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Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes
and not enough time learning about chemical engineering. With Octave, most students pick
up the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. If you find it useful,
please let us know. We are always interested to find out how Octave is being used in other
places.

Virtually everyone thinks that the name Octave has something to do with music, but it
is actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to
do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix H [Copying], page 641). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.
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How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines], page 615, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix E [Trouble], page 621, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix H [Copying], page 641.

Octave is available on CD-ROM, with various collections of other free software, from the
Free Software Foundation. Ordering a copy of Octave from the Free Software Foundation
helps to fund the development of more free software. For more information, write to

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301–1307
USA

Octave can also be downloaded from http://www.octave.org, where additional infor-
mation is available.

http://www.octave.org
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1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient interactive command line interface for solving linear and nonlinear
problems numerically, and for performing other numerical experiments. It may also be used
as a batch-oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix H [Copying], page 641.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 3.2.0.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an
initial message and then a prompt indicating it is ready to accept input. You can begin
typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.
On systems that support job control, you can suspend Octave by sending it a SIGTSTP

signal, usually by typing C-z.

1.2 Simple Examples

The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked with ‘octave:13>’ are lines you type, ending each with
a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,*,/), exponentiation (^), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, . . . ). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of
the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.
For example, to verify Euler’s Identity,

eıπ = −1

type the following which will evaluate to -1 within the tolerance of the calculation.
octave:1> exp(i*pi)
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1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A = [ 1, 1, 2; 3, 5, 8; 13, 21, 34 ]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 * A

To multiply the two matrices A and B, type the command

octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x = A \ b

This is conceptually equivalent to A−1b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H2 + O2 → H2O

The equation above is not accurate. The Law of Conservation of Mass requires that the
number of molecules of each type balance on the left- and right-hand sides of the equation.
Writing the variable overall reaction with individual equations for hydrogen and oxygen one
finds:
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x1H2 + x2O2 → H2O

H : 2x1 + 0x2 → 2

O : 0x1 + 2x2 → 1

The solution in Octave is found in just three steps.

octave:1> A = [ 2, 0; 0, 2 ];
octave:2> b = [ 2; 1 ];
octave:3> x = A \ b

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

dx

dt
= f(x, t), x(t = t0) = x0

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x, t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)
>
> r = 0.25;
> k = 1.4;
> a = 1.5;
> b = 0.16;
> c = 0.9;
> d = 0.8;
>
> xdot(1) = r*x(1)*(1 - x(1)/k) - a*x(1)*x(2)/(1 + b*x(1));
> xdot(2) = c*a*x(1)*x(2)/(1 + b*x(1)) - d*x(2);
>
> endfunction

Given the initial condition

octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;

it is easy to integrate the set of differential equations:

octave:4> x = lsode ("f", x0, t);

The function lsode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55–64.
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1.2.6 Producing Graphical Output

To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps

will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 19.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you
want to use. This name of the function may not always be obvious, but a good place to
start is to just type help. This will show you all the operators, reserved words, functions,
built-in variables, and function files. An alternative is to search the documentation using
the lookfor function. This function is described in Section 2.3 [Getting Help], page 17.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot

will display the help text for the plot function.
Octave sends output that is too long to fit on one screen through a pager like less or

more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke
Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help], page 17.
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1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave --no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘⇒’. For example,

sqrt (2)
⇒ 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.

In some cases, matrix values that are returned by expressions are displayed like this

[1, 2; 3, 4] == [1, 3; 2, 4]
⇒ [ 1, 0; 0, 1 ]

and in other cases, they are displayed like this

eye (3)
⇒ 1 0 0

0 1 0
0 0 1

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘≡ ’. For example,

rot90 ([1, 2; 3, 4], -1)
≡
rot90 ([1, 2; 3, 4], 3)
≡
rot90 ([1, 2; 3, 4], 7)

1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘ a ’. The value that is returned
by evaluating the expression is displayed with ‘⇒’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
a foo bar
⇒ 1
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1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

[Function]foo (x, y, . . . )
The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.

foo (1, [3, 5], 3, 9)
⇒ [ 14, 16 ]

foo (5)
⇒ 14

More generally,

foo (w, x, y, ...)
≡
x - w + y + ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.7 [Function Files], page 145.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.
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Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions], page 557.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

[Command]cd dir
[Command]chdir dir

Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘~/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

[Built-in Variable]do_what_i_mean_not_what_i_say
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.
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2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’ is a shorter
equivalent).

