GCL SI Manual

Chapter 1: Numbers 3

1 Numbers

SIGNUM (number) [Function]
Package:LISP

If NUMBER is zero, returns NUMBER; else returns (/ NUMBER (ABS NUMBER)).

LOGNQT (integer) [Function]
Package:LISP

Returns the bit-wise logical NOT of INTEGER.

MOST-POSITIVE-SHORT-FLOAT [Constant)]
Package:LISP The short-float closest in value to positive infinity.

INTEGER-DECODE-FLOAT (float) [Function]
Package:LISP

Returns, as three values, the integer interpretation of significand F, the exponent
E, and the sign S of the given float, so that E FLOAT = S * F * B where B =
(FLOAT-RADIX FLOAT)

F is a non-negative integer, E is an integer, and S is either 1 or -1.

MINUSP (number) [Function]
Package:LISP

Returns T if NUMBER < 0; NIL otherwise.

LOGORC1 (integerl integer?2) [Function]
Package:LISP

Returns the logical OR of (LOGNOT INTEGER1) and INTEGER2.

MOST-NEGATIVE-SINGLE-FLOAT [Constant]
Package:LISP Same as MOST-NEGATIVE-LONG-FLOAT.

BOOLE-C1 [Constant]
Package:LISP Makes BOOLE return the complement of INTEGERI.

LEAST-POSITIVE-SHORT-FLOAT [Constant|
Package:LISP The positive short-float closest in value to zero.

BIT-NAND (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical NAND on the elements of BIT-ARRAY1 and BIT-
ARRAY2. Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL,
into BIT-ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY
otherwise.

INT-CHAR (integer) [Function]
Package:LISP

Performs the inverse of CHAR-INT. Equivalent to CODE-CHAR in GCL.

4 No Title

CHAR-INT (char) [Function]
Package:LISP

Returns the font, bits, and code attributes as a single non-negative integer. Equivalent
to CHAR-CODE in GCL.

LEAST-NEGATIVE-SINGLE-FLOAT [Constant)
Package:LISP Same as LEAST-NEGATIVE-LONG-FLOAT.

/= (number &rest more-numbers) [Function]
Package:LISP

Returns T if no two of its arguments are numerically equal; NIL otherwise.

LDB-TEST (bytespec integer) [Function]
Package:LISP

Returns T if at least one of the bits in the specified bytes of INTEGER is 1; NIL
otherwise.

CHAR-CODE-LIMIT [Constant)|
Package:LISP The upper exclusive bound on values produced by CHAR-CODE.

RATIONAL (number) [Function]
Package:LISP

Converts NUMBER into rational accurately and returns it.

PI [Constant|
Package:LISP The floating-point number that is appropriately equal to the ratio of
the circumference of the circle to the diameter.

SIN (radians) [Function]
Package:LISP

Returns the sine of RADIANS.

BOOLE-0RC2 [Constant)|
Package:LISP Makes BOOLE return LOGORC2 of INTEGER1 and INTEGER2.

NUMERATOR (rational) [Function]
Package:LISP

Returns as an integer the numerator of the given rational number.

MASK-FIELD (bytespec integer) [Function]
Package:LISP

Extracts the specified byte from INTEGER.

INCF [Special Form]|
Package:LISP

Syntax:
(incf place [deltal)
Adds the number produced by DELTA (which defaults to 1) to the number in PLACE.

Chapter 1: Numbers 5

SINH (number) [Function]
Package:LISP

Returns the hyperbolic sine of NUMBER.

PHASE (number) [Function]
Package:LISP

Returns the angle part of the polar representation of a complex number. For non-
complex numbers, this is 0.

BOOLE (op integerl integer?2) [Function]
Package:LISP

Returns an integer produced by performing the logical operation specified by OP
on the two integers. OP must be the value of one of the following constants:
BOOLE-CLR BOOLE-C1 BOOLE-XOR BOOLE-ANDC1 BOOLE-SET BOOLE-
C2 BOOLE-EQV BOOLE-ANDC2 BOOLE-1 BOOLE-AND BOOLE-NAND

BOOLE-ORC1 BOOLE-2 BOOLE-IOR BOOLE-NOR BOOLE-ORC2 See the
variable docs of these constants for their operations.

SHORT-FLOAT-EPSILON [Constant)
Package:LISP The smallest positive short-float that satisfies (not (= (float 1 e) (+
(float 1 e) €))).

LOGORC2 (integerl integer2) [Function]
Package:LISP

Returns the logical OR of INTEGER1 and (LOGNOT INTEGER?2).

BOOLE-C2 [Constant]
Package:LISP Makes BOOLE return the complement of INTEGER2.

REALPART (number) [Function]
Package:LISP

Extracts the real part of NUMBER.

BOOLE-CLR [Constant|
Package:LISP Makes BOOLE return 0.

BOOLE-IOR [Constant)|
Package:LISP Makes BOOLE return LOGIOR of INTEGER1 and INTEGER2.

FTRUNCATE (number &optional (divisor 1)) [Function]
Package:LISP

Values: (quotient remainder) Same as TRUNCATE, but returns first value as a float.
EQL (xy) [Function]
Package:LISP

Returns T if X and Y are EQ), or if they are numbers of the same type with the same
value, or if they are character objects that represent the same character. Returns NIL
otherwise.

6 No Title

LOG (number &optional base) [Function]
Package:LISP

Returns the logarithm of NUMBER in the base BASE. BASE defaults to the base of
natural logarithms.

DOUBLE-FLOAT-NEGATIVE-EPSILON [Constant|
Package:LISP Same as LONG-FLOAT-NEGATIVE-EPSILON.

LOGIOR (&rest integers) [Function]
Package:LISP

Returns the bit-wise INCLUSIVE OR of its arguments.

MOST-NEGATIVE-DOUBLE-FLOAT [Constant)]
Package:LISP Same as MOST-NEGATIVE-LONG-FLOAT.

/ (number &rest more-numbers) [Function]
Package:LISP

Divides the first NUMBER by each of the subsequent NUMBERS. With one arg,
returns the reciprocal of the number.

RANDOM-STATE [Variable]
Package:LISP The default random-state object used by RAMDOM.

1+ (number) [Function]
Package:LISP

Returns NUMBER + 1.

LEAST-NEGATIVE-DOUBLE-FLOAT [Constant)]
Package:LISP Same as LEAST-NEGATIVE-LONG-FLOAT.

FCEILING (number &optional (divisor 1)) [Function]
Package:LISP

Same as CEILING, but returns a float as the first value.

MOST-POSITIVE-FIXNUM [Constant|
Package:LISP The fixnum closest in value to positive infinity.

BIT-ANDC1 (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical ANDC1 on the elements of BIT-ARRAY1 and BIT-
ARRAY2. Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL,
into BIT-ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY

otherwise.

TAN (radians) [Function]
Package:LISP

Returns the tangent of RADIANS.

BOOLE-NAND [Constant|
Package:LISP Makes BOOLE return LOGNAND of INTEGER1 and INTEGER2.

Chapter 1: Numbers 7

TANH (number) [Function]
Package:LISP

Returns the hyperbolic tangent of NUMBER.

ASIN (number) [Function]
Package:LISP

Returns the arc sine of NUMBER.

BYTE (size position) [Function]
Package:LISP
Returns a byte specifier. In GCL, a byte specifier is represented by a dotted pair
(<size> . <position>).

ASINH (number) [Function]
Package:LISP

Returns the hyperbolic arc sine of NUMBER.

MOST-POSITIVE-LONG-FLOAT [Constant|
Package:LISP The long-float closest in value to positive infinity.

SHIFTF [Macro]
Package:LISP
Syntax:

(shiftf {place}+ newvalue)

Evaluates all PLACEs and NEWVALUE in turn, then assigns the value of each form
to the PLACE on its left. Returns the original value of the leftmost form.

LEAST-POSITIVE-LONG-FLOAT [Constant)|
Package:LISP The positive long-float closest in value to zero.

DEPOSIT-FIELD (newbyte bytespec integer) [Function]
Package:LISP

Returns an integer computed by replacing the specified byte of INTEGER with the
specified byte of NEWBYTE.

BIT-AND (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP

Performs a bit-wise logical AND on the elements of BIT-ARRAY1 and BIT-ARRAY?2.
Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-
ARRAYT1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

LOGNAND (integerl integer2) [Function]
Package:LISP

Returns the complement of the logical AND of INTEGER1 and INTEGER2.

BYTE-POSITION (bytespec) [Function]
Package:LISP

Returns the position part (in GCL, the cdr part) of the byte specifier.

8 No Title

ROTATEF [Macro]
Package:LISP

Syntax:
(rotatef {placel}x*)

Evaluates PLACEs in turn, then assigns to each PLACE the value of the form to its
right. The rightmost PLACE gets the value of the leftmost PLACE. Returns NIL
always.

BIT-ANDC2 (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP

Performs a bit-wise logical ANDC2 on the elements of BIT-ARRAY1 and BIT-
ARRAY2. Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL,
into BIT-ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY
otherwise.

TRUNCATE (number &optional (divisor 1)) [Function]
Package:LISP

Values: (quotient remainder) Returns NUMBER/DIVISOR as an integer, rounded
toward 0. The second returned value is the remainder.

BOOLE-EQV [Constant|
Package:LISP Makes BOOLE return LOGEQV of INTEGER1 and INTEGER2.

BOOLE-SET [Constant)|
Package:LISP Makes BOOLE return -1.

LDB (bytespec integer) [Function]
Package:LISP

Extracts and right-justifies the specified byte of INTEGER, and returns the result.

BYTE-SIZE (bytespec) [Function]
Package:LISP

Returns the size part (in GCL, the car part) of the byte specifier.

SHORT-FLOAT-NEGATIVE-EPSILON [Constant)]
Package:LISP The smallest positive short-float that satisfies (not (= (float 1 e) (-
(float 1 e) e))).

REM (number divisor) [Function]
Package:LISP
Returns the second value of (TRUNCATE NUMBER DIVISOR).

MIN (number &rest more-numbers) [Function]
Package:LISP
Returns the least of its arguments.

EXP (number) [Function]
Package:LISP
Calculates e raised to the power NUMBER, where e is the base of natural logarithms.

Chapter 1: Numbers 9

DECODE-FLOAT (float) [Function]
Package:LISP

Returns, as three values, the significand F, the exponent E, and the sign S of the
given float, so that E FLOAT = S * F * B where B = (FLOAT-RADIX FLOAT)

S and F are floating-point numbers of the same float format as FLOAT, and E is an
integer.

LONG-FLOAT-EPSILON [Constant)]
Package:LISP The smallest positive long-float that satisfies (not (= (float 1 e) (+
(float 1 €) e))).

FROUND (number &optional (divisor 1)) [Function]
Package:LISP

Same as ROUND, but returns first value as a float.

LOGEQV (&rest integers) [Function]
Package:LISP

Returns the bit-wise EQUIVALENCE of its arguments.

MOST-NEGATIVE-SHORT-FLOAT [Constant)
Package:LISP The short-float closest in value to negative infinity.

BIT-NOR (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP

Performs a bit-wise logical NOR on the elements of BIT-ARRAY1 and BIT-ARRAY2.
Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-
ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

CEILING (number &optional (divisor 1)) [Function]
Package:LISP

Returns the smallest integer not less than or NUMBER/DIVISOR. Returns the re-
mainder as the second value.

LEAST-NEGATIVE-SHORT-FLOAT [Constant]
Package:LISP The negative short-float closest in value to zero.

1- (number) [Function]
Package:LISP

Returns NUMBER - 1.

<= (number &rest more-numbers) [Function]
Package:LISP

Returns T if arguments are in strictly non-decreasing order; NIL otherwise.

IMAGPART (number) [Function]
Package:LISP

Extracts the imaginary part of NUMBER.

10 No Title

INTEGERP (x) [Function]
Package:LISP

Returns T if X is an integer (fixnum or bignum); NIL otherwise.

ASH (integer count) [Function]
Package:LISP

Shifts INTEGER left by COUNT places. Shifts right if COUNT is negative.

LCM (integer &rest more-integers) [Function]
Package:LISP

Returns the least common multiple of the arguments.

COS (radians) [Function]
Package:LISP

Returns the cosine of RADIANS.

DECF [Special Form]|
Package:LISP

Syntax:
(decf place [deltal)

Subtracts the number produced by DELTA (which defaults to 1) from the number in
PLACE.

ATAN (x &optional (y 1)) [Function]
Package:LISP Returns the arc tangent of X/Y.

BOOLE-ANDC1 [Constant|
Package:LISP Makes BOOLE return LOGANDCI1 of INTEGERI1 and INTEGER2.

COSH (number) [Function]
Package:LISP Returns the hyperbolic cosine of NUMBER.

FLOAT-RADIX (float) [Function]
Package:LISP

Returns the representation radix (or base) of the floating-point number.

