements of the original in addition to the newly-acquire credential-element, or to add
the new credential- element to an existing credential. If NULL is specified for the
output cred handle parameter argument, the new credential-element will be added
to the credential identified by input cred handle; if a valid pointer is specified for the
output cred handle parameter, a new credential handle will be created.

If GSS C NO CREDENTIAL is specified as the input cred handle, gss add cred will
compose a credential (and set the output cred handle parameter accordingly) based
on default behavior. That is, the call will have the same effect as if the application
had first made a call to gss acquire cred(), specifying the same usage and passing
GSS C NO NAME as the desired name parameter to obtain an explicit credential
handle embodying default behavior, passed this credential handle to gss add cred(),
and finally called gss release cred() on the first credential handle.

If GSS C NO CREDENTIAL is specified as the input cred handle parameter, a non-
NULL output cred handle must be supplied.

Valid return values and their meaning:

GSS_S_COMPLETE: Successful completion.

GSS_S_BAD_MECH: Unavailable mechanism requested.

Chapter 3: Standard GSS API 17

GSS_S_BAD_NAMETYPE: Type contained within desired name parameter is not sup-
ported.

GSS_S_BAD_NAME: Value supplied for desired name parameter is ill-formed.

GSS_S_DUPLICATE_ELEMENT: The credential already contains an element for the re-
quested mechanism with overlapping usage and validity period.

GSS_S_CREDENTIALS_EXPIRED: The required credentials could not be added because
they have expired.

GSS_S_NO_CRED: No credentials were found for the specified name.

[Function]OM_uint32 gss_inquire_cred (OM_uint32 *minor_status, const
gss_cred_id_t cred_handle, gss_name_t *name, OM_uint32
*lifetime, gss_cred_usage_t *cred_usage, gss_OID_set
*mechanisms)

minor status: Integer, modify. Mechanism specific status code

cred handle: gss cred id t, read. A handle that refers to the target credential. Spec-
ify GSS C NO CREDENTIAL to inquire about the default initiator principal.

name: gss name t, modify, optional. The name whose identity the credential asserts.
Storage associated with this name should be freed by the application after use with
a call to gss release name(). Specify NULL if not required.

lifetime: Integer, modify, optional. The number of seconds for which the creden-
tial will remain valid. If the credential has expired, this parameter will be set
to zero. If the implementation does not support credential expiration, the value
GSS C INDEFINITE will be returned. Specify NULL if not required.

cred usage: gss cred usage t, modify, optional. How the credential may be used.
One of the following: GSS C INITIATE, GSS C ACCEPT, GSS C BOTH. Specify
NULL if not required.

mechanisms: gss OID set, modify, optional. Set of mechanisms supported by the
credential. Storage associated with this OID set must be freed by the application
after use with a call to gss release oid set(). Specify NULL if not required.

Obtains information about a credential.

Valid return values and their meaning:

GSS_S_COMPLETE: Successful completion

GSS_S_NO_CRED: The referenced credentials could not be accessed.

GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the life-
time parameter was not passed as NULL, it will be set to 0.

[Function]OM_uint32 gss_inquire_cred_by_mech (OM_uint32
*minor_status, const gss_cred_id_t cred_handle, const
gss_OID mech_type, gss_name_t *name, OM_uint32
*initiator_lifetime, OM_uint32 *acceptor_lifetime,
gss_cred_usage_t *cred_usage)

minor status: Integer, modify. Mechanism specific status code

Chapter 3: Standard GSS API 18

cred handle: gss cred id t, read. A handle that refers to the target credential. Spec-
ify GSS C NO CREDENTIAL to inquire about the default initiator principal.

mech type: gss OID, read. The mechanism for which information should be returned.

name: gss name t, modify, optional. The name whose identity the credential asserts.
Storage associated with this name must be freed by the application after use with a
call to gss release name(). Specify NULL if not required.

initiator lifetime: Integer, modify, optional. The number of seconds for which the
credential will remain capable of initiating security contexts under the specified mech-
anism. If the credential can no longer be used to initiate contexts, or if the credential
usage for this mechanism is GSS C ACCEPT, this parameter will be set to zero.
If the implementation does not support expiration of initiator credentials, the value
GSS C INDEFINITE will be returned. Specify NULL if not required.

acceptor lifetime: Integer, modify, optional. The number of seconds for which the
credential will remain capable of accepting security contexts under the specified mech-
anism. If the credential can no longer be used to accept contexts, or if the credential
usage for this mechanism is GSS C INITIATE, this parameter will be set to zero.
If the implementation does not support expiration of acceptor credentials, the value
GSS C INDEFINITE will be returned. Specify NULL if not required.

cred usage: gss cred usage t, modify, optional. How the credential may be used with
the specified mechanism. One of the following: GSS C INITIATE, GSS C ACCEPT,
GSS C BOTH. Specify NULL if not required.

Obtains per-mechanism information about a credential.

Valid return values and their meaning:

GSS_S_COMPLETE: Successful completion

GSS_S_NO_CRED: The referenced credentials could not be accessed.

GSS_S_DEFECTIVE_CREDENTIAL: The referenced credentials were invalid.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired. If the life-
time parameter was not passed as NULL, it will be set to 0.

[Function]OM_uint32 gss_release_cred (OM_uint32 * minor_status,
gss_cred_id_t * cred_handle)

minor status: Mechanism specific status code.

cred handle: Optional opaque handle identifying credential to be released. If
GSS C NO CREDENTIAL is supplied, the routine will complete successfully, but
will do nothing.

Informs GSS-API that the specified credential handle is no longer required by the
application, and frees associated resources. Implementations are encouraged to set
the cred handle to GSS C NO CREDENTIAL on successful completion of this call.

Returns GSS S COMPLETE for successful completion, and GSS S NO CRED for
credentials could not be accessed.

Chapter 3: Standard GSS API 19

3.3 Context-Level Routines
Table 2-2 GSS-API Context-Level Routines

Routine Section Function
------- ------- --------
gss_init_sec_context 5.19 Initiate a security context with

a peer application
gss_accept_sec_context 5.1 Accept a security context

initiated by a
peer application

gss_delete_sec_context 5.9 Discard a security context
gss_process_context_token 5.25 Process a token on a security

context from a peer application
gss_context_time 5.7 Determine for how long a context

will remain valid
gss_inquire_context 5.20 Obtain information about a

security context
gss_wrap_size_limit 5.34 Determine token-size limit for

gss_wrap on a context
gss_export_sec_context 5.14 Transfer a security context to

another process
gss_import_sec_context 5.17 Import a transferred context

[Function]OM_uint32 gss_init_sec_context (OM_uint32 * minor_status,
const gss_cred_id_t initiator_cred_handle, gss_ctx_id_t *
context_handle, const gss_name_t target_name, const gss_OID
mech_type, OM_uint32 req_flags, OM_uint32 time_req, const
gss_channel_bindings_t input_chan_bindings, const
gss_buffer_t input_token, gss_OID * actual_mech_type,
gss_buffer_t output_token, OM_uint32 * ret_flags, OM_uint32
* time_rec)

minor status: Mechanism specific status code.
initiator cred handle: Optional handle for credentials claimed. Supply
GSS C NO CREDENTIAL to act as a default initiator principal. If no default
initiator is defined, the function will return GSS S NO CRED.
context handle: Context handle for new context. Supply GSS C NO CONTEXT for
first call; use value returned by first call in continuation calls. Resources associated
with this context-handle must be released by the application after use with a call to
gss_delete_sec_context().
target name: Name of target.
mech type: Optional object ID of desired mechanism. Supply GSS C NO OID to
obtain an implementation specific default
req flags: Contains various independent flags, each of which requests that the context
support a specific service option. Symbolic names are provided for each flag, and the
symbolic names corresponding to the required flags should be logically-ORed together
to form the bit-mask value. See below for details.