2.1.1 Command Line Options

Here is a complete list of the command line options that Octave accepts.

--debug
-d Enter parser debugging mode. Using this option will cause Octave’s parser to

print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--doc-cache-file filename

Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of OCTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

--echo-commands
-x Echo commands as they are executed.

--eval code

Evaluate code and exit when finished unless --persist is also specified.

--exec-path path

Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help
-h
-? Print short help message and exit.

--image-path path

Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in
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the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

--info-file filename

Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program

Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

--interactive
-i Force interactive behavior. This can be useful for running Octave via a remote

shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix G [Emacs Octave Support], page 633.

--line-editing
Force readline use for command-line editing.

--no-history
-H Disable recording of command-line history.

--no-init-file
Don’t read the initialization files ‘~/.octaverc’ and ‘.octaverc’.

--no-init-path
Don’t initialize the search path for function files to include default locations.

--no-line-editing
Disable command-line editing.

--no-site-file
Don’t read the site-wide ‘octaverc’ initialization files.

--norc
-f Don’t read any of the system or user initialization files at startup. This is

equivalent to using both of the options --no-init-file and --no-site-file.

--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after --eval or reading from a file named on the com-
mand line.

--silent
--quiet
-q Don’t print the usual greeting and version message at startup.
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--traditional
--braindead

For compatibility with matlab, set initial values for user preferences to the
following values

PS1 = ">> "
PS2 = ""
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
fixed_point_format = true
history_timestamp_format_string

= "%%-- %D %I:%M %p --%%"
page_screen_output = false
print_empty_dimensions = false

and disable the following warnings
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless --persist is also specified.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

[Built-in Function]argv ()
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command

octave --no-line-editing --silent

argv would return a cell array of strings with the elements --no-line-editing and
--silent.
If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs], page 28, for an example
of how to create an executable Octave script.

[Built-in Function]program_name ()
Return the last component of the value returned by program_invocation_name.

See also: [program invocation name], page 15.

[Built-in Function]program_invocation_name ()
Return the name that was typed at the shell prompt to run Octave.
If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
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Section 2.6 [Executable Octave Programs], page 28, for an example of how to create
an executable Octave script.

See also: [program name], page 15.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());
arg_list = argv ();
for i = 1:nargin
printf (" %s", arg_list{i});

endfor
printf ("\n");

See Section 6.2.3 [Indexing Cell Arrays], page 88, for an explanation of how to retrieve
objects from cell arrays, and Section 11.1 [Defining Functions], page 137, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home/share/octave/version/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘~/.octaverc’. Any use of the cd command in the ‘~/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.
If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the --verbose option but without the --silent option.
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2.2 Quitting Octave

[Built-in Function]exit (status )
[Built-in Function]quit (status )

Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is
zero.

[Built-in Function]atexit (fcn )
[Built-in Function]atexit (fcn, flag )

Register a function to be called when Octave exits. For example,

function last_words ()
disp ("Bye bye");

endfunction
atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call last_words when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.7 [Function Files], page 145, for more information about how to document the
functions you write.

[Command]help name
Display the help text for name. If invoked without any arguments, help prints a list
of all the available operators and functions.

For example, the command help help prints a short message describing the help
command.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: [doc], page 18, [lookfor], page 18, [which], page 105.
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[Command]doc function_name
Display documentation for the function function name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 17.

[Command]lookfor str
[Command]lookfor -all str
[Function][func, helpstring] = lookfor (str )
[Function][func, helpstring] = lookfor (’-all’, str )

Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the ’-all’
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is depen-
dent on the format of the function’s help. All Octave core functions are correctly for-
matted, but the same can not be guaranteed for external packages and user-supplied
functions. Therefore, the use of the ’-all’ argument may be necessary to find related
functions that are not a part of Octave.

See also: [help], page 17, [doc], page 18, [which], page 105.

To see what is new in the current release of Octave, use the news function.

[Function File]news ()
Display the current NEWS file for Octave.

[Function File]info ()
Display contact information for the GNU Octave community.