ATANH (number) [Function]
Package:LISP

Returns the hyperbolic arc tangent of NUMBER.

EVENP (integer) [Function]
Package:LISP Returns T if INTEGER is even. Returns NIL if INTEGER is odd.

ZEROP (number) [Function]
Package:LISP Returns T if NUMBER, = 0; NIL otherwise.

FLOATP (x) [Function]
Package:LISP

Returns T if X is a floating-point number; NIL otherwise.

Chapter 1: Numbers 11

SXHASH (object) [Function]
Package:LISP

Computes a hash code for OBJECT and returns it as an integer.

BOOLE-1 [Constant|
Package:LISP Makes BOOLE return INTEGERL.

MOST-POSITIVE-SINGLE-FLOAT [Constant|
Package:LISP Same as MOST-POSITIVE-LONG-FLOAT.

LOGANDC1 (integerl integer?2) [Function]

Package:LISP
Returns the logical AND of (LOGNOT INTEGER1) and INTEGER2.

LEAST-POSITIVE-SINGLE-FLOAT [Constant)|
Package:LISP Same as LEAST-POSITIVE-LONG-FLOAT.
COMPLEXP (x) [Function]

Package:LISP
Returns T if X is a complex number; NIL otherwise.

BOOLE-AND [Constant]
Package:LISP Makes BOOLE return LOGAND of INTEGER1 and INTEGER2.

MAX (number &rest more-numbers) [Function]
Package:LISP
Returns the greatest of its arguments.

FLOAT-SIGN (floatl &optional (float2 (float 1 floatl))) [Function]
Package:LISP

Returns a floating-point number with the same sign as FLOAT1 and with the same
absolute value as FLOAT?2.

BOOLE-ANDC2 [Constant|
Package:LISP Makes BOOLE return LOGANDC?2 of INTEGER1 and INTEGER2.
DENOMINATOR (rational) [Function]

Package:LISP
Returns the denominator of RATIONAL as an integer.

FLOAT (number &optional other) [Function]
Package:LISP
Converts a non-complex number to a floating-point number. If NUMBER is already a
float, FLOAT simply returns NUMBER. Otherwise, the format of the returned float
depends on OTHER; If OTHER is not provided, FLOAT returns a SINGLE-FLOAT.
If OTHER is provided, the result is in the same float format as OTHER's.

ROUND (number &optional (divisor 1)) [Function]
Package:LISP

Rounds NUMBER/DIVISOR to nearest integer. The second returned value is the
remainder.

12 No Title

LOGAND (&rest integers) [Function]
Package:LISP

Returns the bit-wise AND of its arguments.

BOOLE-2 [Constant|
Package:LISP Makes BOOLE return INTEGER2.

* rest numbers unction
&rest b F i
Package:LISP

Returns the product of its arguments. With no args, returns 1.

< (number &rest more-numbers) [Function]
Package:LISP

Returns T if its arguments are in strictly increasing order; NIL otherwise.

COMPLEX (realpart &optional (imagpart 0)) [Function]
Package:LISP

Returns a complex number with the given real and imaginary parts.

SINGLE-FLOAT-EPSILON [Constant|
Package:LISP Same as LONG-FLOAT-EPSILON.

LOGANDC2 (integerl integer?2) [Function]
Package:LISP

Returns the logical AND of INTEGERI and (LOGNOT INTEGER2).

INTEGER-LENGTH (integer) [Function]
Package:LISP

Returns the number of significant bits in the absolute value of INTEGER.

MOST-NEGATIVE-FIXNUM [Constant)]
Package:LISP The fixnum closest in value to negative infinity.

LONG-FLOAT-NEGATIVE-EPSILON [Constant)|
Package:LISP The smallest positive long-float that satisfies (not (= (float 1 e) (- (float

le)e))).

>= (number &rest more-numbers) [Function]
Package:LISP
Returns T if arguments are in strictly non-increasing order; NIL otherwise.

BOOLE-NOR [Constant|
Package:LISP Makes BOOLE return LOGNOR of INTEGER1 and INTEGER2.

ACOS (number) [Function]
Package:LISP

Returns the arc cosine of NUMBER.

Chapter 1: Numbers 13

MAKE-RANDOM-STATE (&optional (state *random-state*)) [Function]
Package:LISP

Creates and returns a copy of the specified random state. If STATE is NIL, then the
value of *RANDOM-STATE* is used. If STATE is T, then returns a random state
object generated from the universal time.

EXPT (base-number power-number) [Function]
Package:LISP

Returns BASE-NUMBER raised to the power POWER-NUMBER.

SQRT (number) [Function]
Package:LISP

Returns the principal square root of NUMBER.

SCALE-FLOAT (float integer) [Function]
Package:LISP

Returns (* FLOAT (expt (float-radix FLOAT) INTEGER)).

ACOSH (number) [Function]
Package:LISP

Returns the hyperbolic arc cosine of NUMBER.

MOST-NEGATIVE-LONG-FLOAT [Constant)|
Package:LISP The long-float closest in value to negative infinity.

LEAST-NEGATIVE-LONG-FLOAT [Constant)
Package:LISP The negative long-float closest in value to zero.

FFLOOR (number &optional (divisor 1)) [Function]
Package:LISP

Same as FLOOR, but returns a float as the first value.

LOGNOR (integerl integer2) [Function]
Package:LISP

Returns the complement of the logical OR of INTEGER1 and INTEGER2.
PARSE-INTEGER (string &key (start 0) (end (length string)) (radix 10) [Function]

(junk-allowed nil))
Package:LISP

Parses STRING for an integer and returns it.

+ (&rest numbers) [Function]
Package:LISP
Returns the sum of its arguments. With no args, returns 0.

= (number &rest more-numbers) [Function]
Package:LISP

Returns T if all of its arguments are numerically equal; NIL otherwise.

14 No Title

NUMBERP (x) [Function]
Package:LISP

Returns T if X is any kind of number; NIL otherwise.

MOST-POSITIVE-DOUBLE-FLOAT [Constant)|
Package:LISP Same as MOST-POSITIVE-LONG-FLOAT.

LOGTEST (integerl integer2) [Function]
Package:LISP
Returns T if LOGAND of INTEGER1 and INTEGER?2 is not zero; NIL otherwise.
RANDOM-STATE-P (x) [Function]
Package:LISP
Returns T if X is a random-state object; NIL otherwise.

LEAST-POSITIVE-DOUBLE-FLOAT [Constant)|
Package:LISP Same as LEAST-POSITIVE-LONG-FLOAT.
FLOAT-PRECISION (float) [Function]

Package:LISP

Returns the number of significant radix-B digits used to represent the significand F
of the floating-point number, where B = (FLOAT-RADIX FLOAT).

BOOLE-X0R [Constant)]
Package:LISP Makes BOOLE return LOGXOR of INTEGER1 and INTEGER2.

DPB (newbyte bytespec integer) [Function]
Package:LISP

Returns an integer computed by replacing the specified byte of INTEGER with NEW-
BYTE.

ABS (number) [Function]
Package:LISP

Returns the absolute value of NUMBER.

CONJUGATE (number) [Function]
Package:LISP

Returns the complex conjugate of NUMBER.

CIS (radians) [Function]
Package:LISP

Returns e raised to i*RADIANS.

ODDP (integer) [Function]
Package:LISP
Returns T if INTEGER is odd; NIL otherwise.

RATIONALIZE (number) [Function]
Package:LISP
Converts NUMBER into rational approximately and returns it.

Chapter 1: Numbers 15

ISQRT (integer) [Function]
Package:LISP

Returns the greatest integer less than or equal to the square root of the given non-
negative integer.

LOGXOR (&rest integers) [Function]
Package:LISP

Returns the bit-wise EXCLUSIVE OR of its arguments.

> (number &rest more-numbers) [Function]
Package:LISP

Returns T if its arguments are in strictly decreasing order; NIL otherwise.

LOGBITP (index integer) [Function]
Package:LISP

Returns T if the INDEX-th bit of INTEGER is 1.

DOUBLE-FLOAT-EPSILON [Constant|
Package:LISP Same as LONG-FLOAT-EPSILON.

LOGCOUNT (integer) [Function]
Package:LISP

If INTEGER is negative, returns the number of 0 bits. Otherwise, returns the number
of 1 bits.

GCD (&rest integers) [Function]
Package:LISP

Returns the greatest common divisor of INTEGERs.

RATIONALP (x) [Function]
Package:LISP
Returns T if X is an integer or a ratio; NIL otherwise.

MOD (number divisor) [Function]
Package:LISP
Returns the second result of (FLOOR NUMBER DIVISOR).

MODF (number) [Function]
Package:SYSTEM
Returns the integer and fractional part of a floating point number mod 1.0.

BOOLE-ORC1 [Constant]
Package:LISP Makes BOOLE return LOGORC1 of INTEGERI1 and INTEGER2.

SINGLE-FLOAT-NEGATIVE-EPSILON [Constant|
Package:LISP Same as LONG-FLOAT-NEGATIVE-EPSILON.

16 No Title

FLOOR (number &optional (divisor 1)) [Function]
Package:LISP

Returns the largest integer not larger than the NUMBER divided by DIVISOR. The
second returned value is (- NUMBER (* first-value DIVISOR)).

PLUSP (number) [Function]
Package:LISP

Returns T if NUMBER > 0; NIL otherwise.

FLOAT-DIGITS (float) [Function]
Package:LISP

Returns the number of radix-B digits used to represent the significand F of the
floating-point number, where B = (FLOAT-RADIX FLOAT).

RANDOM (number &optional (state *random-state*)) [Function]
Package:LISP

Generates a uniformly distributed pseudo-random number between zero (inclusive)
and NUMBER (exclusive), by using the random state object STATE.

Chapter 2: Sequences and Arrays and Hash Tables 17

2 Sequences and Arrays and Hash Tables

VECTOR (&rest objects) [Function]
Package:LISP

Constructs a Simple-Vector from the given objects.

SUBSEQ (sequence start &optional (end (length sequence))) [Function]
Package:LISP

Returns a copy of a subsequence of SEQUENCE between START (inclusive) and
END (exclusive).

COPY-SEQ (sequence) [Function]
Package:LISP

Returns a copy of SEQUENCE.

POSITION (item sequence &key (from-end nil) (test #’eql) test-not (start [Function]
0) (end (length sequence)) (key #’identity))
Package:LISP

Returns the index of the first element in SEQUENCE that satisfies TEST with ITEM;
NIL if no such element exists.

ARRAY-RANK (array) [Function]
Package:LISP

Returns the number of dimensions of ARRAY.

SBIT (simple-bit-array &rest subscripts) [Function]
Package:LISP

Returns the bit from SIMPLE-BIT-ARRAY at SUBSCRIPTS.

STRING-CAPITALIZE (string &key (start 0) (end (length string))) [Function]
Package:LISP

Returns a copy of STRING with the first character of each word converted to upper-
case, and remaining characters in the word converted to lower case.

NSUBSTITUTE-IF-NOT (new test sequence &key (from-end nil) (start 0) [Function]
(end (length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence of the same kind as SEQUENCE with the same elements

except that all elements not satisfying TEST are replaced with NEWITEM. SE-
QUENCE may be destroyed.

FIND-IF (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (key #’identity))
Package:LISP
Returns the index of the first element in SEQUENCE that satisfies TEST; NIL if no
such element exists.

18 No Title

BIT-EQV (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical EQV on the elements of BIT-ARRAY1 and BIT-ARRAY2.

Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-
ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

STRING< (stringl string2 &key (startl 0) (endl (length stringl)) (start2 0) [Function]
(end2 (length string?2)))
Package:LISP

If STRINGT1 is lexicographically less than STRING2, then returns the longest common
prefix of the strings. Otherwise, returns NIL.

REVERSE (sequence) [Function]
Package:LISP

Returns a new sequence containing the same elements as SEQUENCE but in reverse
order.

NSTRING-UPCASE (string &key (start 0) (end (length string))) [Function]
Package:LISP

Returns STRING with all lower case characters converted to uppercase.

STRING>= (stringl string2 &key (startl 0) (endl (length stringl)) (start2 [Function]
0) (end2 (length string2)))
Package:LISP

If STRINGT1 is lexicographically greater than or equal to STRING2, then returns the
longest common prefix of the strings. Otherwise, returns NIL.

ARRAY-ROW-MAJOR-INDEX (array &rest subscripts) [Function]
Package:LISP

Returns the index into the data vector of ARRAY for the element of ARRAY specified
by SUBSCRIPTS.

ARRAY-DIMENSION (array axis-number) [Function]
Package:LISP

Returns the length of AXIS-NUMBER of ARRAY.

FIND (item sequence &key (from-end nil) (test #’eql) test-not (start 0) [Function]
(end (length sequence)) (key #’identity))
Package:LISP
Returns the first element in SEQUENCE satisfying TEST with I[ITEM; NIL if no such
element exists.