Chapter 3: Standard GSS API 20

time req: Optional Desired number of seconds for which context should remain valid.
Supply 0 to request a default validity period.
input chan bindings: Optional Application-specified bindings. Allows application
to securely bind channel identification information to the security context. Specify
GSS C NO CHANNEL BINDINGS if channel bindings are not used.
input token: Optional (see text) Token received from peer application.
Supply GSS C NO BUFFER, or a pointer to a buffer containing the value
GSS C EMPTY BUFFER on initial call.
actual mech type: Optional actual mechanism used. The OID returned via this
parameter will be a pointer to static storage that should be treated as read-only; In
particular the application should not attempt to free it. Specify NULL if not required.
output token: Token to be sent to peer application. If the length field of the returned
buffer is zero, no token need be sent to the peer application. Storage associated with
this buffer must be freed by the application after use with a call to gss_release_
buffer().
ret flags: Optional various independent flags, each of which indicates that the context
supports a specific service option. Specify NULL if not required. Symbolic names are
provided for each flag, and the symbolic names corresponding to the required flags
should be logically-ANDed with the ret flags value to test whether a given option is
supported by the context. See below for details.
time rec: Optional number of seconds for which the context will remain valid. If the
implementation does not support context expiration, the value GSS C INDEFINITE
will be returned. Specify NULL if not required.
Initiates the establishment of a security context between the application and a
remote peer. Initially, the input token parameter should be specified either as
GSS C NO BUFFER, or as a pointer to a gss buffer desc object whose length
field contains the value zero. The routine may return a output token which should
be transferred to the peer application, where the peer application will present
it to gss accept sec context. If no token need be sent, gss init sec context will
indicate this by setting the length field of the output token argument to zero. To
complete the context establishment, one or more reply tokens may be required
from the peer application; if so, gss init sec context will return a status containing
the supplementary information bit GSS S CONTINUE NEEDED. In this case,
gss init sec context should be called again when the reply token is received from the
peer application, passing the reply token to gss init sec context via the input token
parameters.
Portable applications should be constructed to use the token length and return status
to determine whether a token needs to be sent or waited for. Thus a typical portable
caller should always invoke

int context_established = 0;
gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

...
input_token->length = 0;

while (!context_established) {

Chapter 3: Standard GSS API 21

maj_stat = gss_init_sec_context(&min_stat,
cred_hdl,
&context_hdl,
target_name,
desired_mech,
desired_services,
desired_time,
input_bindings,
input_token,
&actual_mech,
output_token,
&actual_services,
&actual_time);

if (GSS_ERROR(maj_stat)) {
report_error(maj_stat, min_stat);

};

if (output_token->length != 0) {
send_token_to_peer(output_token);
gss_release_buffer(&min_stat, output_token)

};
if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context(&min_stat,

&context_hdl,
GSS_C_NO_BUFFER);

break;
};

if (maj_stat & GSS_S_CONTINUE_NEEDED) {
receive_token_from_peer(input_token);

} else {
context_established = 1;

};
};

Whenever the routine returns a major status that includes the value
GSS S CONTINUE NEEDED, the context is not fully established and the following
restrictions apply to the output parameters:

• The value returned via the time rec parameter is undefined Unless the accom-
panying ret flags parameter contains the bit GSS C PROT READY FLAG, in-
dicating that per-message services may be applied in advance of a successful
completion status, the value returned via the actual mech type parameter is
undefined until the routine returns a major status value of GSS S COMPLETE.

• The values of the GSS C DELEG FLAG, GSS C MUTUAL FLAG,
GSS C REPLAY FLAG, GSS C SEQUENCE FLAG, GSS C CONF FLAG,

Chapter 3: Standard GSS API 22

GSS C INTEG FLAG and GSS C ANON FLAG bits returned via the
ret flags parameter should contain the values that the implementation expects
would be valid if context establishment were to succeed. In particular, if
the application has requested a service such as delegation or anonymous
authentication via the req flags argument, and such a service is unavailable
from the underlying mechanism, gss init sec context should generate a token
that will not provide the service, and indicate via the ret flags argument that
the service will not be supported. The application may choose to abort the
context establishment by calling gss delete sec context (if it cannot continue in
the absence of the service), or it may choose to transmit the token and continue
context establishment (if the service was merely desired but not mandatory).

• The values of the GSS C PROT READY FLAG and GSS C TRANS FLAG
bits within ret flags should indicate the actual state at the time
gss init sec context returns, whether or not the context is fully established.

• GSS-API implementations that support per-message protection are encouraged
to set the GSS C PROT READY FLAG in the final ret flags returned to a
caller (i.e. when accompanied by a GSS S COMPLETE status code). However,
applications should not rely on this behavior as the flag was not defined in Ver-
sion 1 of the GSS-API. Instead, applications should determine what per-message
services are available after a successful context establishment according to the
GSS C INTEG FLAG and GSS C CONF FLAG values.

• All other bits within the ret flags argument should be set to zero.

If the initial call of gss init sec context() fails, the implementation should not create
a context object, and should leave the value of the context handle parameter set to
GSS C NO CONTEXT to indicate this. In the event of a failure on a subsequent call,
the implementation is permitted to delete the "half-built" security context (in which
case it should set the context handle parameter to GSS C NO CONTEXT), but the
preferred behavior is to leave the security context untouched for the application to
delete (using gss delete sec context).
During context establishment, the informational status bits GSS S OLD TOKEN
and GSS S DUPLICATE TOKEN indicate fatal errors, and GSS-API mechanisms
should always return them in association with a routine error of GSS S FAILURE.
This requirement for pairing did not exist in version 1 of the GSS-API specification,
so applications that wish to run over version 1 implementations must special-case
these codes.
The req_flags values:

GSS_C_DELEG_FLAG
True - Delegate credentials to remote peer. False - Don’t delegate.

GSS_C_MUTUAL_FLAG
True - Request that remote peer authenticate itself. False - Authenticate
self to remote peer only.

GSS_C_REPLAY_FLAG
True - Enable replay detection for messages protected with gss wrap or
gss get mic. False - Don’t attempt to detect replayed messages.

Chapter 3: Standard GSS API 23

GSS_C_SEQUENCE_FLAG
True - Enable detection of out-of-sequence protected messages. False -
Don’t attempt to detect out-of-sequence messages.

GSS_C_CONF_FLAG
True - Request that confidentiality service be made available (via
gss wrap). False - No per-message confidentiality service is required.

GSS_C_INTEG_FLAG
True - Request that integrity service be made available (via gss wrap or
gss get mic). False - No per-message integrity service is required.

GSS_C_ANON_FLAG
True - Do not reveal the initiator’s identity to the acceptor. False -
Authenticate normally.

The ret_flags values:

GSS_C_DELEG_FLAG
True - Credentials were delegated to the remote peer. False - No creden-
tials were delegated.

GSS_C_MUTUAL_FLAG
True - The remote peer has authenticated itself. False - Remote peer has
not authenticated itself.

GSS_C_REPLAY_FLAG
True - replay of protected messages will be detected. False - replayed
messages will not be detected.