[Built-in Function]warranty ()
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

[Built-in Function]val = info_file ()
[Built-in Function]old_val = info_file (new_val )

Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
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directory of the Octave installation. The default value may be overridden by the en-
vironment variable OCTAVE_INFO_FILE, or the command line argument ‘--info-file
NAME’.

See also: [info program], page 19, [doc], page 18, [help], page 17, [makeinfo program],
page 19.

[Built-in Function]val = info_program ()
[Built-in Function]old_val = info_program (new_val )

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program
NAME’.

See also: [info file], page 18, [doc], page 18, [help], page 17, [makeinfo program],
page 19.

[Built-in Function]val = makeinfo_program ()
[Built-in Function]old_val = makeinfo_program (new_val )

Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is
makeinfo.

See also: [info file], page 18, [info program], page 19, [doc], page 18, [help], page 17.

[Built-in Function]val = doc_cache_file ()
[Built-in Function]old_val = doc_cache_file (new_val )

Query or set the internal variable that specifies the name of the Octave documentation
cache file. A cache file significantly improves the performance of the lookfor com-
mand. The default value is ‘octave-home/share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the
Octave version number. The default value may be overridden by the environment vari-
able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file
NAME’.

See also: [lookfor], page 18, [info program], page 19, [doc], page 18, [help], page 17,
[makeinfo program], page 19.

[Built-in Function]val = suppress_verbose_help_message ()
[Built-in Function]old_val = suppress_verbose_help_message (new_val )

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
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addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.

C-f Move forward one character.

DEL Delete the character to the left of the cursor.

C-d Delete the character underneath the cursor.

M-f Move forward a word.

M-b Move backward a word.

C-a Move to the start of the line.

C-e Move to the end of the line.

C-l Clear the screen, reprinting the current line at the top.

C-_

C-/ Undo the last action. You can undo all the way back to an empty line.

M-r Undo all changes made to this line. This is like typing the ‘undo’ command
enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.
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[Built-in Function]clc ()
[Built-in Function]home ()

Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.

C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL

because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.
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M-l Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word
if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You

The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-? List the possible completions of the text before the cursor.

[Built-in Function]val = completion_append_char ()
[Built-in Function]old_val = completion_append_char (new_val )

Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

[Built-in Function]completion_matches (hint )
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD
RET Accept the current line regardless of where the cursor is. If the line is non-

empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the
history as necessary.
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On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

[Command]history options
If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘~/.octave_hist’).

-r file Read the file file, replacing the current history list with its contents. If the
name is omitted, use the default history file (normally ‘~/.octave_hist’).

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

[Command]edit_history [first ] [last ]
If invoked with no arguments, edit_history allows you to edit the history list using
the editor named by the variable EDITOR. The commands to be edited are first copied
to a temporary file. When you exit the editor, Octave executes the commands that
remain in the file. It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line. By default, the
block of commands is executed as soon as you exit the editor. To avoid executing any
commands, simply delete all the lines from the buffer before exiting the editor.
The edit_history command takes two optional arguments specifying the history
numbers of first and last commands to edit. For example, the command

edit_history 13

extracts all the commands from the 13th through the last in the history list. The
command

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first
command than the last command reverses the list of commands before placing them
in the buffer to be edited. If both arguments are omitted, the previous command in
the history list is used.

See also: [run history], page 23.

[Command]run_history [first ] [last ]
Similar to edit_history, except that the editor is not invoked, and the commands
are simply executed as they appear in the history list.

See also: [edit history], page 23.
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Octave also allows you customize the details of when, where, and how history is saved.

[Built-in Function]val = saving_history ()
[Built-in Function]old_val = saving_history (new_val )

Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

See also: [history file], page 24, [history size], page 24, [history timestamp format string],
page 24.

[Built-in Function]val = history_file ()
[Built-in Function]old_val = history_file (new_val )

Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘~/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history size], page 24, [saving history], page 24, [history timestamp format string],
page 24.

[Built-in Function]val = history_size ()
[Built-in Function]old_val = history_size (new_val )

Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history file], page 24, [history timestamp format string], page 24,
[saving history], page 24.