STRING-NOT-EQUAL (stringl string2? &key (startl 0) (endl (length [Function]
stringl)) (start2 0) (end2 (length string2)))
Package:LISP

Similar to STRING=, but ignores cases.

Chapter 2: Sequences and Arrays and Hash Tables 19

STRING-RIGHT-TRIM (char-bag string) [Function]
Package:LISP

Returns a copy of STRING with the characters in CHAR-BAG removed from the
right end.

DELETE-IF-NOT (test sequence &Kkey (from-end nil) (start 0) (end (length [Function]
sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence formed by destructively removing the elements not satisfying
TEST from SEQUENCE.

REMOVE-IF-NOT (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a copy of SEQUENCE with elements not satisfying TEST removed.

STRING= (stringl string2 &Kkey (startl 0) (endl (length stringl)) (start2 0) [Function]
(end2 (length string2)))
Package:LISP

Returns T if the two strings are character-wise CHAR=; NIL otherwise.

NSUBSTITUTE-IF (new test sequence &Kkey (from-end nil) (start 0) (end [Function]
(length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP
Returns a sequence of the same kind as SEQUENCE with the same elements except
that all elements satisfying TEST are replaced with NEWITEM. SEQUENCE may
be destroyed.

SOME (predicate sequence &rest more-sequences) [Function]
Package:LISP
Returns T if at least one of the elements in SEQUENCESs satisfies PREDICATE; NIL
otherwise.

MAKE-STRING (size &key (initial-element #\Space)) [Function]
Package:LISP

Creates and returns a new string of SIZE length whose elements are all INITTAL-
ELEMENT.

NSUBSTITUTE (newitem olditem sequence &key (from-end nil) (test #’eql) [Function]
test-not (start 0) (end (length sequence)) (count most-positive-fixnum) (key
#’identity))

Package:LISP
Returns a sequence of the same kind as SEQUENCE with the same elements except
that OLDITEMSs are replaced with NEWITEM. SEQUENCE may be destroyed.

STRING-EQUAL (stringl string2 &key (startl 0) (endl (length stringl)) [Function]
(start2 0) (end2 (length string2)))
Package:LISP
Given two strings (stringl and string2), and optional integers startl, start2, end1l and
end2, compares characters in stringl to characters in string2 (using char-equal).

20 No Title

STRING-NOT-GREATERP (stringl string2 &key (startl 0) (endl (length [Function]
stringl)) (start2 0) (end2 (length string2)))
Package:LISP

Similar to STRING<=, but ignores cases.

STRING> (stringl string2 &key (startl 0) (endl (length stringl)) (start2 0) [Function]
(end2 (length string?2)))
Package:LISP

If STRINGTI is lexicographically greater than STRING2, then returns the longest
common prefix of the strings. Otherwise, returns NIL.

STRINGP (x) [Function]
Package:LISP

Returns T if X is a string; NIL otherwise.

DELETE-IF (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence formed by removing the elements satisfying TEST destructively
from SEQUENCE.

SIMPLE-STRING-P (x) [Function]
Package:LISP

Returns T if X is a simple string; NIL otherwise.

REMOVE-IF (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a copy of SEQUENCE with elements satisfying TEST removed.

HASH-TABLE-COUNT (hash-table) [Function]
Package:LISP

Returns the number of entries in the given Hash-Table.

ARRAY-DIMENSIONS (array) [Function]
Package:LISP

Returns a list whose elements are the dimensions of ARRAY

SUBSTITUTE-IF-NOT (new test sequence &key (from-end nil) (start 0) [Function]
(end (length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence of the same kind as SEQUENCE with the same elements except
that all elements not satisfying TEST are replaced with NEWITEM.

ADJUSTABLE-ARRAY-P (array) [Function]
Package:LISP

Returns T if ARRAY is adjustable; NIL otherwise.

Chapter 2: Sequences and Arrays and Hash Tables 21

SVREF (simple-vector index) [Function]
Package:LISP

Returns the INDEX-th element of SIMPLE-VECTOR.

VECTOR-PUSH-EXTEND (new-element vector &optional (extension (length [Function]
vector)))
Package:LISP
Similar to VECTOR-PUSH except that, if the fill pointer gets too large, extends
VECTOR rather then simply returns NIL.

DELETE (item sequence &key (from-end nil) (test #’eql) test-not (start 0) [Function]
(end (length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence formed by removing the specified ITEM destructively from SE-
QUENCE.

REMOVE (item sequence &key (from-end nil) (test #’eql) test-not (start 0) [Function]
(end (length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a copy of SEQUENCE with ITEM removed.

STRING (x) [Function]
Package:LISP

Coerces X into a string. If X is a string, then returns X itself. If X is a symbol,
then returns X’s print name. If X is a character, then returns a one element string
containing that character. Signals an error if X cannot be coerced into a string.

STRING-UPCASE (string &key (start 0) (end (length string))) [Function]
Package:LISP

Returns a copy of STRING with all lower case characters converted to uppercase.

GETHASH (key hash-table &optional (default nil)) [Function]
Package:LISP

Finds the entry in HASH-TABLE whose key is KEY and returns the associated value
and T, as multiple values. Returns DEFAULT and NIL if there is no such entry.

MAKE-HASH-TABLE (&key (test ’eql) (size 1024) (rehash-size 1.5) [Function]
(rehash-threshold 0.7))
Package:LISP

Creates and returns a hash table.

STRING/= (stringl string2 &key (startl 0) (endl (length stringl)) (start2 [Function]
0) (end2 (length string2)))
Package:LISP
Returns NIL if STRING1 and STRING2 are character-wise CHAR=. Otherwise,
returns the index to the longest common prefix of the strings.

22 No Title

STRING-GREATERP (stringl string2 &key (startl 0) (endl (length stringl)) [Function]
(start2 0) (end2 (length string2)))
Package:LISP

Similar to STRING>, but ignores cases.

ELT (sequence index) [Function]
Package:LISP

Returns the INDEX-th element of SEQUENCE.

MAKE-ARRAY (dimensions &key (element-type t) initial-element [Function]
(initial-contents nil) (adjustable nil) (fill-pointer nil) (displaced-to nil)
(displaced-index-offset 0) static)

Package:LISP

Creates an array of the specified DIMENSIONS. The default for INITIAL- ELE-
MENT depends on ELEMENT-TYPE. MAKE-ARRAY will always try to find the
‘best’ array to accommodate the element-type specified. For example on a SUN
element-type (mod 1) —> bit (integer 0 10) —> unsigned-char (integer -3 10) —> signed-
char si::best-array-element-type is the function doing this. It is also used by the
compiler, for coercing array element types. If you are going to declare an array
you should use the same element type as was used in making it. eg (setq my-array
(make-array 4 :element-type ’(integer 0 10))) (the (array (integer 0 10)) my-array)
When wanting to optimize references to an array you need to declare the array eg:
(the (array (integer -3 10)) my-array) if ar were constructed using the (integer -3 10)
element-type. You could of course have used signed-char, but since the ranges may be
implementation dependent it is better to use -3 10 range. MAKE-ARRAY needs to
do some calculation with the element-type if you don’t provide a primitive data-type.
One way of doing this in a machine independent fashion:

(defvar *my-elt-type* #. (array-element-type (make-array 1 :element-type ’(integer
-310))))

Then calls to (make-array n :element-type *my-elt-type*) will not have to go through
a type inclusion computation. The keyword STATIC (GCL specific) if non nil, will
cause the array body to be non relocatable.

NSTRING-DOWNCASE (string &key (start 0) (end (length string))) [Function]
Package:LISP Returns STRING with all upper case characters converted to lowercase.

ARRAY-IN-BOUNDS-P (array &rest subscripts) [Function]
Package:LISP Returns T if SUBSCRIPTS are valid subscripts for ARRAY; NIL oth-
erwise.

SORT (sequence predicate &key (key #’identity)) [Function]

Package:LISP Destructively sorts SEQUENCE. PREDICATE should return non-NIL
if its first argument is to precede its second argument.

HASH-TABLE-P (x) [Function]
Package:LISP

Returns T if X is a hash table object; NIL otherwise.

Chapter 2: Sequences and Arrays and Hash Tables 23

COUNT-IF-NOT (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (key #’identity))
Package:LISP

Returns the number of elements in SEQUENCE not satisfying TEST.

FILL-POINTER (vector) [Function]
Package:LISP

Returns the fill pointer of VECTOR.

ARRAYP (x) [Function]
Package:LISP

Returns T if X is an array; NIL otherwise.

REPLACE (sequencel sequence2 &key (startl 0) (endl (length sequencel)) [Function]
(start2 0) (end2 (length sequence?2)))
Package:LISP

Destructively modifies SEQUENCEL by copying successive elements into it from SE-
QUENCE2.

BIT-XOR (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical XOR on the elements of BIT-ARRAY1 and BIT-ARRAY2.
Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-
ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

CLRHASH (hash-table) [Function]
Package:LISP

Removes all entries of HASH-TABLE and returns the hash table itself.

SUBSTITUTE-IF (newitem test sequence &key (from-end nil) (start 0) [Function]
(end (length sequence)) (count most-positive-fixnum) (key #’identity))
Package:LISP

Returns a sequence of the same kind as SEQUENCE with the same elements except
that all elements satisfying TEST are replaced with NEWITEM.

MISMATCH (sequencel sequence2 &Kkey (from-end nil) (test #’eql) test-not [Function]
(startl 0) (start2 0) (endl (length sequencel)) (end2 (length sequence2)) (key
#’identity))

Package:LISP

The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
element-wise. If they are of equal length and match in every element, the result is
NIL. Otherwise, the result is a non-negative integer, the index within SEQUENCE1
of the leftmost position at which they fail to match; or, if one is shorter than and
a matching prefix of the other, the index within SEQUENCE1 beyond the last
position tested is returned.

ARRAY-TOTAL-SIZE-LIMIT [Constant|
Package:LISP The exclusive upper bound on the total number of elements of an array.

24 No Title

VECTOR-POP (vector) [Function]
Package:LISP

Attempts to decrease the fill-pointer of VECTOR by 1 and returns the element
pointed to by the new fill pointer. Signals an error if the old value of the fill pointer
is 0.

SUBSTITUTE (newitem olditem sequence &key (from-end nil) (test #’eql) [Function]
test-not (start 0) (end (length sequence)) (count most-positive-fixnum) (key
#’identity))

Package:LISP

Returns a sequence of the same kind as SEQUENCE with the same elements except
that OLDITEMSs are replaced with NEWITEM.

ARRAY-HAS-FILL-POINTER-P (array) [Function]
Package:LISP

Returns T if ARRAY has a fill pointer; NIL otherwise.

CONCATENATE (result-type &rest sequences) [Function]
Package:LISP

Returns a new sequence of the specified RESULT-TYPE, consisting of all elements
in SEQUENCEs.

VECTOR-PUSH (new-element vector) [Function]
Package:LISP

Attempts to set the element of ARRAY designated by its fill pointer to NEW-
ELEMENT and increments the fill pointer by one. Returns NIL if the fill pointer
is too large. Otherwise, returns the new fill pointer value.

STRING-TRIM (char-bag string) [Function]
Package:LISP

Returns a copy of STRING with the characters in CHAR-BAG removed from both
ends.

ARRAY-ELEMENT-TYPE (array) [Function]
Package:LISP

Returns the type of the elements of ARRAY

NOTANY (predicate sequence &rest more-sequences) [Function]
Package:LISP

Returns T if none of the elements in SEQUENCES satisfies PREDICATE; NIL oth-
erwise.

BIT-NOT (bit-array &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical NOT in the elements of BIT-ARRAY. Puts the results

into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-ARRAY if RESULT-
BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

Chapter 2: Sequences and Arrays and Hash Tables 25

BIT-ORC1 (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP
Performs a bit-wise logical ORC1 on the elements of BIT-ARRAY1 and BIT-
ARRAY2. Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL,
into BIT-ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY
otherwise.

COUNT-IF (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (key #’identity))
Package:LISP

Returns the number of elements in SEQUENCE satisfying TEST.

MAP (result-type function sequence &rest more-sequences) [Function]
Package:LISP

FUNCTION must take as many arguments as there are sequences provided. The

result is a sequence such that the i-th element is the result of applying FUNCTION
to the i-th elements of the SEQUENCEs.

ARRAY-RANK-LIMIT [Constant)
Package:LISP The exclusive upper bound on the rank of an array.

COUNT (item sequence &key (from-end nil) (test #’eql) test-not (start 0) [Function]
(end (length sequence)) (key #’identity))
Package:LISP

Returns the number of elements in SEQUENCE satisfying TEST with ITEM.

BIT-VECTOR-P (x) [Function]
Package:LISP

Returns T if X is a bit vector; NIL otherwise.