GSS_C_SEQUENCE_FLAG
True - out-of-sequence protected messages will be detected. False - out-
of-sequence messages will not be detected.

GSS_C_CONF_FLAG
True - Confidentiality service may be invoked by calling gss wrap routine.
False - No confidentiality service (via gss wrap) available. gss wrap will
provide message encapsulation, data-origin authentication and integrity
services only.

GSS_C_INTEG_FLAG
True - Integrity service may be invoked by calling either gss get mic or
gss wrap routines. False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG
True - The initiator’s identity has not been revealed, and will not be
revealed if any emitted token is passed to the acceptor. False - The
initiator’s identity has been or will be authenticated normally.

GSS_C_PROT_READY_FLAG
True - Protection services (as specified by the states of the
GSS C CONF FLAG and GSS C INTEG FLAG) are available
for use if the accompanying major status return value is either

Chapter 3: Standard GSS API 24

GSS S COMPLETE or GSS S CONTINUE NEEDED. False - Protec-
tion services (as specified by the states of the GSS C CONF FLAG and
GSS C INTEG FLAG) are available only if the accompanying major
status return value is GSS S COMPLETE.

GSS_C_TRANS_FLAG
True - The resultant security context may be transferred to other pro-
cesses via a call to gss_export_sec_context(). False - The security
context is not transferable.

All other bits should be set to zero.

Valid return values and their meaning:

GSS_S_COMPLETE: Successful completion.

GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required
to complete the context, and that gss init sec context must be called again with that
token.

GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the in-
put token failed.

GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the
credential failed.

GSS_S_NO_CRED: The supplied credentials were not valid for context initiation, or the
credential handle did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.

GSS_S_BAD_BINDINGS: The input token contains different channel bindings to those
specified via the input chan bindings parameter.

GSS_S_BAD_SIG: The input token contains an invalid MIC, or a MIC that could not
be verified.

GSS_S_OLD_TOKEN: The input token was too old. This is a fatal error during context
establishment.

GSS_S_DUPLICATE_TOKEN: The input token is valid, but is a duplicate of a token
already processed. This is a fatal error during context establishment.

GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a
valid context.

GSS_S_BAD_NAMETYPE: The provided target name parameter contained an invalid or
unsupported type of name.

GSS_S_BAD_NAME: The provided target name parameter was ill-formed.

GSS_S_BAD_MECH: The specified mechanism is not supported by the provided creden-
tial, or is unrecognized by the implementation.

Chapter 3: Standard GSS API 25

[Function]OM_uint32 gss_accept_sec_context (OM_uint32 *minor_status,
gss_ctx_id_t *context_handle, const gss_cred_id_t
acceptor_cred_handle, const gss_buffer_t input_token_buffer,
const gss_channel_bindings_t input_chan_bindings, const
gss_name_t *src_name, gss_OID *mech_type, gss_buffer_t
output_token, OM_uint32 *ret_flags, OM_uint32 *time_rec,
gss_cred_id_t *delegated_cred_handle)

minor status: Integer, modify Mechanism specific status code.

context handle: gss ctx id t, read/modify context handle for new context. Supply
GSS C NO CONTEXT for first call; use value returned in subsequent calls. Once
gss accept sec context() has returned a value via this parameter, resources have been
assigned to the corresponding context, and must be freed by the application after use
with a call to gss delete sec context().

acceptor cred handle: gss cred id t, read Credential handle claimed by context ac-
ceptor. Specify GSS C NO CREDENTIAL to accept the context as a default prin-
cipal. If GSS C NO CREDENTIAL is specified, but no default acceptor principal is
defined, GSS S NO CRED will be returned.

input token buffer: buffer, opaque, read token obtained from remote application.

input chan bindings: channel bindings, read, optional Application- specified
bindings. Allows application to securely bind channel identification infor-
mation to the security context. If channel bindings are not used, specify
GSS C NO CHANNEL BINDINGS.

src name: gss name t, modify, optional Authenticated name of context initiator.
After use, this name should be deallocated by passing it to gss release name(). If not
required, specify NULL.

mech type: Object ID, modify, optional Security mechanism used. The returned OID
value will be a pointer into static storage, and should be treated as read-only by the
caller (in particular, it does not need to be freed). If not required, specify NULL.

output token: buffer, opaque, modify Token to be passed to peer application. If the
length field of the returned token buffer is 0, then no token need be passed to the
peer application. If a non- zero length field is returned, the associated storage must
be freed after use by the application with a call to gss release buffer().

ret flags: bit-mask, modify, optional Contains various independent flags, each of
which indicates that the context supports a specific service option. If not needed,
specify NULL. Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically-ANDed with the ret flags value
to test whether a given option is supported by the context. See below for the values.

time rec: Integer, modify, optional number of seconds for which the context will
remain valid. Specify NULL if not required.

delegated cred handle: gss cred id t, modify, optional credential handle for creden-
tials received from context initiator. Only valid if deleg flag in ret flags is true,
in which case an explicit credential handle (i.e. not GSS C NO CREDENTIAL)
will be returned; if deleg flag is false, gss accept context() will set this parameter
to GSS C NO CREDENTIAL. If a credential handle is returned, the associated re-

Chapter 3: Standard GSS API 26

sources must be released by the application after use with a call to gss release cred().
Specify NULL if not required.

Allows a remotely initiated security context between the application and a remote
peer to be established. The routine may return a output token which should
be transferred to the peer application, where the peer application will present
it to gss init sec context. If no token need be sent, gss accept sec context will
indicate this by setting the length field of the output token argument to zero. To
complete the context establishment, one or more reply tokens may be required
from the peer application; if so, gss accept sec context will return a status
flag of GSS S CONTINUE NEEDED, in which case it should be called again
when the reply token is received from the peer application, passing the token to
gss accept sec context via the input token parameters.

Portable applications should be constructed to use the token length and return status
to determine whether a token needs to be sent or waited for. Thus a typical portable
caller should always invoke gss accept sec context within a loop:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do {
receive_token_from_peer(input_token);
maj_stat = gss_accept_sec_context(&min_stat,

&context_hdl,
cred_hdl,
input_token,
input_bindings,
&client_name,
&mech_type,
output_token,
&ret_flags,
&time_rec,
&deleg_cred);

if (GSS_ERROR(maj_stat)) {
report_error(maj_stat, min_stat);

};
if (output_token->length != 0) {

send_token_to_peer(output_token);

gss_release_buffer(&min_stat, output_token);
};
if (GSS_ERROR(maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context(&min_stat,

&context_hdl,
GSS_C_NO_BUFFER);

break;
};

} while (maj_stat & GSS_S_CONTINUE_NEEDED);

Chapter 3: Standard GSS API 27

Whenever the routine returns a major status that includes the value
GSS S CONTINUE NEEDED, the context is not fully established and the following
restrictions apply to the output parameters:

The value returned via the time rec parameter is undefined Unless the accompanying
ret flags parameter contains the bit GSS C PROT READY FLAG, indicating that
per-message services may be applied in advance of a successful completion status,
the value returned via the mech type parameter may be undefined until the routine
returns a major status value of GSS S COMPLETE.

The values of the GSS C DELEG FLAG, GSS C MUTUAL FLAG,GSS C REPLAY FLAG,
GSS C SEQUENCE FLAG, GSS C CONF FLAG,GSS C INTEG FLAG and
GSS C ANON FLAG bits returned via the ret flags parameter should contain the
values that the implementation expects would be valid if context establishment were
to succeed.