[Built-in Function]val = history_timestamp_format_string ()
[Built-in Function]old_val = history_timestamp_format_string (new_val )

Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

See also: [strftime], page 517, [history file], page 24, [history size], page 24,
[saving history], page 24.

[Built-in Function]val = EDITOR ()
[Built-in Function]old_val = EDITOR (new_val )

Query or set the internal variable that specifies the editor to use with the edit_
history command. The default value is taken from the environment variable EDITOR
when Octave starts. If the environment variable is not initialized, EDITOR will be set
to "emacs".

See also: [edit history], page 23.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘~/.inputrc’.
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Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

[Built-in Function]read_readline_init_file (file )
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library , for details.

[Built-in Function]re_read_readline_init_file ()
Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library , for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

‘\t’ The time.

‘\d’ The date.

‘\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

‘\w’ The current working directory.

‘\W’ The basename of the current working directory.

‘\u’ The username of the current user.

‘\h’ The hostname, up to the first ‘.’.

‘\H’ The hostname.

‘\#’ The command number of this command, counting from when Octave starts.

‘\!’ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.

‘\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.

‘\nnn’ The character whose character code in octal is nnn.

‘\\’ A backslash.

[Built-in Function]val = PS1 ()
[Built-in Function]old_val = PS1 (new_val )

Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.

The default value of the primary prompt string is "\s:\#> ". To change it, use a
command like



26 GNU Octave

octave:13> PS1 ("\\u@\\H> ")

which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings], page 55.

See also: [PS2], page 26, [PS4], page 26.

[Built-in Function]val = PS2 ()
[Built-in Function]old_val = PS2 (new_val )

Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at
the beginning of each line after the first. The default value of the secondary prompt
string is "> ".

See also: [PS1], page 25, [PS4], page 26.

[Built-in Function]val = PS4 ()
[Built-in Function]old_val = PS4 (new_val )

Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands], page 26, for a description of echoing commands.

See also: [echo], page 26, [echo executing commands], page 27, [PS1], page 25, [PS2],
page 26.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by
recording the input you type and the output that Octave produces in a separate file.

[Command]diary options
Record a list of all commands and the output they produce, mixed together just as
you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working
directory.

off Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

[Command]echo options
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

off Disable echoing of commands as they are executed in script files.
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on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

[Built-in Function]val = echo_executing_commands ()
[Built-in Function]old_val = echo_executing_commands (new_val )

Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

1 Echo commands read from script files.

2 Echo commands from functions.

4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option --echo-commands.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.

A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,

octave:13> function y = f (x) y = x***2; endfunction

Octave will respond immediately with a message like this:

parse error:

syntax error

>>> function y = f (x) y = x***2; endfunction
^

For most parse errors, Octave uses a caret (‘^’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,
you type

octave:13> f ()

Octave will respond with
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error: ‘x’ undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function f had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘#!’ script mechanism. You can do this on GNU systems and on many Unix systems1.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter-name -qf
# a sample Octave program
printf ("Hello, world!\n");

(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!’ appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello

at the shell, and the system will arrange to run Octave as if you had typed:
octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of

1 The ‘#!’ mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.
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the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 13.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment

is equivalent to typing at the command line:

octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!’ mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("%s", program_name ());
arg_list = argv ();
for i = 1:nargin
printf (" %s", arg_list{i});

endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.
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function countdown
# Count down for main rocket engines
disp(3);
disp(2);
disp(1);
disp("Blast Off!"); # Rocket leaves pad

endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#}’ or ‘%{’ and ‘%}’ markers. For example,

function quick_countdown
# Count down for main rocket engines
disp(3);
#{
disp(2);
disp(1);
#}
disp("Blast Off!"); # Rocket leaves pad

endfunction

will produce a very quick countdown from ’3’ to ’Blast Off’ as the lines "disp(2);" and
"disp(1);" won’t be executed.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 17) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function f below,

function xdot = f (x, t)

# usage: f (x, t)
#
# This function defines the right-hand
# side functions for a set of nonlinear
# differential equations.

r = 0.25;
...

endfunction

the command help f produces the output

usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.
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Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments], page 29) and not block comments for the initial help text.
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3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
so it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[Dynamically Linked Functions], page 557, for more information about Octave’s dynamic
linking capabilities. Section 3.2 [User-defined Data Types], page 35 describes what you
must do to define a new data type for Octave.