NSTRING-CAPITALIZE (string &key (start 0) (end (length string))) [Function]
Package:LISP

Returns STRING with the first character of each word converted to upper-case, and
remaining characters in the word converted to lower case.

ADJUST-ARRAY (array dimensions &key (element-type (array-element-type [Function]
array)) initial-element (initial-contents nil) (fill-pointer nil) (displaced-to nil)
(displaced-index-offset 0))

Package:LISP

Adjusts the dimensions of ARRAY to the given DIMENSIONS. The default value of
INITTAL-ELEMENT depends on ELEMENT-TYPE.

SEARCH (sequencel sequence2 &key (from-end nil) (test #’eql) test-not [Function]
(startl 0) (start2 0) (endl (length sequencel)) (end2 (length sequence2)) (key
#’identity))

Package:LISP

A search is conducted for the first subsequence of SEQUENCE2 which element-wise
matches SEQUENCEL. If there is such a subsequence in SEQUENCE2, the index of
the its leftmost element is returned; otherwise, NIL is returned.

26 No Title

SIMPLE-BIT-VECTOR-P (x) [Function]
Package:LISP

Returns T if X is a simple bit-vector; NIL otherwise.

MAKE-SEQUENCE (type length &key initial-element) [Function]
Package:LISP

Returns a sequence of the given TYPE and LENGTH, with elements initialized to
INITTAL-ELEMENT. The default value of INITTAL-ELEMENT depends on TYPE.

BIT-0RC2 (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP

Performs a bit-wise logical ORC2 on the elements of BIT-ARRAY1 and BIT-
ARRAY2. Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL,
into BIT-ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY
otherwise.

NREVERSE (sequence) [Function]
Package:LISP

Returns a sequence of the same elements as SEQUENCE but in reverse order. SE-
QUENCE may be destroyed.

ARRAY-DIMENSION-LIMIT [Constant|
Package:LISP The exclusive upper bound of the array dimension.

NOTEVERY (predicate sequence &rest more-sequences) [Function]
Package:LISP

Returns T if at least one of the elements in SEQUENCESs does not satisfy PREDI-
CATE; NIL otherwise.

POSITION-IF-NOT (test sequence &key (from-end nil) (start 0) (end [Function]
(length sequence)) (key #'’identity))
Package:LISP

Returns the index of the first element in SEQUENCE that does not satisfy TEST;
NIL if no such element exists.

STRING-DOWNCASE (string &key (start 0) (end (length string))) [Function]
Package:LISP

Returns a copy of STRING with all upper case characters converted to lowercase.

BIT (bit-array &rest subscripts) [Function]
Package:LISP

Returns the bit from BIT-ARRAY at SUBSCRIPTS.

STRING-NOT-LESSP (stringl string2 &key (startl 0) (endl (length [Function]
stringl)) (start2 0) (end2 (length string2)))
Package:LISP

Similar to STRING>=, but ignores cases.

Chapter 2: Sequences and Arrays and Hash Tables 27

CHAR (string index) [Function]
Package:LISP

Returns the INDEX-th character in STRING.

AREF (array &rest subscripts) [Function]
Package:LISP

Returns the element of ARRAY specified by SUBSCRIPTS.

FILL (sequence item &key (start 0) (end (length sequence))) [Function]
Package:LISP

Replaces the specified elements of SEQUENCE all with ITEM.

STABLE-SORT (sequence predicate &key (key #’identity)) [Function]
Package:LISP

Destructively sorts SEQUENCE. PREDICATE should return non-NIL if its first ar-
gument is to precede its second argument.

BIT-IOR (bit-arrayl bit-array2 &optional (result-bit-array nil)) [Function]
Package:LISP

Performs a bit-wise logical IOR on the elements of BIT-ARRAY1 and BIT-ARRAY2.
Puts the results into a new bit array if RESULT-BIT-ARRAY is NIL, into BIT-
ARRAY1 if RESULT-BIT-ARRAY is T, or into RESULT-BIT-ARRAY otherwise.

REMHASH (key hash-table) [Function]
Package:LISP

Removes any entry for KEY in HASH-TABLE. Returns T if such an entry existed;
NIL otherwise.

VECTORP (x) [Function]
Package:LISP

Returns T if X is a vector; NIL otherwise.

STRING<= (stringl string2 &key (startl 0) (endl (length stringl)) (start2 [Function]
0) (end2 (length string2)))
Package:LISP

If STRINGT1 is lexicographically less than or equal to STRING2, then returns the
longest common prefix of the two strings. Otherwise, returns NIL.

SIMPLE-VECTOR-P (x) [Function]
Package:LISP

Returns T if X is a simple vector; NIL otherwise.

STRING-LEFT-TRIM (char-bag string) [Function]
Package:LISP

Returns a copy of STRING with the characters in CHAR-BAG removed from the left
end.

28 No Title

ARRAY-TOTAL-SIZE (array) [Function]
Package:LISP

Returns the total number of elements of ARRAY.

FIND-IF-NOT (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (key #’identity))
Package:LISP
Returns the index of the first element in SEQUENCE that does not satisfy TEST;
NIL if no such element exists.

DELETE-DUPLICATES (sequence &key (from-end nil) (test #’eql) test-not [Function]
(start 0) (end (length sequence)) (key #’identity))
Package:LISP

Returns a sequence formed by removing duplicated elements destructively from SE-
QUENCE.

REMOVE-DUPLICATES (sequence &key (from-end nil) (test #’eql) test-not [Function]
(start 0) (end (length sequence)) (key #’identity))
Package:LISP

The elements of SEQUENCE are examined, and if any two match, one is discarded.
Returns the resulting sequence.

POSITION-IF (test sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) (key #’identity))
Package:LISP

Returns the index of the first element in SEQUENCE that satisfies TEST; NIL if no
such element exists.

MERGE (result-type sequencel sequence2 predicate &key (key #’identity)) [Function]
Package:LISP

SEQUENCE1 and SEQUENCE2 are destructively merged into a sequence of type
RESULT-TYPE using PREDICATE to order the elements.

EVERY (predicate sequence &rest more-sequences) [Function]
Package:LISP

Returns T if every elements of SEQUENCEs satisfy PREDICATE; NIL otherwise.

REDUCE (function sequence &key (from-end nil) (start 0) (end (length [Function]
sequence)) initial-value)
Package:LISP
Combines all the elements of SEQUENCE using a binary operation FUNCTION. If
INITTAL-VALUE is supplied, it is logically placed before the SEQUENCE.

STRING-LESSP (stringl string2 &key (startl 0) (endl (length stringl)) [Function]
(start2 0) (end2 (length string2)))
Package:LISP

Similar to STRING<, but ignores cases.

Chapter 3: Characters 29

3 Characters

NAME-CHAR (name) [Function]
Package:LISP

Given an argument acceptable to string, Returns a character object whose name is
NAME if one exists. Returns NIL otherwise. NAME must be an object that can be
coerced to a string.

CHAR-NAME (char) [Function]
Package:LISP

Returns the name for CHAR as a string; NIL if CHAR has no name. Only
#\Backspace, #\Tab, #\Newline (or #\Linefeed), #\Page, #\Return, and
#\Rubout have names.

BOTH-CASE-P (char) [Function]
Package:LISP

Returns T if CHAR is an alphabetic character; NIL otherwise. Equivalent to ALPHA-
CHAR-P.

SCHAR (simple-string index) [Function]
Package:LISP

Returns the character object representing the INDEX-th character in STRING. This
is faster than CHAR.

CHAR-SUPER-BIT [Constant]
Package:LISP The bit that indicates a super character.

CHAR-FONT-LIMIT [Constant]
Package:LISP The upper exclusive bound on values produced by CHAR-FONT.

CHAR-DOWNCASE (char) [Function]
Package:LISP

Returns the lower-case equivalent of CHAR, if any. If not, simply returns CHAR.

STRING-CHAR-P (char) [Function]
Package:LISP

Returns T if CHAR can be stored in a string. In GCL, this function always returns
T since any character in GCL can be stored in a string.

CHAR-NOT-LESSP (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARSs are in strictly non-increasing order; NIL otherwise.
For a lower-case character, the code of its upper-case equivalent is used.

DISASSEMBLE (thing) [Function]

Package:LISP

Compiles the form specified by THING and prints the intermediate C language code
for that form. But does NOT install the result of compilation. If THING is a symbol

30 No Title

that names a not-yet-compiled function, the function definition is disassembled. If
THING is a lambda expression, it is disassembled as a function definition. Otherwise,
THING itself is disassembled as a top-level form.

LOWER-CASE-P (char) [Function]
Package:LISP

Returns T if CHAR is a lower-case character; NIL otherwise.

CHAR<= (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARSs are in strictly non-decreasing order; NIL otherwise.

CHAR-HYPER-BIT [Constant]
Package:LISP The bit that indicates a hyper character.

CODE-CHAR (code &optional (bits 0) (font 0)) [Function]
Package:LISP

Returns a character object with the specified code, if any. If not, returns NIL.

CHAR-CODE (char) [Function]
Package:LISP

Returns the code attribute of CHAR.

CHAR-CONTROL-BIT [Constant)|
Package:LISP The bit that indicates a control character.

CHAR-LESSP (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARs are in strictly increasing order; NIL otherwise. For
a lower-case character, the code of its upper-case equivalent is used.

CHAR-FONT (char) [Function]
Package:LISP

Returns the font attribute of CHAR.

CHAR< (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARs are in strictly increasing order; NIL otherwise.

CHAR>= (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARs are in strictly non-increasing order; NIL otherwise.

CHAR-META-BIT [Constant]
Package:LISP The bit that indicates a meta character.

GRAPHIC-CHAR-P (char) [Function]
Package:LISP

Returns T if CHAR is a printing character, i.e., #\Space through #\~; NIL otherwise.

Chapter 3: Characters 31

CHAR-NOT-EQUAL (char &rest more-chars) [Function]
Package:LISP

Returns T if no two of CHARs are the same character; NIL otherwise. Upper case
character and its lower case equivalent are regarded the same.

CHAR-BITS-LIMIT [Constant)|
Package:LISP The upper exclusive bound on values produced by CHAR-BITS.

CHARACTERP (x) [Function]
Package:LISP

Returns T if X is a character; NIL otherwise.

CHAR= (char &rest more-chars) [Function]
Package:LISP

Returns T if all CHARs are the same character; NIL otherwise.

ALPHA-CHAR-P (char) [Function]
Package:LISP

Returns T if CHAR is an alphabetic character, A-Z or a-z; NIL otherwise.

UPPER-CASE-P (char) [Function]
Package:LISP

Returns T if CHAR is an upper-case character; NIL otherwise.

CHAR-BIT (char name) [Function]
Package:LISP

Returns T if the named bit is on in the character CHAR; NIL otherwise. In GCL,
this function always returns NIL.

MAKE-CHAR (char &optional (bits 0) (font 0)) [Function]
Package:LISP

Returns a character object with the same code attribute as CHAR and with the
specified BITS and FONT attributes.

CHARACTER (x) [Function]
Package:LISP

Coerces X into a character object if possible.

CHAR-EQUAL (char &rest more-chars) [Function]
Package:LISP

Returns T if all of its arguments are the same character; NIL otherwise. Upper case
character and its lower case equivalent are regarded the same.

CHAR-NOT-GREATERP (char &rest more-chars) [Function]

Package:LISP

Returns T if the codes of CHARs are in strictly non-decreasing order; NIL otherwise.
For a lower-case character, the code of its upper-case equivalent is used.

32 No Title

CHAR> (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARs are in strictly decreasing order; NIL otherwise.

STANDARD-CHAR-P (char) [Function]
Package:LISP

Returns T if CHAR is a standard character, i.e., one of the 95 ASCII printing char-
acters #\Space to #\~ and #Newline; NIL otherwise.

CHAR-UPCASE (char) [Function]
Package:LISP

Returns the upper-case equivalent of CHAR, if any. If not, simply returns CHAR.

DIGIT-CHAR-P (char &optional (radix 10)) [Function]
Package:LISP

If CHAR represents a digit in RADIX, then returns the weight as an integer. Other-
wise, returns nil.

CHAR/= (char &rest more-chars) [Function]
Package:LISP

Returns T if no two of CHARs are the same character; NIL otherwise.

CHAR-GREATERP (char &rest more-chars) [Function]
Package:LISP

Returns T if the codes of CHARs are in strictly decreasing order; NIL otherwise. For
a lower-case character, the code of its upper-case equivalent is used.

ALPHANUMERICP (char) [Function]
Package:LISP

Returns T if CHAR is either numeric or alphabetic; NIL otherwise.

CHAR-BITS (char) [Function]
Package:LISP

Returns the bits attribute (which is always 0 in GCL) of CHAR.

DIGIT-CHAR (digit &optional (radix 10) (font 0)) [Function]
Package:LISP

Returns a character object that represents the DIGIT in the specified RADIX. Re-
turns NIL if no such character exists.