The values of the GSS C PROT READY FLAG and GSS C TRANS FLAG bits
within ret flags should indicate the actual state at the time gss accept sec context
returns, whether or not the context is fully established.

Although this requires that GSS-API implementations set the GSS C PROT READY FLAG
in the final ret flags returned to a caller (i.e. when accompanied by a
GSS S COMPLETE status code), applications should not rely on this behavior as
the flag was not defined in Version 1 of the GSS-API. Instead, applications should
be prepared to use per-message services after a successful context establishment,
according to the GSS C INTEG FLAG and GSS C CONF FLAG values.

All other bits within the ret flags argument should be set to zero. While the routine
returns GSS S CONTINUE NEEDED, the values returned via the ret flags argu-
ment indicate the services that the implementation expects to be available from the
established context.

If the initial call of gss accept sec context() fails, the implementation should not
create a context object, and should leave the value of the context handle parameter set
to GSS C NO CONTEXT to indicate this. In the event of a failure on a subsequent
call, the implementation is permitted to delete the "half-built" security context (in
which case it should set the context handle parameter to GSS C NO CONTEXT),
but the preferred behavior is to leave the security context (and the context handle
parameter) untouched for the application to delete (using gss delete sec context).

During context establishment, the informational status bits GSS S OLD TOKEN
and GSS S DUPLICATE TOKEN indicate fatal errors, and GSS-API mechanisms
should always return them in association with a routine error of GSS S FAILURE.
This requirement for pairing did not exist in version 1 of the GSS-API specification,
so applications that wish to run over version 1 implementations must special-case
these codes.

The ret_flags flag values:

GSS_C_DELEG_FLAG
True - Delegated credentials are available via the delegated cred handle
parameter. False - No credentials were delegated.

Chapter 3: Standard GSS API 28

GSS_C_MUTUAL_FLAG
True - Remote peer asked for mutual authentication. False - Remote peer
did not ask for mutual authentication.

GSS_C_REPLAY_FLAG
True - replay of protected messages will be detected. False - replayed
messages will not be detected.

GSS_C_SEQUENCE_FLAG
True - out-of-sequence protected messages will be detected. False - out-
of-sequence messages will not be detected.

GSS_C_CONF_FLAG
True - Confidentiality service may be invoked by calling the gss wrap rou-
tine. False - No confidentiality service (via gss wrap) available. gss wrap
will provide message encapsulation, data-origin authentication and in-
tegrity services only.

GSS_C_INTEG_FLAG
True - Integrity service may be invoked by calling either gss get mic or
gss wrap routines. False - Per-message integrity service unavailable.

GSS_C_ANON_FLAG
True - The initiator does not wish to be authenticated; the src name
parameter (if requested) contains an anonymous internal name. False -
The initiator has been authenticated normally.

GSS_C_PROT_READY_FLAG
True - Protection services (as specified by the states of the
GSS C CONF FLAG and GSS C INTEG FLAG) are available if the
accompanying major status return value is either GSS S COMPLETE or
GSS S CONTINUE NEEDED. False - Protection services (as specified
by the states of the GSS C CONF FLAG and GSS C INTEG FLAG)
are available only if the accompanying major status return value is
GSS S COMPLETE.

GSS_C_TRANS_FLAG
True - The resultant security context may be transferred to other pro-
cesses via a call to gss export sec context(). False - The security context
is not transferable.

All other bits should be set to zero.
Return values:
GSS_S_CONTINUE_NEEDED: Indicates that a token from the peer application is required
to complete the context, and that gss accept sec context must be called again with
that token.
GSS_S_DEFECTIVE_TOKEN: Indicates that consistency checks performed on the in-
put token failed.
GSS_S_DEFECTIVE_CREDENTIAL: Indicates that consistency checks performed on the
credential failed.

Chapter 3: Standard GSS API 29

GSS_S_NO_CRED: The supplied credentials were not valid for context acceptance, or
the credential handle did not reference any credentials.

GSS_S_CREDENTIALS_EXPIRED: The referenced credentials have expired.

GSS_S_BAD_BINDINGS: The input token contains different channel bindings to those
specified via the input chan bindings parameter.

GSS_S_NO_CONTEXT: Indicates that the supplied context handle did not refer to a
valid context.

GSS_S_BAD_SIG: The input token contains an invalid MIC.

GSS_S_OLD_TOKEN: The input token was too old. This is a fatal error during context
establishment.

GSS_S_DUPLICATE_TOKEN: The input token is valid, but is a duplicate of a token
already processed. This is a fatal error during context establishment.

GSS_S_BAD_MECH: The received token specified a mechanism that is not supported by
the implementation or the provided credential.

[Function]OM_uint32 gss_delete_sec_context (OM_uint32 *
minor_status, gss_ctx_id_t * context_handle, gss_buffer_t
output_token)

minor status: Mechanism specific status code.

context handle: Context handle identifying context to delete. After deleting the
context, the GSS-API will set this context handle to GSS C NO CONTEXT.

output token: Optional token to be sent to remote application to instruct it to also
delete the context. It is recommended that applications specify GSS C NO BUFFER
for this parameter, requesting local deletion only. If a buffer parameter is provided by
the application, the mechanism may return a token in it; mechanisms that implement
only local deletion should set the length field of this token to zero to indicate to the
application that no token is to be sent to the peer.

Delete a security context. gss_delete_sec_context() will delete the local data
structures associated with the specified security context, and may generate an out-
put token, which when passed to the peer gss_process_context_token() will in-
struct it to do likewise. If no token is required by the mechanism, the GSS-API
should set the length field of the output token (if provided) to zero. No further
security services may be obtained using the context specified by context handle.

In addition to deleting established security contexts, gss_delete_sec_context()
must also be able to delete "half-built" security contexts resulting from an incomplete
sequence of gss_init_sec_context()/gss_accept_sec_context() calls.

The output token parameter is retained for compatibility with version 1 of the
GSS-API. It is recommended that both peer applications invoke gss_delete_sec_
context() passing the value GSS C NO BUFFER for the output token parameter,
indicating that no token is required, and that gss_delete_sec_context() should
simply delete local context data structures. If the application does pass a valid
buffer to gss_delete_sec_context(), mechanisms are encouraged to return a
zero-length token, indicating that no peer action is necessary, and that no token
should be transferred by the application.

Chapter 3: Standard GSS API 30

Returns GSS S COMPLETE for successful completion, and GSS S NO CONTEXT
if no valid context was supplied.

3.4 Per-Message Routines
Table 2-3 GSS-API Per-message Routines

Routine Section Function
------- ------- --------
gss_get_mic 5.15 Calculate a cryptographic message

integrity code (MIC) for a
message; integrity service

gss_verify_mic 5.32 Check a MIC against a message;
verify integrity of a received
message

gss_wrap 5.33 Attach a MIC to a message, and
optionally encrypt the message
content;
confidentiality service

gss_unwrap 5.31 Verify a message with attached
MIC, and decrypt message content
if necessary.