[Built-in Function]typeinfo (expr )
Return the type of the expression expr, as a string. If expr is omitted, return an
array of strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

[Built-in Function]class (expr )
[Built-in Function]class (s, id )
[Built-in Function]class (s, id, p, . . . )

Return the class of the expression expr or create a class with fields from structure s
and name (string) id. Additional arguments name a list of parent classes from which
the new class is derived.

[Function File]isa (x, class )
Return true if x is a value from the class class.

[Function File]cast (val, type )
Convert val to data type type.

See also: [int8], page 45, [uint8], page 45, [int16], page 45, [uint16], page 45, [int32],
page 45, [uint32], page 45, [int64], page 45, [uint64], page 45, [double], page 39.

[Loadable Function]typecast (x, type )
Convert from one datatype to another without changing the underlying data. The
argument type defines the type of the return argument and must be one of ’uint8’,
’uint16’, ’uint32’, ’uint64’, ’int8’, ’int16’, ’int32’, ’int64’, ’single’ or ’double’.

An example of the use of typecast on a little-endian machine is
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x = uint16 ([1, 65535]);
typecast (x, ’uint8’)
⇒ [ 0, 1, 255, 255]

See also: [cast], page 33, [swapbytes], page 34.

[Function File]swapbytes (x )
Swaps the byte order on values, converting from little endian to big endian and vice
versa. For example

swapbytes (uint16 (1:4))
⇒ [ 256 512 768 1024]

See also: [typecast], page 33, [cast], page 33.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251× 10−308 to 1.7977× 10308 can be stored, and the relative precision is approximately
2.2204 × 10−16. The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions], page 107.

See Chapter 4 [Numeric Data Types], page 39, for more information.

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of
NaN.

[Built-in Function]NA
[Built-in Function]NA (n )
[Built-in Function]NA (n, m )
[Built-in Function]NA (n, m, k, . . . )
[Built-in Function]NA (. . . , class )

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.
Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.
When called with no arguments, return a scalar with the value ‘NA’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isna], page 35.



Chapter 3: Data Types 35

[Mapping Function]isna (x )
Return 1 for elements of x that are NA (missing) values and zero otherwise. For
example,

isna ([13, Inf, NA, NaN])
⇒ [ 0, 0, 1, 0 ]

See also: [isnan], page 274.

3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 55, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Data Structures], page 77, for more information.

3.1.5 Cell Array Objects

A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays], page 85, for more information.

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return −1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return −1 for structure arguments.

[Built-in Function]ndims (a )
Returns the number of dimensions of array a. For any array, the result will always
be larger than or equal to 2. Trailing singleton dimensions are not counted.

[Built-in Function]columns (a )
Return the number of columns of a.

See also: [size], page 36, [numel], page 36, [rows], page 36, [length], page 36, [isscalar],
page 52, [isvector], page 52, [ismatrix], page 52.
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[Built-in Function]rows (a )
Return the number of rows of a.

See also: [size], page 36, [numel], page 36, [columns], page 35, [length], page 36,
[isscalar], page 52, [isvector], page 52, [ismatrix], page 52.

[Built-in Function]numel (a )
Returns the number of elements in the object a.

See also: [size], page 36.

[Built-in Function]length (a )
Return the ‘length’ of the object a. For matrix objects, the length is the number of
rows or columns, whichever is greater (this odd definition is used for compatibility
with matlab).

[Built-in Function]size (a, n )
Return the number rows and columns of a.

With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example,

size ([1, 2; 3, 4; 5, 6])
⇒ [ 3, 2 ]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
⇒ nr = 3
⇒ nc = 2

If given a second argument, size will return the size of the corresponding dimension.
For example

size ([1, 2; 3, 4; 5, 6], 2)
⇒ 2

returns the number of columns in the given matrix.

See also: [numel], page 36.

[Built-in Function]isempty (a )
Return 1 if a is an empty matrix (either the number of rows, or the number of columns,
or both are zero). Otherwise, return 0.

[Built-in Function]isnull (x )
Return 1 if x is a special null matrix, string or single quoted string. Indexed assign-
ment with such a value as right-hand side should delete array elements. This function
should be used when overloading indexed assignment for user-defined classes instead
of isempty, to distinguish the cases:

A(I) = [] This should delete elements if I is nonempty.