SET-CHAR-BIT (char name newvalue) [Function]
Package:LISP

Returns a character just like CHAR except that the named bit is set or cleared,
according to whether NEWVALUE is non-NIL or NIL. This function is useless in
GCL.

Chapter 4: Lists 33

4 Lists

NINTERSECTION (list1 list2 &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Returns the intersection of LIST1 and LIST2. LIST1 may be destroyed.

RASSOC-IF (predicate alist) [Function]
Package:LISP

Returns the first cons in ALIST whose cdr satisfies PREDICATE.

MAKE-LIST (size &key (initial-element nil)) [Function]
Package:LISP

Creates and returns a list containing SIZE elements, each of which is initialized to
INITIAL-ELEMENT.

NTH (n Iist) [Function]
Package:LISP

Returns the N-th element of LIST, where the car of LIST is the zeroth element.

CAAR (x) [Function]
Package:LISP

Equivalent to (CAR (CAR X)).

NULL (x) [Function]
Package:LISP

Returns T if X is NIL; NIL otherwise.

FIFTH (x) [Function]
Package:LISP

Equivalent to (CAR (CDDDDR X)).

NCONC (&rest Iists) [Function]
Package:LISP

Concatenates LISTs by destructively modifying them.

TAILP (sublist list) [Function]
Package:LISP

Returns T if SUBLIST is one of the conses in LIST; NIL otherwise.

CONSP (x) [Function]
Package:LISP
Returns T if X is a cons; NIL otherwise.

TENTH (x) [Function]
Package:LISP
Equivalent to (CADR (CDDDDR (CDDDDR X))).

34 No Title

LISTP (x) [Function]
Package:LISP

Returns T if X is either a cons or NIL; NIL otherwise.

MAPCAN (fun list &rest more-lists) [Function]
Package:LISP

Applies FUN to successive cars of LISTs, NCONCs the results, and returns it.

EIGHTH (x) [Function]
Package:LISP

Equivalent to (CADDDR (CDDDDR X)).

LENGTH (sequence) [Function]
Package:LISP

Returns the length of SEQUENCE.

RASSOC (item alist &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Returns the first cons in ALIST whose cdr is equal to ITEM.

NSUBST-IF-NOT (new test tree &key (key #’identity)) [Function]
Package:LISP

Substitutes NEW for subtrees of TREE that do not satisfy TEST.

NBUTLAST (list &optional (n 1)) [Function]
Package:LISP

Changes the cdr of the N+1 th cons from the end of the list LIST to NIL. Returns
the whole list.

CDR (list) [Function]
Package:LISP

Returns the cdr of LIST. Returns NIL if LIST is NIL.

MAPC (fun list &rest more-lists) [Function]
Package:LISP

Applies FUN to successive cars of LISTs. Returns the first LIST.

MAPL (fun list &rest more-lists) [Function]
Package:LISP

Applies FUN to successive cdrs of LISTs. Returns the first LIST.

CONS (x) [Function]
Package:LISP
Returns a new cons whose car and cdr are X and Y, respectively.

LIST (&rest args) [Function]
Package:LISP

Returns a list of its arguments

Chapter 4: Lists

THIRD (x)
Package:LISP

Equivalent to (CADDR X).

CDDAAR (x)
Package:LISP

Equivalent to (CDR (CDR (CAR (CAR X)))).

CDADAR (x)
Package:LISP

Equivalent to (CDR (CAR (CDR (CAR X)))).

CDAADR (x)
Package:LISP

Equivalent to (CDR (CAR (CAR (CDR X)))).

CADDAR (x)
Package:LISP

Equivalent to (CAR (CDR (CDR (CAR X)))).

CADADR (x)
Package:LISP

Equivalent to (CAR (CDR (CAR (CDR X)))).

CAADDR (x)
Package:LISP

Equivalent to (CAR (CAR (CDR (CDR X)))).

NTHCDR (n list)
Package:LISP

Returns the result of performing the CDR operation N times on LIST.

PAIRLIS (keys data &optional (alist nil))
Package:LISP

Constructs an association list from KEYS and DATA adding to ALIST.

SEVENTH (x)
Package:LISP

Equivalent to (CADDR (CDDDDR X)).

SUBSETP (list1 list2 &key (test #’eql) test-not (key #’identity))

Package:LISP

Returns T if every element of LIST1 appears in LIST2; NIL otherwise.

NSUBST-IF (new test tree &key (key #’identity))
Package:LISP

Substitutes NEW for subtrees of TREE that satisfy TEST.

35

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

36

COPY-LIST (list)
Package:LISP

Returns a new copy of LIST.
LAST (list)

Package:LISP

Returns the last cons in LIST

CAAAR (x)
Package:LISP

Equivalent to (CAR (CAR (CAR X))).

LIST-LENGTH (list)
Package:LISP

Returns the length of LIST, or NIL if LIST is circular.

CDDDR (x)
Package:LISP

Equivalent to (CDR (CDR (CDR X))).

INTERSECTION (Iistl list2 &key (test #’eql) test-not (key #’identity))
Package:LISP

Returns the intersection of Listl and List2.

NSUBST (new old tree &key (test #’eql) test-not (key #’identity))
Package:LISP

Substitutes NEW for subtrees in TREE that match OLD.

REVAPPEND (x y)
Package:LISP

Equivalent to (APPEND (REVERSE X) Y)

CDAR (x)
Package:LISP

Equivalent to (CDR (CAR X)).

CADR (x)
Package:LISP

Equivalent to (CAR (CDR X)).
REST (x)

Package:LISP

Equivalent to (CDR X).

NSET-EXCLUSIVE-OR (list1 list2 &key (test #’eql) test-not (key

#’identity))
Package:LISP

Returns a list with elements which appear but once in LIST1 and LIST2.

No Title

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

Chapter 4: Lists

ACONS (key datum alist)
Package:LISP

Constructs a new alist by adding the pair (KEY . DATUM) to ALIST.

SUBST-IF-NOT (new test tree &key (key #’identity))
Package:LISP

Substitutes NEW for subtrees of TREE that do not satisfy TEST.

RPLACA (xy)
Package:LISP

Replaces the car of X with Y, and returns the modified X.

SECOND (x)
Package:LISP

Equivalent to (CADR X).

NUNION (list1 list2 &key (test #’eql) test-not (key #’identity))
Package:LISP

37

[Function]

[Function]

[Function]

[Function]

[Function]

Returns the union of LIST1 and LIST2. LIST1 and/or LIST2 may be destroyed.

BUTLAST (list &optional (n 1))
Package:LISP

[Function]

Creates and returns a list with the same elements as LIST but without the last N

elements.

COPY-ALIST (alist)
Package:LISP Returns a new copy of ALIST.

SIXTH (x)
Package:LISP Equivalent to (CADR (CDDDDR X)).

CAAAAR (x)
Package:LISP

Equivalent to (CAR (CAR (CAR (CAR X)))).

CDDDAR (x)
Package:LISP

Equivalent to (CDR (CDR (CDR (CAR X)))).

CDDADR. (x)
Package:LISP

Equivalent to (CDR (CDR (CAR (CDR X)))).

CDADDR (x)
Package:LISP

Equivalent to (CDR (CAR (CDR (CDR X)))).

CADDDR (x)
Package:LISP

Equivalent to (CAR (CDR (CDR (CDR X)))).

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

38 No Title

FOURTH (x) [Function]
Package:LISP

Equivalent to (CADDDR X).

NSUBLIS (alist tree &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Substitutes from ALIST for subtrees of TREE.

SUBST-IF (new test tree &key (key #’identity)) [Function]
Package:LISP

Substitutes NEW for subtrees of TREE that satisfy TEST.

NSET-DIFFERENCE (listl list2 &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Returns a list of elements of LIST1 that do not appear in LIST2. LIST1 may be
destroyed.

POP [Special Form]|
Package:LISP

Syntax:
(pop place)
Pops one item off the front of the list in PLACE and returns it.

PUSH [Special Form]
Package:LISP

Syntax:
(push item place)
Conses ITEM onto the list in PLACE, and returns the new list.

CDAAR (x) [Function]
Package:LISP

Equivalent to (CDR (CAR (CAR X))).

CADAR (x) [Function]
Package:LISP

Equivalent to (CAR (CDR (CAR X))).

CAADR (x) [Function]
Package:LISP

Equivalent to (CAR (CAR (CDR X))).

FIRST (x) [Function]
Package:LISP

Equivalent to (CAR X).

SUBST (new old tree &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Substitutes NEW for subtrees of TREE that match OLD.

Chapter 4: Lists 39

ADJOIN (item list &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Adds ITEM to LIST unless ITEM is already a member of LIST.

MAPCON (fun list &rest more-lists) [Function]
Package:LISP

Applies FUN to successive cdrs of LISTs, NCONCs the results, and returns it.

PUSHNEW [Macro]
Package:LISP

Syntax:
(pushnew item place {keyword valuel}*)

If ITEM is already in the list stored in PLACE, does nothing. Else, conses ITEM
onto the list. Returns NIL. If no KEYWORDs are supplied, each element in the list
is compared with ITEM by EQL, but the comparison can be controlled by supplying
keywords :TEST, :TEST-NOT, and/or :KEY.

SET-EXCLUSIVE-OR (list1 list2 &key (test #’eql) test-not (key [Function]

#’identity))
Package:LISP

Returns a list of elements appearing exactly once in LIST1 and LIST2.

TREE-EQUAL (x y &key (test #’eql) test-not) [Function]
Package:LISP

Returns T if X and Y are isomorphic trees with identical leaves.

CDDR (x) [Function]
Package:LISP

Equivalent to (CDR (CDR X)).

GETF (place indicator &optional (default nil)) [Function]
Package:LISP

Searches the property list stored in Place for an indicator EQ to Indicator. If one is
found, the corresponding value is returned, else the Default is returned.

LDIFF (list sublist) [Function]
Package:LISP

Returns a new list, whose elements are those of LIST that appear before SUBLIST.
If SUBLIST is not a tail of LIST, a copy of LIST is returned.

UNION (listl list2 &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Returns the union of LIST1 and LIST2.

ASSOC-IF-NOT (test alist) [Function]
Package:LISP

Returns the first pair in ALIST whose car does not satisfy TEST.

40 No Title

RPLACD (x y) [Function]
Package:LISP

Replaces the cdr of X with Y, and returns the modified X.

MEMBER-IF-NOT (test list &key (key #’identity)) [Function]
Package:LISP

Returns the tail of LIST beginning with the first element not satisfying TEST.

CAR (list) [Function]
Package:LISP

Returns the car of LIST. Returns NIL if LIST is NIL.

ENDP (x) [Function]
Package:LISP

Returns T if X is NIL. Returns NIL if X is a cons. Otherwise, signals an error.

LIST* (arg &rest others) [Function]
Package:LISP

Returns a list of its arguments with the last cons being a dotted pair of the next to
the last argument and the last argument.

NINTH (x) [Function]
Package:LISP

Equivalent to (CAR (CDDDDR (CDDDDR X))).

CDAAAR (x) [Function]
Package:LISP

Equivalent to (CDR (CAR (CAR (CAR X)))).

CADAAR (x) [Function]
Package:LISP

Equivalent to (CAR (CDR (CAR (CAR X)))).

CAADAR (x) [Function]
Package:LISP

Equivalent to (CAR (CAR (CDR (CAR X)))).

CAAADR (x) [Function]
Package:LISP

Equivalent to (CAR (CAR (CAR (CDR X)))).

CDDDDR (x) [Function]
Package:LISP

Equivalent to (CDR (CDR (CDR (CDR X)))).

SUBLIS (alist tree &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Substitutes from ALIST for subtrees of TREE nondestructively.

Chapter 4: Lists 41

RASSOC-IF-NOT (predicate alist) [Function]
Package:LISP

Returns the first cons in ALIST whose cdr does not satisfy PREDICATE.

NRECONC (x y) [Function]
Package:LISP

Equivalent to (NCONC (NREVERSE X) Y).

MAPLIST (fun list &rest more-lists) [Function]
Package:LISP

Applies FUN to successive cdrs of LISTs and returns the results as a list.

SET-DIFFERENCE (list1 list2 &key (test #’eql) test-not (key #’identity)) [Function]
Package:LISP

Returns a list of elements of LIST1 that do not appear in LIST2.

ASSOC-IF (test alist) [Function]
Package:LISP

Returns the first pair in ALIST whose car satisfies TEST.

GET-PROPERTIES (place indicator-list) [Function]
Package:LISP

Looks for the elements of INDICATOR-LIST in the property list stored in PLACE.
If found, returns the indicator, the value, and T as multiple-values. If not, returns
NILs as its three values.

MEMBER-IF (test list &key (key #’identity)) [Function]
Package:LISP

Returns the tail of LIST beginning with the first element satisfying TEST.