[Function]OM_uint32 gss_wrap (OM_uint32 * minor_status, const
gss_ctx_id_t context_handle, int conf_req_flag, gss_qop_t
qop_req, const gss_buffer_t input_message_buffer, int *
conf_state, gss_buffer_t output_message_buffer)

minor status: Mechanism specific status code.
context handle: Identifies the context on which the message will be sent
conf req flag : Whether confidentiality is requested.
qop req: Specifies required quality of protection. A mechanism-specific default
may be requested by setting qop req to GSS C QOP DEFAULT. If an unsup-
ported protection strength is requested, gss wrap will return a major status of
GSS S BAD QOP.
input message buffer: Message to be protected.
conf state: Optional output variable indicating if confidentiality services have been
applied.
output message buffer: Buffer to receive protected message. Storage associated with
this message must be freed by the application after use with a call to gss_release_
buffer().
Attaches a cryptographic MIC and optionally encrypts the specified input message.
The output message contains both the MIC and the message. The qop req parameter
allows a choice between several cryptographic algorithms, if supported by the chosen
mechanism.
Since some application-level protocols may wish to use tokens emitted by gss_wrap()
to provide "secure framing", implementations must support the wrapping of zero-
length messages.

Chapter 3: Standard GSS API 31

Returns
GSS S COMPLETE Successful completion
GSS S CONTEXT EXPIRED The context has already expired
GSS S NO CONTEXT The context handle parameter did not identify a valid con-
text
GSS S BAD QOP The specified QOP is not supported by the mechanism.

[Function]OM_uint32 gss_unwrap (OM_uint32 * minor_status, const
gss_ctx_id_t context_handle, const gss_buffer_t
input_message_buffer, gss_buffer_t output_message_buffer,
int * conf_state, gss_qop_t * qop_state)

minor status: Mechanism specific status code.
context handle: Identifies the context on which the message arrived
input message buffer: input protected message
output message buffer: Buffer to receive unwrapped message. Storage associated
with this buffer must be freed by the application after use use with a call to gss_
release_buffer().
conf state: optional output variable indicating if confidentiality protection was used.
qop state: optional output variable indicating quality of protection.
Converts a message previously protected by gss wrap back to a usable form, verifying
the embedded MIC. The conf state parameter indicates whether the message was
encrypted; the qop state parameter indicates the strength of protection that was
used to provide the confidentiality and integrity services.
Since some application-level protocols may wish to use tokens emitted by gss_wrap()
to provide "secure framing", implementations must support the wrapping and un-
wrapping of zero-length messages.
Returns:
GSS S COMPLETE Successful completion
GSS S DEFECTIVE TOKEN The token failed consistency checks
GSS S BAD SIG The MIC was incorrect
GSS S DUPLICATE TOKEN The token was valid, and contained a correct MIC for
the message, but it had already been processed
GSS S OLD TOKEN The token was valid, and contained a correct MIC for the
message, but it is too old to check for duplication.
GSS S UNSEQ TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; a later token has already been received.
GSS S GAP TOKEN The token was valid, and contained a correct MIC for the
message, but has been verified out of sequence; an earlier expected token has not yet
been received.
GSS S CONTEXT EXPIRED The context has already expired
GSS S NO CONTEXT The context handle parameter did not identify a valid con-
text

Chapter 3: Standard GSS API 32

3.5 Name Manipulation
Table 2-4 GSS-API Name manipulation Routines

Routine Section Function
------- ------- --------
gss_import_name 5.16 Convert a contiguous string name

to internal-form
gss_display_name 5.10 Convert internal-form name to

text
gss_compare_name 5.6 Compare two internal-form names

gss_release_name 5.28 Discard an internal-form name
gss_inquire_names_for_mech 5.24 List the name-types supported by

the specified mechanism
gss_inquire_mechs_for_name 5.23 List mechanisms that support the

specified name-type
gss_canonicalize_name 5.5 Convert an internal name to an MN
gss_export_name 5.13 Convert an MN to export form
gss_duplicate_name 5.12 Create a copy of an internal name

[Function]OM_uint32 gss_import_name (OM_uint32 * minor_status, const
gss_buffer_t input_name_buffer, const gss_OID
input_name_type, gss_name_t * output_name)

minor status: Mechanism specific status code
input name buffer: buffer containing contiguous string name to convert
input name type: Optional Object ID specifying type of printable name. Applica-
tions may specify either GSS C NO OID to use a mechanism-specific default print-
able syntax, or an OID recognized by the GSS-API implementation to name a specific
namespace.
output name: returned name in internal form. Storage associated with this name
must be freed by the application after use with a call to gss_release_name().
Convert a contiguous string name to internal form. In general, the internal name
returned (via the <output name> parameter) will not be an MN; the exception to
this is if the <input name type> indicates that the contiguous string provided via the
<input name buffer> parameter is of type GSS C NT EXPORT NAME, in which
case the returned internal name will be an MN for the mechanism that exported the
name.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAMETYPE
when the input name type was unrecognized, GSS S BAD NAME when the in-
put name parameter could not be interpreted as a name of the specified type, and
GSS S BAD MECH when the input name-type was GSS C NT EXPORT NAME,
but the mechanism contained within the input-name is not supported.

[Function]OM_uint32 gss_display_name (OM_uint32 * minor_status,
const gss_name_t input_name, gss_buffer_t
output_name_buffer, gss_OID * output_name_type)

minor status: Mechanism specific status code.

Chapter 3: Standard GSS API 33

input name: Name to be displayed
output name buffer: Buffer to receive textual name string. The application must free
storage associated with this name after use with a call to gss_release_buffer().
output name type: Optional type of the returned name. The returned gss OID will
be a pointer into static storage, and should be treated as read-only by the caller
(in particular, the application should not attempt to free it). Specify NULL if not
required.
Allows an application to obtain a textual representation of an opaque internal-form
name for display purposes. The syntax of a printable name is defined by the GSS-API
implementation.
If input name denotes an anonymous principal, the implementation should return
the gss OID value GSS C NT ANONYMOUS as the output name type, and a tex-
tual name that is syntactically distinct from all valid supported printable names in
output name buffer.
If input name was created by a call to gss import name, specifying GSS C NO OID
as the name-type, implementations that employ lazy conversion between name types
may return GSS C NO OID via the output name type parameter.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAME when
input name was ill-formed.

[Function]OM_uint32 gss_compare_name (OM_uint32 * minor_status,
const gss_name_t name1, const gss_name_t name2, int *
name_equal)

minor status: Mechanism specific status code.
name1: Internal-form name.
name2: Internal-form name.
name equal: non-zero if names refer to same entity.
Allows an application to compare two internal-form names to determine whether they
refer to the same entity.
If either name presented to gss compare name denotes an anonymous principal, the
routines should indicate that the two names do not refer to the same identity.
Returns GSS S COMPLETE for successful completion, GSS S BAD NAMETYPE
when the two names were of incomparable types, and GSS S BAD NAME if one or
both of name1 or name2 was ill-formed.

[Function]OM_uint32 gss_release_name (OM_uint32 * minor_status,
gss_name_t * name)

minor status: Mechanism specific status code.
name: The name to be deleted.
Free GSSAPI-allocated storage associated with an internal-form name. Implementa-
tions are encouraged to set the name to GSS C NO NAME on successful completion
of this call.
Returns GSS S COMPLETE for successful completion, and GSS S BAD NAME
when the name parameter did not contain a valid name.

Chapter 3: Standard GSS API 34

[Function]OM_uint32 gss_canonicalize_name (OM_uint32 * minor_status,
const gss_name_t input_name, const gss_OID mech_type,
gss_name_t * output_name)

minor status: Mechanism specific status code.

input name: The name for which a canonical form is desired.

mech type: The authentication mechanism for which the canonical form of the name
is desired. The desired mechanism must be specified explicitly; no default is provided.

output name: The resultant canonical name. Storage associated with this name must
be freed by the application after use with a call to gss_release_name().