X = []; A(I) = X
This should give an error if I is nonempty.
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[Built-in Function]sizeof (val )
Return the size of val in bytes

[Built-in Function]size_equal (a, b, . . . )
Return true if the dimensions of all arguments agree. Trailing singleton dimensions
are ignored. Called with a single argument, size equal returns true.

See also: [size], page 36, [numel], page 36.

[Built-in Function]squeeze (x )
Remove singleton dimensions from x and return the result. Note that for compatibility
with matlab, all objects have a minimum of two dimensions and row vectors are left
unchanged.
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4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is however possible to represent real integers as described in
Section 4.4 [Integer Data Types], page 45. Here are some examples of real-valued numeric
constants, which all have the same value:

105
1.05e+2
1050e-1

To specify complex constants, you can write an expression of the form
3 + 4i
3.0 + 4.0i
0.3e1 + 40e-1i

all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as

√
−1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i

parse error:

syntax error

>>> 3 + 4 i
^

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

[Built-in Function]double (x )
Convert x to double precision type.

See also: [single], page 44.

[Built-in Function]complex (x )
[Built-in Function]complex (re, im )

Return a complex result from real arguments. With 1 real argument x, return the
complex result x + 0i. With 2 real arguments, return the complex result re + im .
complex can often be more convenient than expressions such as a + i*b. For example:

complex ([1, 2], [3, 4])
⇒

1 + 3i 2 + 4i

See also: [real], page 295, [imag], page 295, [iscomplex], page 52.
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4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a = [1, 2; 3, 4]

results in the matrix
a =

[
1 2
3 4

]
Elements of a matrix may be arbitrary expressions, provided that the dimensions all

make sense when combining the various pieces. For example, given the above matrix, the
expression

[ a, a ]

produces the matrix
ans =

1 2 1 2
3 4 3 4

but the expression
[ a, 1 ]

produces the error
error: number of rows must match (1 != 2) near line 13, column 6

(assuming that this expression was entered as the first thing on line 13, of course).
Inside the square brackets that delimit a matrix expression, Octave looks at the sur-

rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a = [ 1 2
3 4 ]

will work. However, some possible sources of confusion remain. For example, in the expres-
sion

[ 1 - 1 ]

the ‘-’ is treated as a binary operator and the result is the scalar 0, but in the expression
[ 1 -1 ]

the ‘-’ is treated as a unary operator and the result is the vector [ 1, -1 ]. Similarly, the
expression

[ sin (pi) ]

will be parsed as
[ sin, (pi) ]

and will result in an error since the sin function will be called with no arguments. To get
around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[ (sin (pi)) ]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression
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[ 1 a’ ]

results in the single quote character being treated as a transpose operator and the result is
the vector [ 1, 1 ], but the expression

[ 1 a ’ ]

produces the error message

parse error:

syntax error

>>> [ 1 a ’ ]
^

because not doing so would cause trouble when parsing the valid expression

[ a ’foo’ ]

For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

[Built-in Function]val = output_max_field_width ()
[Built-in Function]old_val = output_max_field_width (new_val )

Query or set the internal variable that specifies the maximum width of a numeric
output field.

See also: [format], page 175, [output precision], page 41.

[Built-in Function]val = output_precision ()
[Built-in Function]old_val = output_precision (new_val )

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

See also: [format], page 175, [output max field width], page 41.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 175.

[Built-in Function]val = split_long_rows ()
[Built-in Function]old_val = split_long_rows (new_val )

Query or set the internal variable that controls whether rows of a matrix may be
split when displayed to a terminal window. If the rows are split, Octave will display
the matrix in a series of smaller pieces, each of which can fit within the limits of
your terminal width and each set of rows is labeled so that you can easily see which
columns are currently being displayed. For example:
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octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

[Built-in Function]val = fixed_point_format ()
[Built-in Function]old_val = fixed_point_format (new_val )

Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values such that the largest element may be written with a
single leading digit with the scaling factor is printed on the first line of output. For
example,

octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 *

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that first value appears to be zero when it is actually 1. For this reason, you
should be careful when setting fixed_point_format to a nonzero value.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m×n matrix Mm×n, and an m×n empty
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matrix [ ]m×n (with either one or both dimensions equal to zero), the following are true:

s · [ ]m×n = [ ]m×n · s = [ ]m×n

[ ]m×n + [ ]m×n = [ ]m×n

[ ]0×m ·Mm×n = [ ]0×n

Mm×n · [ ]n×0 = [ ]m×0

[ ]m×0 · [ ]0×n = 0m×n

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

[Built-in Function]val = print_empty_dimensions ()
[Built-in Function]old_val = print_empty_dimensions (new_val )

Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]’. For example, the
expression

zeros (3, 0)

will print

ans = [](3x0)

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions], page 115.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1 : 5

defines the set of values ‘[ 1, 2, 3, 4, 5 ]’, and the range

1 : 3 : 5

defines the set of values ‘[ 1, 4 ]’.

Although a range constant specifies a row vector, Octave does not convert range con-
stants to vectors unless it is necessary to do so. This allows you to write a constant like ‘1
: 10000’ without using 80,000 bytes of storage on a typical 32-bit workstation.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
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elements is known, you should use the linspace function instead (see Section 16.4 [Special
Utility Matrices], page 284).

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2*(1:1e7) - 1;

will produce the same result as ‘1:2:2e7-1’, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as ‘1:0:1’ is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ‘ones (1, 10)’ produces a range, while ‘ones (10, 1)’ does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

[Built-in Function]single (x )
Convert x to single precision type.

See also: [double], page 39.

for example

sngl = single (rand (2, 2))
⇒ sngl =

0.37569 0.92982
0.11962 0.50876

class (sngl)
⇒ single

Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.
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4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.

float = rand (2, 2)
⇒ float = 0.37569 0.92982

0.11962 0.50876
integer = int32 (float)

⇒ integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

[Built-in Function]isinteger (x )
Return true if x is an integer object (int8, uint8, int16, etc.). Note that isinteger
(14) is false because numeric constants in Octave are double precision floating point
values.

See also: [isreal], page 52, [isnumeric], page 52, [class], page 33, [isa], page 33.

[Built-in Function]int8 (x )
Convert x to 8-bit integer type.

[Built-in Function]uint8 (x )
Convert x to unsigned 8-bit integer type.

[Built-in Function]int16 (x )
Convert x to 16-bit integer type.

[Built-in Function]uint16 (x )
Convert x to unsigned 16-bit integer type.

[Built-in Function]int32 (x )
Convert x to 32-bit integer type.

[Built-in Function]uint32 (x )
Convert x to unsigned 32-bit integer type.

[Built-in Function]int64 (x )
Convert x to 64-bit integer type.

[Built-in Function]uint64 (x )
Convert x to unsigned 64-bit integer type.

[Built-in Function]intmax (type )
Return the largest integer that can be represented in an integer type. The variable
type can be
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int8 signed 8-bit integer.

int16 signed 16-bit integer.

int32 signed 32-bit integer.

int64 signed 64-bit integer.

uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmin], page 46, [bitmax], page 48.

[Built-in Function]intmin (type )
Return the smallest integer that can be represented in an integer type. The variable
type can be

int8 signed 8-bit integer.

int16 signed 16-bit integer.

int32 signed 32-bit integer.

int64 signed 64-bit integer.

uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmax], page 45, [bitmax], page 48.

[Function File]intwarning (action )
[Function File]intwarning (s )
[Function File]s = intwarning (. . . )

Control the state of the warning for integer conversions and math operations.

"query" The state of the Octave integer conversion and math warnings is queried.
If there is no output argument, then the state is printed. Otherwise it is
returned in a structure with the fields "identifier" and "state".

intwarning ("query")

The state of warning "Octave:int-convert-nan" is "off"

The state of warning "Octave:int-convert-non-int-val" is "off"

The state of warning "Octave:int-convert-overflow" is "off"

The state of warning "Octave:int-math-overflow" is "off"

"on" Turn integer conversion and math warnings "on". If there is no out-
put argument, then nothing is printed. Otherwise the original state of
the state of the integer conversion and math warnings is returned in a
structure array.