COPY-TREE (object) [Function]
Package:LISP

Recursively copies conses in OBJECT and returns the result.

ATOM (x) [Function]
Package:LISP

Returns T if X is not a cons; NIL otherwise.

CDDAR (x) [Function]
Package:LISP

Equivalent to (CDR (CDR (CAR X))).

CDADR (x) [Function]
Package:LISP

Equivalent to (CDR (CAR (CDR X))).

CADDR (x) [Function]
Package:LISP

Equivalent to (CAR (CDR (CDR X))).

42 No Title

ASSOC (item alist &Kkey (test #’eql) test-not) [Function]
Package:LISP

Returns the first pair in ALIST whose car is equal (in the sense of TEST) to ITEM.
APPEND (&rest lists) [Function]
Package:LISP
Constructs a new list by concatenating its arguments.
MEMBER (item list &key (test #’eql) test-not (key #’identity)) [Function]

Package:LISP
Returns the tail of LIST beginning with the first ITEM.

Chapter 5: Streams and Reading 43

5 Streams and Reading

MAKE-ECHO-STREAM (input-stream output-stream) [Function]
Package:LISP

Returns a bidirectional stream which gets its input from INPUT-STREAM and sends
its output to OUTPUT-STREAM. In addition, all input is echoed to OUTPUT-
STREAM.

READTABLEx [Variable]
Package:LISP The current readtable.

LOAD (filename &Kkey (verbose *load-verbose*) (print nil) (if-does-not-exist [Function]
:error))
Package:LISP

Loads the file named by FILENAME into GCL.

OPEN (filename &key (direction :input) (element-type ’string-char) (if-exists ~ [Function]
:error) (if-does-not-exist :error))
Package:LISP

Opens the file specified by FILENAME, which may be a string, a pathname, or
a stream. Returns a stream for the open file. DIRECTION is :INPUT, :OUT-
PUT, :IO or :PROBE. ELEMENT-TYPE is STRING-CHAR, (UNSIGNED-BYTE
n), UNSIGNED-BYTE, (SIGNED-BYTE n), SIGNED-BYTE, CHARACTER, BIT,
(MOD n), or :DEFAULT. IF-EXISTS is :ERROR, :NEW-VERSION, :RENAME,
:RENAME-AND-DELETE, :OVERWRITE, :APPEND, :SUPERSEDE, or NIL. IF-
DOES-NOT-EXIST is :ERROR, :CREATE, or NIL.

If FILENAME begins with a vertical pipe sign: |’ then the resulting stream is actually
a one way pipe. It will be open for reading or writing depending on the direction
given. The rest of FILENAME in this case is passed to the /bin/sh command. See
the posix description of popen for more details.

(setq pipe (open "| wc < /tmp/jim"))
(format t "File has ~%d lines" (read pipe))
(close pipe)

PRINT-BASE [Variable]
Package:LISP The radix in which the GCL printer prints integers and rationals. The
value must be an integer from 2 to 36, inclusive.

MAKE-STRING-INPUT-STREAM (string &optional (start 0) (end (length [Function]
string)))
Package:LISP

Returns an input stream which will supply the characters of String between Start and
End in order.

PPRINT (object &optional (stream *standard-output*)) [Function]
Package:LISP

44 No Title

Pretty-prints OBJECT. Returns OBJECT. Equivalent to (WRITE :STREAM
STREAM :PRETTY T) The SLPRETTY-PRINT-FORMAT property N (which
must be a non-negative integer) of a symbol SYMBOL controls the pretty-printing
of form (SYMBOL f1 ... N fN+1 ... fM) in such a way that the subforms fN+1, ...,
fM are regarded as the ’body’ of the entire form. For instance, the property value of
2 is initially given to the symbol DO.

READ-DEFAULT-FLOAT-FORMAT [Variable]
Package:LISP The floating-point format the GCL reader uses when reading floating-
point numbers that have no exponent marker or have e or E for an exponent marker.
Must be one of SHORT-FLOAT, SINGLE-FLOAT, DOUBLE-FLOAT, and LONG-
FLOAT.

READ-PRESERVING-WHITESPACE (&optional (stream *standard-input*) [Function]
(eof-error-p t) (eof-value nil) (recursive-p nil))
Package:LISP

Reads an object from STREAM, preserving the whitespace that followed the object.

STREAMP (x) [Function]
Package:LISP

Returns T if X is a stream object; NIL otherwise.

SET-DISPATCH-MACRO-CHARACTER (disp-char sub-char function [Function]
&optional (readtable *readtable*))
Package:LISP
Causes FUNCTION to be called when the DISP-CHAR followed by SUB-CHAR is
read.

WITH-OUTPUT-TO-STRING [Macro]
Package:LISP
Syntax:
(with-output-to-string (var [string]) {decl}* {form}*)
Binds VAR to a string output stream that puts characters into STRING, which

defaults to a new string. The stream is automatically closed on exit and the string is
returned.

FILE-LENGTH (file-stream) [Function]
Package:LISP

Returns the length of the specified file stream.

PRINT-CASE [Variable]
Package:LISP The case in which the GCL printer should print ordinary symbols. The
value must be one of the keywords :UPCASE, :DOWNCASE, and :CAPITALIZE.

PRINT (object &optional (stream *standard-output®)) [Function]
Package:LISP
Outputs a newline character, and then prints OBJECT in the mostly readable repre-
sentation. Returns OBJECT. Equivalent to (PROGN (TERPRI STREAM) (WRITE
OBJECT :STREAM STREAM :ESCAPE T)).

Chapter 5: Streams and Reading 45

SET-MACRO-CHARACTER (char function &optional (non-terminating-p nil) [Function]
(readtable *readtable™))
Package:LISP

Causes CHAR to be a macro character that, when seen by READ, causes FUNCTION
to be called.

FORCE-OUTPUT (&optional (stream *standard-output*)) [Function]
Package:LISP

Attempts to force any buffered output to be sent.

PRINT-ARRAY [Variable]
Package:LISP Whether the GCL printer should print array elements.

STREAM-ELEMENT-TYPE (stream) [Function]
Package:LISP

Returns a type specifier for the kind of object returned by STREAM.

WRITE-BYTE (integer stream) [Function]
Package:LISP

Outputs INTEGER to the binary stream STREAM. Returns INTEGER.

MAKE-CONCATENATED-STREAM (&rest streams) [Function]
Package:LISP

Returns a stream which takes its input from each of the STREAMs in turn, going on
to the next at end of stream.

PRIN1 (object &optional (stream *standard-output*)) [Function]
Package:LISP

Prints OBJECT in the mostly readable representation. Returns OBJECT. Equivalent
to (WRITE OBJECT :STREAM STREAM :ESCAPE T).

PRINC (object &optional (stream *standard-output*)) [Function]
Package:LISP

Prints OBJECT without escape characters. Returns OBJECT. Equivalent to
(WRITE OBJECT :STREAM STREAM :ESCAPE NIL).

CLEAR-OUTPUT (&optional (stream *standard-output*®)) [Function]
Package:LISP

Clears the output stream STREAM.

TERPRI (&optional (stream *standard-output™*)) [Function]
Package:LISP

Outputs a newline character.

FINISH-OUTPUT (&optional (stream *standard-output*)) [Function]
Package:LISP

Attempts to ensure that all output sent to STREAM has reached its destination, and
only then returns.

46 No Title

WITH-OPEN-FILE [Macro]
Package:LISP
Syntax:
(with-open-file (stream filename {options}*) {decl}* {form}x*)
Opens the file whose name is FILENAME, using OPTIONS, and binds the variable

STREAM to a stream to/from the file. Then evaluates FORMs as a PROGN. The
file is automatically closed on exit.

DO [Special Form]|
Package:LISP

Syntax:

(do ({(var [init [stepl])}*) (endtest {result}*)
{decl}* {tag | statementl}x)
Creates a NIL block, binds each VAR to the value of the corresponding INIT, and
then executes STATEMENTS repeatedly until ENDTEST is satisfied. After each
iteration, assigns to each VAR the value of the corresponding STEP. When ENDTEST
is satisfied, evaluates RESULTs as a PROGN and returns the value(s) of the last
RESULT (or NIL if no RESULTs are supplied). Performs variable bindings and
assignments all at once, just like LET and PSETQ do.

READ-FROM-STRING (string &optional (eof-error-p t) (eof-value nil) &key [Function]
(start 0) (end (length string)) (preserve-whitespace nil))
Package:LISP

Reads an object from STRING.

WRITE-STRING (string &optional (stream *standard-output®) &key (start [Function]
0) (end (length string)))
Package:LISP

Outputs STRING and returns it.

PRINT-LEVELx [Variable]
Package:LISP How many levels deep the GCL printer should print. Unlimited if NIL.

PRINT-RADIX [Variable]
Package:LISP Whether the GCL printer should print the radix indicator when print-
ing integers and rationals.

Y-OR-N-P (&optional (format-string nil) &rest args) [Function]
Package:LISP

Asks the user a question whose answer is either 'Y’ or 'N’. If FORMAT-STRING
is non-NIL, then FRESH-LINE operation is performed, a message is printed as if
FORMAT-STRING and ARGs were given to FORMAT, and then a prompt "(Y or
N)" is printed. Otherwise, no prompt will appear.

MAKE-BROADCAST-STREAM (&rest streams) [Function]
Package:LISP

Returns an output stream which sends its output to all of the given streams.

Chapter 5: Streams and Reading 47

READ-CHAR (&optional (stream *standard-input*) (eof-error-p t) [Function]
(eof-value nil) (recursive-p nil))
Package:LISP

Reads a character from STREAM.

PEEK-CHAR (&optional (peek-type nil) (stream *standard-input*) [Function]
(eof-error-p t) (eof-value nil) (recursive-p nil))
Package:LISP

Peeks at the next character in the input stream STREAM.

OUTPUT-STREAM-P (stream) [Function]
Package:LISP

Returns non-nil if STREAM can handle output operations; NIL otherwise.

QUERY-I0 [Variable]
Package:LISP The query 1/0O stream.

READ-BASE [Variable]
Package:LISP The radix that the GCL reader reads numbers in.

WITH-OPEN-STREAM [Macro]
Package:LISP

Syntax:

(with-open-stream (var stream) {decl}* {form}x*)

Evaluates FORMs as a PROGN with VAR bound to the value of STREAM. The
stream is automatically closed on exit.

WITH-INPUT-FROM-STRING [Macro]
Package:LISP

Syntax:

(with-input-from-string (var string {keyword value}*) {decll}*
{form}x*)
Binds VAR to an input stream that returns characters from STRING and evaluates

the FORMs. The stream is automatically closed on exit. Allowed keywords are
:INDEX, :START, and :END.

CLEAR-INPUT (&optional (stream *standard-input*)) [Function]
Package:LISP Clears the input stream STREAM.

TERMINAL-IO [Variable]
Package:LISP The terminal I/O stream.

LISTEN (&optional (stream *standard-input*)) [Function]
Package:LISP
Returns T if a character is available on STREAM; NIL otherwise. This function does
not correctly work in some versions of GCL because of the lack of such mechanism in
the underlying operating system.

48 No Title

MAKE-PATHNAME (&key (defaults (parse-namestring "" (pathname-host [Function]
default-pathname-defaults))) (host (pathname-host defaults)) (device
(pathname-device defaults)) (directory (pathname-directory defaults)) (name
(pathname-name defaults)) (type (pathname-type defaults)) (version
(pathname-version defaults)))

Package:LISP

Create a pathname from HOST, DEVICE, DIRECTORY, NAME, TYPE and VER-
SION.

PATHNAME-TYPE (pathname) [Function]
Package:LISP

Returns the type slot of PATHNAME.

PRINT-GENSYM [Variable]
Package:LISP Whether the GCL printer should prefix symbols with no home package
with "#£:".

READ-LINE (&optional (stream *standard-input*) (eof-error-p t) [Function]

(eof-value nil) (recursive-p nil))

Package:LISP

Returns a line of text read from STREAM as a string, discarding the newline char-
acter.

Note that when using line at a time input under unix, input forms will always be
followed by a #\newline. Thus if you do

>(read-line) "" nil

the empty string will be returned. After lisp reads the (read-line) it then invokes
(read-line). This happens before it does anything else and so happens before the
newline character immediately following (read-line) has been read. Thus read-line
immediately encounters a #\newline and so returns the empty string. If there had
been other characters before the #\newline it would have been different:

>(read-line) how are you " how are you" nil

If you want to throw away "" input, you can do that with the following;:
(sloop::sloop while (equal (setq input (read-line)) ""))

You may also want to use character at a time input, but that makes input editing
harder. nicolas% stty cbreak nicolas% gcl GCL (GNU Common Lisp) Version(1.1.2)
Mon Jan 9 12:58:22 MET 1995 Licensed under GNU Public Library License Contains
Enhancements by W. Schelter

>(let ((ifilename nil)) (format t "~%Input file name: ") (setq ifilename (read-line)))
Input file name: /tmp/myfile "/tmp/myfile"

>(bye)Bye.