Generate a canonical mechanism name (MN) from an arbitrary internal name. The
mechanism name is the name that would be returned to a context acceptor on suc-
cessful authentication of a context where the initiator used the input name in a suc-
cessful call to gss acquire cred, specifying an OID set containing <mech type> as its
only member, followed by a call to gss init sec context, specifying <mech type> as
the authentication mechanism.

Returns

GSS S COMPLETE Successful completion.

GSS S BAD MECH The identified mechanism is not supported.

GSS S BAD NAMETYPE The provided internal name contains no elements that
could be processed by the specified mechanism.

GSS S BAD NAME The provided internal name was ill-formed.

[Function]OM_uint32 gss_inquire_names_for_mech (OM_uint32
*minor_status, const gss_OID mechanism, gss_OID_set
*name_types)

minor status: Implementation specific status code.

mechanism: The mechanism to be interrogated.

name types: Output set of name-types supported by the specified mechanism.
The returned OID set must be freed by the application after use with a call to
gss release oid set().

Outputs the set of nametypes supported by the specified mechanism.

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_inquire_mechs_for_name (OM_uint32
*minor_status, const gss_name_t input_name, gss_OID_set
*mech_types)

minor status: Implementation specific status code.

input name: The name to which the inquiry relates.

mech types: Output set of mechanisms that may support the specified name. The re-
turned OID set must be freed by the caller after use with a call to gss release oid set().

Outputs the set of mechanisms supported by the GSS-API implementation that may
be able to process the specified name.

Chapter 3: Standard GSS API 35

Each mechanism returned will recognize at least one element within the name. It is
permissible for this routine to be implemented within a mechanism-independent GSS-
API layer, using the type information contained within the presented name, and based
on registration information provided by individual mechanism implementations. This
means that the returned mech types set may indicate that a particular mechanism
will understand the name when in fact it would refuse to accept the name as input to
gss canonicalize name(), gss init sec context(), gss acquire cred() or gss add cred()
(due to some property of the specific name, as opposed to the name type). Thus this
routine should be used only as a pre-filter for a call to a subsequent mechanism-specific
routine.

Returns GSS S COMPLETE for successful completion, GSS S BAD NAME to indi-
cate that the input name parameter was ill-formed, and GSS S BAD NAMETYPE
to indicate that the input name parameter contained an invalid or unsupported type
of name.

[Function]OM_uint32 gss_canonicalize_name (OM_uint32 *minor_status,
const gss_name_t input_name, const gss_OID mech_type,
gss_name_t *output_name)

minor status: Mechanism specific status code.

input name: The name for which a canonical form is desired.

mech type: The authentication mechanism for which the canonical form of the name
is desired. The desired mechanism must be specified explicitly; no default is provided.

output name: The resultant canonical name. Storage associated with this name must
be freed by the application after use with a call to gss release name().

Generate a canonical mechanism name (MN) from an arbitrary internal name. The
mechanism name is the name that would be returned to a context acceptor on suc-
cessful authentication of a context where the initiator used the input name in a suc-
cessful call to gss acquire cred, specifying an OID set containing <mech type> as its
only member, followed by a call to gss init sec context, specifying <mech type> as
the authentication mechanism.

Returns GSS S COMPLETE for successful completion, GSS S BAD MECH to in-
dicate that the identified mechanism is not supported, GSS S BAD NAMETYPE to
indicate that the provided internal name contains no elements that could be processed
by the specified mechanism, and GSS S BAD NAME to indicate that the provided
internal name was ill-formed.

[Function]OM_uint32 gss_export_name (OM_uint32 *minor_status, const
gss_name_t input_name, gss_buffer_t exported_name)

minor status: Mechanism specific status code.

input name: The mechanism name to be exported.

exported name: Output variable with canonical contiguous string form of
input name. Storage associated with this string must freed by the application after
use with gss release buffer().

To produce a canonical contiguous string representation of a mechanism name (MN),
suitable for direct comparison (e.g. with memcmp) for use in authorization functions

Chapter 3: Standard GSS API 36

(e.g. matching entries in an access-control list). The input name parameter must
specify a valid MN (i.e. an internal name generated by gss accept sec context or by
gss canonicalize name).

Returns GSS S COMPLETE for successful completion, GSS S NAME NOT MN
to indicate that the provided internal name was not a mechanism name,
GSS S BAD NAME to indicate that the provided internal name was ill-formed, and
GSS S BAD NAMETYPE to indicate that the internal name was of a type not
supported by the GSS-API implementation.

[Function]OM_uint32 gss_duplicate_name (OM_uint32 * minor_status,
const gss_name_t src_name, gss_name_t * dest_name)

minor status: Mechanism specific status code.

src name: Internal name to be duplicated.

dest name: The resultant copy of <src name>. Storage associated with this name
must be freed by the application after use with a call to gss_release_name().

Create an exact duplicate of the existing internal name src name. The new dest name
will be independent of src name (i.e. src name and dest name must both be released,
and the release of one shall not affect the validity of the other).

Returns GSS S COMPLETE for successful completion, and GSS S BAD NAME
when the src name parameter was ill-formed.

3.6 Miscellaneous Routines
Table 2-5 GSS-API Miscellaneous Routines

Routine Section Function
------- ------- --------
gss_add_oid_set_member 5.4 Add an object identifier to

a set
gss_display_status 5.11 Convert a GSS-API status code

to text
gss_indicate_mechs 5.18 Determine available underlying

authentication mechanisms
gss_release_buffer 5.26 Discard a buffer
gss_release_oid_set 5.29 Discard a set of object

identifiers
gss_create_empty_oid_set 5.8 Create a set containing no

object identifiers
gss_test_oid_set_member 5.30 Determines whether an object

identifier is a member of a set.

[Function]OM_uint32 gss_release_buffer (OM_uint32 * minor_status,
gss_buffer_t buffer)

minor status: Mechanism specific status code.

buffer: The storage associated with the buffer will be deleted. The gss buffer desc
object will not be freed, but its length field will be zeroed.

Chapter 3: Standard GSS API 37

Free storage associated with a buffer. The storage must have been allocated by a
GSS-API routine. In addition to freeing the associated storage, the routine will zero
the length field in the descriptor to which the buffer parameter refers, and implemen-
tations are encouraged to additionally set the pointer field in the descriptor to NULL.
Any buffer object returned by a GSS-API routine may be passed to gss release buffer
(even if there is no storage associated with the buffer).
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_create_empty_oid_set (OM_uint32 *
minor_status, gss_OID_set * oid_set)

minor status: Mechanism specific status code
oid set: The empty object identifier set. The routine will allocate the
gss OID set desc object, which the application must free after use with a call to
gss_release_oid_set().
Create an object-identifier set containing no object identifiers, to which members
may be subsequently added using the gss_add_oid_set_member() routine. These
routines are intended to be used to construct sets of mechanism object identifiers, for
input to gss acquire cred.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_add_oid_set_member (OM_uint32 *
minor_status, const gss_OID member_oid, gss_OID_set *
oid_set)

minor status: Mechanism specific status code
member oid: The object identifier to copied into the set.
oid set: The set in which the object identifier should be inserted.
Add an Object Identifier to an Object Identifier set. This routine is intended for use
in conjunction with gss create empty oid set when constructing a set of mechanism
OIDs for input to gss acquire cred. The oid set parameter must refer to an OID-
set that was created by GSS-API (e.g. a set returned by gss_create_empty_oid_
set()). GSS-API creates a copy of the member oid and inserts this copy into the
set, expanding the storage allocated to the OID-set’s elements array if necessary.
The routine may add the new member OID anywhere within the elements array,
and implementations should verify that the new member oid is not already contained
within the elements array; if the member oid is already present, the oid set should
remain unchanged.
Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_test_oid_set_member (OM_uint32 *
minor_status, const gss_OID member, const gss_OID_set set,
int * present)

minor status: Mechanism specific status code
member: The object identifier whose presence is to be tested.
set: The Object Identifier set.
present: output indicating if the specified OID is a member of the set, zero if not.