WRITE-TO-STRING (object &key (escape *print-escape*) (radix [Function]
*print-radix®) (base *print-base*) (circle *print-circle*) (pretty *print-pretty™)
(level *print-level*) (length *print-length*) (case *print-case*) (array
print-array) (gensym *print-gensym*))
Package:LISP

Chapter 5: Streams and Reading 49

Returns as a string the printed representation of OBJECT in the specified mode. See
the variable docs of *PRINT-...* for the mode.

PATHNAMEP (x) [Function]
Package:LISP

Returns T if X is a pathname object; NIL otherwise.

READTABLEP (x) [Function]
Package:LISP

Returns T if X is a readtable object; NIL otherwise.

READ (&optional (stream *standard-input*) (eof-error-p t) (eof-value nil) [Function]
(recursivep nil))
Package:LISP

Reads in the next object from STREAM.

NAMESTRING (pathname) [Function]
Package:LISP

Returns the full form of PATHNAME as a string.

UNREAD-CHAR (character &optional (stream *standard-input*)) [Function]
Package:LISP

Puts CHARACTER back on the front of the input stream STREAM.

CLOSE (stream &key (abort nil)) [Function]
Package:LISP

Closes STREAM. A non-NIL value of :ABORT indicates an abnormal termination.

PRINT-LENGTH [Variable]
Package:LISP How many elements the GCL printer should print at each level of nested
data object. Unlimited if NIL.

SET-SYNTAX-FROM-CHAR (to-char from-char &optional (to-readtable [Function]
readtable) (from-readtable nil))
Package:LISP

Makes the syntax of TO-CHAR in TO-READTABLE be the same as the syntax of
FROM-CHAR in FROM-READTABLE.

INPUT-STREAM-P (stream) [Function]
Package:LISP
Returns non-NIL if STREAM can handle input operations; NIL otherwise.
PATHNAME (x) [Function]
Package:LISP
Turns X into a pathname. X may be a string, symbol, stream, or pathname.
FILE-NAMESTRING (pathname) [Function]
Package:LISP
Returns the written representation of PATHNAME as a string.

50 No Title

MAKE-DISPATCH-MACRO-CHARACTER (char &optional (non-terminating-p [Function]
nil) (readtable *readtable®))
Package:LISP

Causes the character CHAR to be a dispatching macro character in READTABLE.

STANDARD-QUTPUT [Variable]
Package:LISP The default output stream used by the GCL printer.

MAKE-TWO-WAY-STREAM (input-stream output-stream) [Function]
Package:LISP

Returns a bidirectional stream which gets its input from INPUT-STREAM and sends
its output to OUTPUT-STREAM.

PRINT-ESCAPE [Variable]
Package:LISP Whether the GCL printer should put escape characters whenever ap-
propriate.

COPY-READTABLE (&optional (from-readtable *readtable*) (to-readtable [Function]

nil))

Package:LISP

Returns a copy of the readtable FROM-READTABLE. If TO-READTABLE is non-
NIL, then copies into TO-READTABLE. Otherwise, creates a new readtable.

DIRECTORY-NAMESTRING (pathname) [Function]
Package:LISP

Returns the directory part of PATHNAME as a string.

TRUENAME (pathname) [Function]
Package:LISP

Returns the pathname for the actual file described by PATHNAME.

READ-SUPPRESS [Variable]
Package:LISP When the value of this variable is NIL, the GCL reader operates nor-
mally. When it is non-NIL, then the reader parses input characters but much of what
is read is not interpreted.

GET-DISPATCH-MACRO-CHARACTER (disp-char sub-char &optional [Function]
(readtable *readtable*))
Package:LISP

Returns the macro-character function for SUB-CHAR under DISP-CHAR.

PATHNAME-DEVICE (pathname) [Function]
Package:LISP

Returns the device slot of PATHNAME.

READ-CHAR-NO-HANG (&optional (stream *standard-input*) (eof-error-p [Function]
t) (eof-value nil) (recursive-p nil))
Package:LISP

Returns the next character from STREAM if one is available; NIL otherwise.

Chapter 5: Streams and Reading 51

FRESH-LINE (&optional (stream *standard-output*)) [Function]
Package:LISP

Outputs a newline if it is not positioned at the beginning of a line. Returns T if it
output a newline; NIL otherwise.

WRITE-CHAR (char &optional (stream *standard-output*)) [Function]
Package:LISP

Outputs CHAR and returns it.

PARSE-NAMESTRING (thing &optional host (defaults [Function]
default-pathname-defaults) &key (start 0) (end (length thing)) (junk-allowed
nil))

Package:LISP

Parses a string representation of a pathname into a pathname. HOST is ignored.

PATHNAME-DIRECTORY (pathname) [Function]
Package:LISP

Returns the directory slot of PATHNAME.

GET-MACRO-CHARACTER (char &optional (readtable *readtable*)) [Function]
Package:LISP

Returns the function associated with CHAR and, as a second value, returns the non-
terminating-p flag.

FORMAT (destination control-string &rest arguments) [Function]
Package:LISP

Provides various facilities for formatting output. DESTINATION controls where the
result will go. If DESTINATION is T, then the output is sent to the standard output
stream. If it is NIL, then the output is returned in a string as the value of the call.
Otherwise, DESTINATION must be a stream to which the output will be sent.
CONTROL-STRING is a string to be output, possibly with embedded formatting di-
rectives, which are flagged with the escape character "~". Directives generally expand
into additional text to be output, usually consuming one or more of ARGUMENTS
in the process.

A few useful directives are:

“A, "nA, "nO@A Prints one argument as if by PRINC

“S, "nS, "n@S Prints one argument as if by PRIN1

"D, "B, "0, "X Prints one integer in decimal, binary, octal, and hexal]
~% Does TERPRI

~“& Does FRESH-LINE

where n is the minimal width of the field in which the object is printed. "nA and ~nS
put padding spaces on the right; "n@QA and “n@S put on the left.

"R 1is for printing numbers in various formats.

"nR prints arg in radix n.

52 No Title

“R prints arg as a cardinal english number: two
“:R prints arg as an ordinal english number: third
“"@R prints arg as an a Roman Numeral: VII

“:O@R prints arg as an old Roman Numeral: IIII

“C prints a character.
“:C represents non printing characters by their pretty names,eg Spacel]
“@C uses the #\ syntax to allow the reader to read it.

“F prints a floating point number arg.
The full form is “w,d,k,overflowchar,padcharF
w represents the total width of the printed representation (vari-
able if
not present)
d the number of fractional digits to display
(format nil "~7,2f" 10010.0314) --> "10010.03"
k arg is multiplied by 10"k before printing it as a decimal number.|}
overflowchar width w characters copies of the overflow character willl}
be printed. eg(format t "X>75,2,,’7F<X" 100.034) --> X>77777<X]
padchar is the character to pad with
(format t "X>710,2,1,’7,°bF<X" 100.03417) -->X>bbb1000.34<X
@ makes + sign print if the arg is positive

“@[print-if-true~]

if arg is not nil, then it is retained as an arg for further printing, otherwise it is used

up
(format nil "~@[x = “d~]~a" nil ’bil) --> "BIL"
(format nil ""@[x = “d "]7a" 8) --> "x = 8 BIL"
PATHNAME-NAME (pathname) [Function]

Package:LISP
Returns the name slot of PATHNAME.

MAKE-STRING-OUTPUT-STREAM () [Function]
Package:LISP

Returns an output stream which will accumulate all output given it for the benefit of
the function GET-OUTPUT-STREAM-STRING.

MAKE-SYNONYM-STREAM (symbol) [Function]
Package:LISP
Returns a stream which performs its operations on the stream which is the value of
the dynamic variable named by SYMBOL.

LOAD-VERBOSE [Variable]
Package:LISP The default for the VERBOSE argument to LOAD.

*PRINT-CIRCLEx [Variable]
Package:LISP Whether the GCL printer should take care of circular lists.

Chapter 5: Streams and Reading 53

PRINT-PRETTY [Variable]
Package:LISP Whether the GCL printer should pretty-print. See the function doc of
PPRINT for more information about pretty-printing.

FILE-WRITE-DATE (file) [Function]
Package:LISP

Returns the time at which the specified file is written, as an integer in universal time
format. FILE may be a string or a stream.

PRIN1-TO-STRING (object) [Function]
Package:LISP

Returns as a string the printed representation of OBJECT in the mostly readable
representation. Equivalent to (WRITE-TO-STRING OBJECT :ESCAPE T).

MERGE-PATHNAMES (pathname &optional (defaults [Function]
default-pathname-defaults) default-version)
Package:LISP

Fills in unspecified slots of PATHNAME from DEFAULTS. DEFAULT-VERSION is
ignored in GCL.

READ-BYTE (stream &optional (eof-error-p t) (eof-value nil)) [Function]
Package:LISP

Reads the next byte from STREAM.

PRINC-TO-STRING (object) [Function]
Package:LISP

Returns as a string the printed representation of OBJECT without escape characters.
Equivalent to (WRITE-TO-STRING OBJECT :ESCAPE NIL).

STANDARD-INPUT [Variable]
Package:LISP The default input stream used by the GCL reader.

PROBE-FILE (file) [Function]
Package:LISP

Returns the truename of file if the file exists. Returns NIL otherwise.

PATHNAME-VERSION (pathname) [Function]
Package:LISP

Returns the version slot of PATHNAME.

WRITE-LINE (string &optional (stream *standard-output*) &key (start 0) [Function]
(end (length string)))
Package:LISP

Outputs STRING and then outputs a newline character. Returns STRING.

54 No Title

WRITE (object &key (stream *standard-output®) (escape *print-escape*) [Function]
(radix *print-radix*) (base *print-base*) (circle *print-circle*) (pretty
print-pretty) (level *print-level*) (length *print-length™®) (case *print-case*)
(array *print-array*) (gensym *print-gensym*))

Package:LISP
Prints OBJECT in the specified mode. See the variable docs of *PRINT-...* for the
mode.

GET-0UTPUT-STREAM-STRING (stream) [Function]
Package:LISP

Returns a string of all the characters sent to STREAM made by MAKE-STRING-
OUTPUT-STREAM since the last call to this function.

READ-DELIMITED-LIST (char &optional (stream *standard-input*) [Function]
(recursive-p nil))
Package:LISP

Reads objects from STREAM until the next character after an object’s representation
is CHAR. Returns a list of the objects read.

READLINE-ON () [Function]
Package:SI

Begins readline command editing mode when possible. In addition to the basic read-
line editing features, command word completion is implemented according to the
following scheme:

[[pkg]:[:]]txt
pkg — an optional package specifier. Defaults to the current package. The symbols in
this package and those in the packages in this package’s use list will be searched.

:[[] — an optional internal/external specifier. Defaults to external. The keyword
package is denoted by a single colon at the beginning of the token. Only symbols of
this type will be searched for completion.

txt — a string. Symbol names beginning with this string are completed. The compar-
ison is case insensitive.

READLINE-OFF () [Function]
Package:SI
Disables readline command editing mode.

READLINE-PREFIXx [Variable]
Package:SI

A string implicitly prepended to input text for use in readline command completion.
If this string contains one or more colons, it is used to specify the default package and
internal /external setting for searched symbols in the case that the supplied text itself
contains no explicit package specification. If this string contains characters after the
colon(s), or contains no colons at all, it is treated as a symbol name prefix. In this
case, the prefix is matched first, then the supplied text, and the completion returned
is relative to the supplied text itself, i.e. contains no prefix. For example, the setting

Chapter 5: Streams and Reading 55

“maxima::$” will complete input text “int” according to the internal symbols in the
maxima package of the form “maxima::$int...”, and return suggestions to the user of
the form “int...”.

Chapter 6: Special Forms and Functions 57

6 Special Forms and Functions

LAMBDA-LIST-KEYWORDS [Constant)|

Package:LISP List of all the lambda-list keywords used in GCL.

GET-SETF-METHOD (form) [Function]

THE

SETF

WHEN

Package:LISP

Returns the five values (or five 'gangs’) constituting the SETF method for FORM.
See the doc of DEFINE-SETF-METHOD for the meanings of the gangs. It is an
error if the third value (i.e., the list of store variables) is not a one-element list. See
the doc of GET-SETF-METHOD-MULTIPLE-VALUE for comparison.

[Special Form]
Package:LISP

Syntax:
(the value-type form)

Declares that the value of FORM must be of VALUE-TYPE. Signals an error if this
is not the case.

[Special Form]
Package:LISP

Syntax:

(setf {place newvalue}*)

Replaces the value in PLACE with the value of NEWVALUE, from left to right.
Returns the value of the last NEWVALUE. Each PLACE may be any one of the
following:

A symbol that names a variable.

A function call form whose first element is the name of the following functions:

nth elt subseq rest first ... tenth

c?r c??r c??7r c?7Y7r

aref svref char schar bit sbit fill-poiter

get getf documentation symbol-value symbol-function
symbol-plist macro-function gethash

char-bit 1db mask-field

apply
where ’?’ stands for either ’a’ or ’d’.
the form (THE type place) with PLACE being a place recognized by SETF.
a macro call which expands to a place recognized by SETF.

any form for which a DEFSETF or DEFINE-SETF-METHOD declaration has
been made.

[Special Form]
Package:LISP

Syntax:

58 No Title

(when test {form}x)

If TEST evaluates to non-NIL, then evaluates FORMs as a PROGN. If not, simply
returns NIL.

CCASE [Macro]
Package:LISP

Syntax:
(ccase keyplace {({key | ({key}*)} {form}*)}*)

Evaluates KEYPLACE and tries to find the KEY that is EQL to the value of KEY-
PLACE. If one is found, then evaluates FORMs that follow the KEY and returns the
value(s) of the last FORM. If not, signals a correctable error.

MACROEXPAND (form &optional (env nil)) [Function]
Package:LISP

If FORM is a macro form, then expands it repeatedly until it is not a macro any more.
Returns two values: the expanded form and a T-or-NIL flag indicating whether the
original form was a macro.

MULTIPLE-VALUE-CALL [Special Form]
Package:LISP

Syntax:
(multiple-value-call function {form}*)

Calls FUNCTION with all the values of FORMs as arguments.

DEFSETF [Macro]
Package:LISP
Syntax:

(defsetf access-fun {update-fun [doc] |
lambda-list (store-var) {decl | doc}*
{form}*)
Defines how to SETF a generalized-variable reference of the form (ACCESS-FUN ...).
The doc-string DOC, if supplied, is saved as a SETF doc and can be retrieved by
(documentation 'NAME ’setf).

(defsetf access-fun update-fun) defines an expansion from
(setf (ACCESS-FUN argl ... argn) value) to (UPDATE-FUN argl ... argn value).fi

(defsetf access-fun lambda-list (store-var) . body) defines a macro whichl]

expands
(setf (ACCESS-FUN argl ... argn) value) into the form
(letx ((templ ARG1l) ... (tempn ARGn) (tempO value)) rest)

where REST is the value of BODY with parameters in LAMBDA-LIST bound to the
symbols TEMP1 ... TEMPn and with STORE-VAR bound to the symbol TEMPO.

Chapter 6: Special Forms and Functions 59

TAGBODY [Special Form]
Package:LISP

Syntax:
(tagbody {tag | statementl}x)
Executes STATEMENTSs and returns NIL if it falls off the end.

ETYPECASE [Macro]
Package:LISP

Syntax:
(etypecase keyform {(type {forml}x)}*)

Evaluates KEYFORM and tries to find the TYPE in which the value of KEYFORM
belongs. If one is found, then evaluates FORMs that follow the KEY and returns the
value(s) of the last FORM. If not, signals an error.

LETx* Special Form
[Sp
Package:LISP

Syntax:
(let*x ({var | (var [valuel)}*) {decl}x {forml}x)

Initializes VARs, binding them to the values of VALUES (which defaults to NIL) from
left to right, then evaluates FORMs as a PROGN.

PROG1 [Special Form]
Package:LISP

Syntax:
(progl first {form}x)
Evaluates FIRST and FORMs in order, and returns the (single) value of FIRST.

DEFUN [Special Form]|
Package:LISP
Syntax:
(defun name lambda-list {decl | doc}* {form}x)
Defines a function as the global function definition of the symbol NAME. The com-
plete syntax of a lambda-list is: ({var}* [&optional {var | (var [initform [svar]])}*]
[&rest var] [&key {var | ({var | (keyword var)} [initform [svar]])}* [&allow-other-

keys]] [&aux {var | (var [initform])}*]) The doc-string DOC, if supplied, is saved as
a FUNCTION doc and can be retrieved by (documentation '’NAME ’function).

MULTIPLE-VALUE-BIND [Special Form]
Package:LISP

Syntax:
(multiple-value-bind ({var}*) values-form {decl}* {form}*)

Binds the VARiables to the results of VALUES-FORM, in order (defaulting to NIL)
and evaluates FORMs in order.

60 No Title

DECLARE [Special Form]
Package:LISP

Syntax:
(declare {decl-spec}*)

Gives a declaration. Possible DECL-SPECs are: (SPECIAL {var}*) (TYPE type
{var}*) where "TYPE’ is one of the following symbols

array fixnum package simple-bit-vector

atom float pathname simple-string

bignum function random-state simple-vector

bit hash-table ratio single-float

bit-vector integer rational standard-char

character keyword readtable stream

common list sequence string

compiled-function Ilong-float short-float string-char

complex nil signed-byte symbol

cons null unsigned-byte t

double-float number simple-array vector

"TYPE’ may also be a list containing one of the above symbols as its first element
and more specific information later in the list. For example

(vector long-float 80) ; vector of 80 long-floats.

(array long-float *) ; array of long-floats
(array fixnum) ; array of fixnums
(array * 30) ; an array of length 30 but unspecified type

A list of 1 element may be replaced by the symbol alone, and a list ending in ’*’ may
drop the the final "*’.

(0BJECT {var}x*)
(FTYPE type {function-name}*)
eg: ;; function of two required args and optional args and one value:|j
(ftype (function (t t *) t) sort reduce)
;; function with 1 arg of general type returning 1 fixnum as value.|j
(ftype (function (t) fixnum) length)
(FUNCTION function-name ({arg-typel}*) {return-typelx)
(INLINE {function-name}*)
(NOTINLINE {function-namel}*)
(IGNORE {var}x)
(OPTIMIZE {({SPEED | SPACE | SAFETY | COMPILATION-SPEED} {0 | 1 | 2 | 31 }xN
(DECLARATION {non-standard-decl-name}*)
(:DYNAMIC-EXTENT {var}*) ;GCL-specific.

DEFMACRO [Special Form]
Package:LISP
Syntax:
(defmacro name defmacro-lambda-list {decl | doc}* {form}x*)

Defines a macro as the global macro definition of the symbol NAME. The complete
syntax of a defmacro-lambda-list is:

Chapter 6: Special Forms and Functions 61

([&whole var] [&environment var] {pseudo-var}* [&optional {var | (pseudo-var [init-
form [pseudo-var]]) }*] {[{&rest | &body} pseudo-var] [&key {var | ({var | (keyword
pseudo-var)} [initform [pseudo-var]])}* [&allow-other-keys]] [&aux {var | (pseudo-var
[initform])}*] | . var})

where pseudo-var is either a symbol or a list of the following form:

({pseudo-var}* [&optional {var | (pseudo-var [initform [pseudo-var]])}*] {[{&rest |
&body} pseudo-var| [&key {var | ({var | (keyword pseudo-var)} [initform [pseudo-
var]])}* [&allow-other-keys | | [&aux {var | (pseudo-var [initform])}*] | . var})

As a special case, a non-NIL symbol is accepcted as a defmacro-lambda-list: (DEF-
MACRO <name> <symbol> ...) is equivalent to (DEFMACRO <name> (&REST
<symbol>) ...). The doc-string DOC, if supplied, is saved as a FUNCTION doc and
can be retrieved by (documentation 'NAME ’function). See the type doc of LIST
for the backquote macro useful for defining macros. Also, see the function doc of
PPRINT for the output-formatting.

EVALHOOK [Variable]
Package:LISP If *EVALHOOK* is not NIL, its value must be a function that can
receive two arguments: a form to evaluate and an environment. This function does
the evaluation instead of EVAL.

FUNCTIONP (x) [Function]
Package:LISP

Returns T if X is a function, suitable for use by FUNCALL or APPLY. Returns NIL
otherwise.

LAMBDA-PARAMETERS-LIMIT [Constant|
Package:LISP The exclusive upper bound on the number of distinct parameter names

that may appear in a single lambda-list. Actually, however, there is no such upper
bound in GCL.

FLET [Special Form]
Package:LISP
Syntax:

(flet ({(name lambda-list {decl | doc}* {form}*)}*) . Dbody)

Evaluates BODY as a PROGN, with local function definitions in effect. BODY is the
scope of each local function definition. Since the scope does not include the function
definitions themselves, the local function can reference externally defined functions
of the same name. See the doc of DEFUN for the complete syntax of a lambda-list.
Doc-strings for local functions are simply ignored.

ECASE [Macro]
Package:LISP
Syntax:
(ecase keyform {({key | ({key}*)} {form}*)l}*)

Evaluates KEYFORM and tries to find the KEY that is EQL to the value of KEY-
FORM. If one is found, then evaluates FORMs that follow the KEY and returns the
value(s) of the last FORM. If not, signals an error.

62 No Title

PROG2 [Special Form]
Package:LISP

Syntax:
(prog2 first second {formsl}x)

Evaluates FIRST, SECOND, and FORMs in order, and returns the (single) value of
SECOND.

PROGV [Special Form]|
Package:LISP

Syntax:
(progv symbols values {form}*)
SYMBOLS must evaluate to a list of variables. VALUES must evaluate to a list of

initial values. Evaluates FORMs as a PROGN, with each variable bound (as special)
to the corresponding value.

QUOTE [Special Form]
Package:LISP

Syntax:
(quote x)

or ’x Simply returns X without evaluating it.

DOTIMES [Special Form]
Package:LISP

Syntax:
(dotimes (var countform [result]) {decl}* {tag | statement}x*)

Executes STATEMENTS, with VAR bound to each number between 0 (inclusive)
and the value of COUNTFORM (exclusive). Then returns the value(s) of RESULT
(which defaults to NIL).

SPECIAL-FORM-P (symbol) [Function]
Package:LISP

Returns T if SYMBOL globally names a special form; NIL otherwise. The special
forms defined in Steele’s manual are:

block if progv

catch labels quote

compiler-let let return-from
declare let* setq

eval-when macrolet tagbody

flet multiple-value-call the
function multiple-value-progl throw
go progn unwind-protect

In addition, GCL implements the following macros as special forms, though of
course macro-expanding functions such as MACROEXPAND work correctly for
these macros.

Chapter 6: Special Forms and Functions 63

and incf progl

case locally prog?2

cond loop psetq

decf multiple-value-bind push
defmacro multiple-value-list return
defun multiple-value-set setf

do or unless

do* pop when

dolist prog

dotimes prog*

FUNCTION [Special Form]
Package:LISP
Syntax:
(function x)
or #’x If X is a lambda expression, creates and returns a lexical closure of X in the

current lexical environment. If X is a symbol that names a function, returns that
function.

MULTIPLE-VALUES-LIMIT [Constant)|
Package:LISP The exclusive upper bound on the number of values that may be re-
turned from a function. Actually, however, there is no such upper bound in GCL.

APPLYHOOK (function args evalhookfn applyhookfn &optional (env nil)) [Function]
Package:LISP
Applies FUNCTION to ARGS, with *EVALHOOK* bound to EVALHOOKFN and
with *APPLYHOOK* bound to APPLYHOOKFN. Ignores the hook function once,
for the top-level application of FUNCTION to ARGS.

MACROEXPAND-HOOK [Variable]
Package:LISP Holds a function that can take two arguments (a macro expansion
function and the macro form to be expanded) and returns the expanded form. This

function is whenever a macro-expansion takes place. Initially this is set to #’FUN-
CALL.

PROG* [Special Form]
Package:LISP

Syntax:
(prog* ({var | (var [init])}*) {decl}* {tag | statementl}*)
Creates a NIL block, binds VARs sequentially, and then executes STATEMENTS.

BLOCK [Special Form]
Package:LISP
Syntax:
(block name {form}*)
The FORMs are evaluated in order, but it is possible to exit the block using

(RETURN-FROM name value). The RETURN-FROM must be lexically contained
within the block.

64 No Title

PROGN [Special Form]
Package:LISP

Syntax:
(progn {form}x)
Evaluates FORMs in order, and returns whatever the last FORM returns.

APPLY (function arg &rest more-args) [Function]
Package:LISP

Applies FUNCTION. The arguments to the function consist of all ARGs except for
the last, and all elements of the last ARG.

LABELS [Special Form]
Package:LISP

Syntax:
(labels ({(name lambda-list {decl | doc}* {form}*)}*) . body)

Evaluates BODY as a PROGN, with the local function definitions in effect. The scope
of the locally defined functions include the function definitions themselves, so their
definitions may include recursive references. See the doc of DEFUN for the complete
syntax of a lambda-list. Doc-strings for local functions are simply ignored.

RETURN [Special Form]|
Package:LISP

Syntax:
(return [result])

Returns from the lexically surrounding NIL block. The value of RESULT, which
defaults to NIL, is returned as the value of the block.

TYPECASE [Ma