Chapter 3: Standard GSS API 38

Interrogate an Object Identifier set to determine whether a specified Object Identifier
is a member. This routine is intended to be used with OID sets returned by gss_
indicate_mechs(), gss_acquire_cred(), and gss_inquire_cred(), but will also
work with user-generated sets.

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_release_oid_set (OM_uint32 * minor_status,
gss_OID_set * set)

minor status: Mechanism specific status code

set: The storage associated with the gss OID set will be deleted.

Free storage associated with a GSSAPI-generated gss OID set object. The set pa-
rameter must refer to an OID-set that was returned from a GSS-API routine. gss_
release_oid_set() will free the storage associated with each individual member
OID, the OID set’s elements array, and the gss OID set desc.

Implementations are encouraged to set the gss OID set parameter to
GSS C NO OID SET on successful completion of this routine.

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_indicate_mechs (OM_uint32 *minor_status,
gss_OID_set *mech_set)

minor status: Mechanism specific status code.

mech set: Output OID set with implementation-supported mechanisms.

Allows an application to determine which underlying security mechanisms are avail-
able.

The returned gss OID set value will be a dynamically-allocated OID set, that should
be released by the caller after use with a call to gss release oid set().

Returns GSS S COMPLETE for successful completion.

[Function]OM_uint32 gss_display_status (OM_uint32 *minor_status,
OM_uint32 status_value, int status_type, const gss_OID
mech_type, OM_uint32 *message_context, gss_buffer_t
status_string)

minor status: Mechanism specific status code.

status value Status value to be converted

status type: Type of status code. Valid values include GSS C GSS CODE to indicate
that status value is a GSS status code, and GSS C MECH CODE to indicate that
status value is a mechanism status code.

mech type: Optional OID of underlying mechanism (used to interpret a minor status
value) Supply GSS C NO OID to obtain the system default.

message context: Input/output variable that should be initialized to zero by the
application prior to the first call. On return from gss display status(), a non-zero
status value parameter indicates that additional messages may be extracted from the
status code via subsequent calls to gss display status(), passing the same status value,
status type, mech type, and message context parameters.

Chapter 3: Standard GSS API 39

status string : Output textual interpretation of the status value. Storage associ-
ated with this parameter must be freed by the application after use with a call to
gss release buffer().

Allows an application to obtain a textual representation of a GSS-API status code,
for display to the user or for logging purposes. Since some status values may indicate
multiple conditions, applications may need to call gss display status multiple times,
each call generating a single text string. The message context parameter is used by
gss display status to store state information about which error messages have already
been extracted from a given status value; message context must be initialized to 0
by the application prior to the first call, and gss display status will return a non-zero
value in this parameter if there are further messages to extract.

The message context parameter contains all state information required by
gss display status in order to extract further messages from the status value;
even when a non-zero value is returned in this parameter, the application is not
required to call gss display status again unless subsequent messages are desired.
The following code extracts all messages from a given status code and prints them
to stderr:

OM_uint32 message_context;
OM_uint32 status_code;
OM_uint32 maj_status;
OM_uint32 min_status;
gss_buffer_desc status_string;

...

message_context = 0;

do {

maj_status = gss_display_status (
&min_status,
status_code,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string)

fprintf(stderr,
"%.*s\n",
(int)status_string.length,

(char *)status_string.value);

gss_release_buffer(&min_status, &status_string);

Chapter 3: Standard GSS API 40

} while (message_context != 0);

Returns GSS S COMPLETE for successful completion, GSS S BAD MECH to in-
dicate that translation in accordance with an unsupported mechanism type was re-
quested, and GSS S BAD STATUS to indicate that the status value was not recog-
nized, or the status type was neither GSS C GSS CODE nor GSS C MECH CODE.

Chapter 4: Extended GSS API 41

4 Extended GSS API

None of the following functions are standard GSS API functions. As such, they are not
declared in ‘gss/api.h’, but rather in ‘gss/ext.h’ (which is included from ‘gss.h’).

[Function]const char * gss_check_version (const char * req_version)
req version: version string to compare with, or NULL
Check that the the version of the library is at minimum the one given as a string
in req_version and return the actual version string of the library; return NULL if
the condition is not met. If NULL is passed to this function no check is done and
only the version string is returned. It is a pretty good idea to run this function as
soon as possible, because it may also intializes some subsystems. In a multithreaded
environment if should be called before any more threads are created.

[Function]int gss_oid_equal (gss_OID first_oid, gss_OID second_oid)
Compare two OIDs for equality. Compares actual content, not just pointer equality.
Returns a boolean true iff the OIDs are equal.

[Function]OM_uint32 gss_copy_oid (OM_uint32 * minor_status, const
gss_OID src_oid, gss_OID dest_oid);

Make an exact copy of the given OID, that shares no memory areas with the orig-
inal. The contents of the copied OID must be deallocated by the caller. Returns
GSS S COMPLETE on success.

[Function]OM_uint32 gss_duplicate_oid (OM_uint32 * minor_status,
const gss_OID src_oid, gss_OID * dest_oid)

Allocate an exact copy of the given OID, that shares no memory areas with the
original. The newly created OID, and its contents, must be deallocated by the caller.
Returns GSS S COMPLETE on success.

[Function]int gss_encapsulate_token (gss_buffer_t input_message,
gss_OID token_oid, gss_buffer_t output_message)

input message: Message to be encapsulated.
token oid: OID of mechanism.
input message: Output buffer with encapsulated message.
Wrap a buffer in the mechanism-independent token format. This is used for the initial
token of a GSS-API context establishment sequence. It incorporates an identifier of
the mechanism type to be used on that context, and enables tokens to be interpreted
unambiguously at GSS-API peers. See further section 3.1 of RFC 2743.

[Function]int gss_decapsulate_token (gss_buffer_t input_message,
gss_OID token_oid, gss_buffer_t output_message)

input message: Message to decapsulated.
token oid: Output buffer with mechanism OID used in message.
input message: Output buffer with encapsulated message.
Unwrap a buffer in the mechanism-independent token format. This is the reverse of
gss_encapsulate_token. The translation is loss-less, all data is preserved as is.

Chapter 5: Acknowledgements 42

5 Acknowledgements

This manual borrows text from RFC 2743 and RFC 2744 that describe GSS API formally.

Appendix A: Criticism of GSS 43

Appendix A Criticism of GSS

The author has doubts whether GSS is the best solution for free software projects looking
for a implementation agnostic security framework. We express these doubts in this section,
so that the reader can judge for herself if any of the potential problems discussed here are
relevant for their project, or if the benefit outweigh the problems. GSS can be criticized on
several levels. We start with the actual implementation.

GSS does not appear to be designed by experienced C programmers. While generally
this may be a good thing (C is not the best language), but since they defined the API in
C, it is unfortunate. The primary evidence of this is the major status and minor status
error code solution. It is a complicated way to describe error conditions, but what makes
matters worse, the error condition is separated; half of the error condition is in the function
return value and the other half is in the first argument to the function, which is always a
pointer to an integer. (The pointer is not even allowed to be NULL, if the application doesn’t
care about the minor error code.) This makes the API unreadable, and difficult to use. A
better solutions would be to return a struct containing the entire error condition, which can
be accessed using macros, although we acknowledge that the C language used at the time
GSS was designed may not have allowed this (this may in fact be the reason the awkward
solution was chosen). Instead, the return value could have been passed back to callers using
a pointer to a struct, accessible using various macros, and the function could have a void
prototype. The fact that minor status is placed first in the parameter list increases the
pain it is to use the API. Important parameters should be placed first. A better place for
minor status (if it must be present at all) would have been last in the prototypes.

Another evidence of the C inexperience are the memory management issues; GSS pro-
vides functions to deallocate data stored within, e.g., gss_buffer_t but the caller is respon-
sible of deallocating the structure pointed at by the gss_buffer_t (i.e., the gss_buffer_
desc) itself. Memory management issues are error prone, and this division easily leads to
memory leaks (or worse). Instead, the API should be the sole owner of all gss_ctx_id_t,
gss_cred_id_t, and gss_buffer_t structures: they should be allocated by the library, and
deallocated (using the utility functions defined for this purpose) by the library.

TBA: thread issues

TBA: multiple mechanisms in a GSS library

TBA: high-level design criticism.

TBA: no credential forwarding.

TBA: internationalization

TBA: krb5: no way to access authorization-data

TBA: krb5: firewall/pre-IP: iakerb status?

TBA: krb5: single-DES only

TBA: the API may block, unusable in select() based servers. Especially if the servers
contacted is decided by the, yet unauthenticated, remote client.

Finally we note that few free security applications uses GSS, perhaps the only major
exception to this are Kerberos 5 implementations. While not substantial evidence, this do
suggest that the GSS may not be the simplest solution available to solve actual problems,

Appendix A: Criticism of GSS 44

since otherwise more projects would have chosen to take advantage of the work that went
into GSS instead of using another framework (or designing their own solution).

Our conclusion is that free software projects that are looking for a security framework
should evaluate carefully whether GSS actually is the best solution before using it. In
particular it is recommended to compare GSS with the Simple Authentication and Security
Layer (SASL) framework, which in several situations provide the same feature as GSS does.
The most compelling argument for SASL over GSS is, as its acronym suggest, Simple,
whereas GSS is far from it.

However, that said, for free software projects that wants to support Kerberos 5, we do
acknowledge that no other framework provides a more portable and interoperable interface
into the Kerberos 5 system. If your project needs to use Kerberos 5 specifically, we do
recommend you to use GSS instead of the Kerberos 5 implementation specific APIs.

Appendix A: Concept Index 45

Concept Index

A
Aborting execution . 9
AIX . 3

C
Compiling your application . 8
Contributing . 5

D
Debian . 2, 3
Download . 4

F
FreeBSD . 4
Future goals . 6

H
Hacking . 5
Header files . 7
HP-UX . 3

I
Installation . 4
IRIX . 3

M
Mandrake . 3
mechanism status codes . 10
Memory allocation failure . 8

N
NetBSD . 3

O
OpenBSD . 3

Out of Memory handling . 8

R
RedHat . 3

RedHat Advanced Server . 3

Reporting Bugs . 5

S
Solaris . 3

status codes . 10

SuSE . 3

SuSE Linux . 3

T
Todo list . 6

Tru64 . 3

W
Windows . 3

Appendix A: API Index 46

API Index

G
gss_accept_sec_context . 25
gss_acquire_cred . 13
gss_add_cred . 14
gss_add_oid_set_member . 37
GSS_C_ANON_FLAG . 23, 28
GSS_C_CONF_FLAG . 23, 28
GSS_C_DELEG_FLAG . 22, 23, 27
GSS_C_INTEG_FLAG . 23, 28
GSS_C_MUTUAL_FLAG 22, 23, 28
GSS_C_PROT_READY_FLAG 23, 28
GSS_C_REPLAY_FLAG 22, 23, 28
GSS_C_SEQUENCE_FLAG . 23, 28
GSS_C_TRANS_FLAG . 24, 28
GSS_CALLING_ERROR . 12
gss_canonicalize_name 34, 35
gss_check_version . 41
gss_compare_name . 33
gss_copy_oid . 41
gss_create_empty_oid_set 37
gss_decapsulate_token . 41
gss_delete_sec_context . 29
gss_display_name . 32
gss_display_status . 38
gss_duplicate_name . 36

gss_duplicate_oid . 41
gss_encapsulate_token . 41
GSS_ERROR . 12
gss_export_name . 35
gss_import_name . 32
gss_indicate_mechs . 38
gss_init_sec_context . 19
gss_inquire_cred . 17
gss_inquire_cred_by_mech 17
gss_inquire_mechs_for_name 34
gss_inquire_names_for_mech 34
gss_oid_equal . 41
gss_release_buffer . 36
gss_release_cred . 18
gss_release_name . 33
gss_release_oid_set . 38
GSS_ROUTINE_ERROR . 12
GSS_S_... 10
GSS_SUPPLEMENTARY_INFO . 12
gss_test_oid_set_member 37
gss_unwrap . 31
gss_wrap . 30

X
xalloc_fail_func . 9

ii

Short Contents

1 Introduction. 1

2 Preparation . 7

3 Standard GSS API . 10

4 Extended GSS API . 41

5 Acknowledgements . 42

A Criticism of GSS . 43

Concept Index . 45

API Index . 46

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Features . 1
1.3 GSS-API Overview . 1
1.4 Supported Platforms . 2
1.5 Commercial Support . 4
1.6 Downloading and Installing . 4
1.7 Bug Reports . 5
1.8 Contributing . 5
1.9 Planned Features . 6

2 Preparation . 7
2.1 Header . 7
2.2 Initialization . 7
2.3 Version Check . 7
2.4 Building the source . 8
2.5 Out of Memory handling . 8

3 Standard GSS API . 10
3.1 Error Handling . 10

3.1.1 GSS status codes . 10
3.1.2 Mechanism-specific status codes . 12

3.2 Credential Management . 12
3.3 Context-Level Routines . 19
3.4 Per-Message Routines . 30
3.5 Name Manipulation. 32
3.6 Miscellaneous Routines . 36

4 Extended GSS API . 41

5 Acknowledgements . 42

Appendix A Criticism of GSS 43

Concept Index . 45

API Index . 46

	Introduction
	Getting Started
	Features
	GSS-API Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing
	Planned Features

	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Out of Memory handling

	Standard GSS API
	Error Handling
	GSS status codes
	Mechanism-specific status codes

	Credential Management
	Context-Level Routines
	Per-Message Routines
	Name Manipulation
	Miscellaneous Routines

	Extended GSS API
	Acknowledgements
	Criticism of GSS
	Concept Index
	API Index
	Introduction
	Getting Started
	Features
	GSS-API Overview
	Supported Platforms
	Commercial Support
	Downloading and Installing
	Bug Reports
	Contributing
	Planned Features
	Preparation
	Header
	Initialization
	Version Check
	Building the source
	Out of Memory handling
	Standard GSS API
	Error Handling
	GSS status codes
	Mechanism-specific status codes
	Credential Management
	Context-Level Routines

	Per-Message Routines
	Name Manipulation
	Miscellaneous Routines
	Extended GSS API
	Acknowledgements
	Criticism of GSS
	Concept Index
	API Index