Chapter 4: Numeric Data Types 47

"off" Turn integer conversion and math warnings "on". If there is no out-
put argument, then nothing is printed. Otherwise the original state of
the state of the integer conversion and math warnings is returned in a
structure array.

The original state of the integer warnings can be restored by passing the structure
array returned by intwarning to a later call to intwarning. For example

s = intwarning ("off");
...
intwarning (s);

See also: [warning], page 166.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

The arithmetic operations on integers are performed by casting the integer values to
double precision values, performing the operation, and then re-casting the values back
to the original integer type. As the double precision type of Octave is only capable of
representing integers with up to 53 bits of precision, it is not possible to perform arithmetic
with 64 bit integer types.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 − 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10− 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5)./int32(8) is 1.

[Function File]idivide (x, y, op )
Integer division with different round rules. The standard behavior of the an integer
division such as a ./ b is to round the result to the nearest integer. This is not
always the desired behavior and idivide permits integer element-by-element division
to be performed with different treatment for the fractional part of the division as
determined by the op flag. op is a string with one of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded downwards.

"ceil" Calculate a ./ b with the fractional part rounded upwards.

If op is not given it is assumed that it is "fix". An example demonstrating these
rounding rules is
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idivide (int8 ([-3, 3]), int8 (4), "fix")
⇒ int8 ([0, 0])
idivide (int8 ([-3, 3]), int8 (4), "round")
⇒ int8 ([-1, 1])
idivide (int8 ([-3, 3]), int8 (4), "ceil")
⇒ int8 ([0, 1])
idivide (int8 ([-3, 3]), int8 (4), "floor")
⇒ int8 ([-1, 0])

See also: [ldivide], page 508, [rdivide], page 508.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

[Function File]x = bitset (a, n )
[Function File]x = bitset (a, n, v )

Set or reset bit(s) n of unsigned integers in a. v = 0 resets and v = 1 sets the bits.
The lowest significant bit is: n = 1

dec2bin (bitset (10, 1))
⇒ 1011

See also: [bitand], page 49, [bitor], page 49, [bitxor], page 49, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

[Function File]X = bitget (a,n )
Return the status of bit(s) n of unsigned integers in a the lowest significant bit is n
= 1.

bitget (100, 8:-1:1)
⇒ 0 1 1 0 0 1 0 0

See also: [bitand], page 49, [bitor], page 49, [bitxor], page 49, [bitset], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)

is the same as
bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit ma-
nipulation, particularly when forming masks, Octave supplies the function bitmax.
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[Built-in Function]bitmax ()
Return the largest integer that can be represented as a floating point value. On
IEEE-754 compatible systems, bitmax is 2^53 - 1.

This is the double precision version of the functions intmax, previously discussed.

Octave also includes the basic bitwise ’and’, ’or’ and ’exclusive or’ operators.

[Built-in Function]bitand (x, y )
Return the bitwise AND of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

[Built-in Function]bitor (x, y )
Return the bitwise OR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

[Built-in Function]bitxor (x, y )
Return the bitwise XOR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitand], page 49, [bitor], page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

The bitwise ’not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise ’not’ operator is bitcmp.

[Function File]bitcmp (a, k )
Return the k-bit complement of integers in a. If k is omitted k = log2 (bitmax) + 1
is assumed.

bitcmp(7,4)
⇒ 8
dec2bin(11)
⇒ 1011
dec2bin(bitcmp(11, 6))
⇒ 110100

See also: [bitand], page 49, [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget],
page 48, [bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

Octave also includes the ability to left-shift and right-shift values bitwise.

[Built-in Function]bitshift (a, k )
[Built-in Function]bitshift (a, k, n )

Return a k bit shift of n-digit unsigned integers in a. A positive k leads to a left
shift. A negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1.
n must be in the range [1,log2(bitmax)+1] usually [1,33]
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bitshift (eye (3), 1)
⇒
2 0 0
0 2 0
0 0 2

bitshift (10, [-2, -1, 0, 1, 2])
⇒ 2 5 10 20 40

See also: [bitand], page 49, [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget],
page 48, [bitcmp], page 49, [bitmax], page 48.

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example

bitshift (-10, -1)
⇒ -5
bitshift (int8 (-1), -1)
⇒ -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data type is [1, 1, 1, 1, 1, 1, 1, 1].

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.

data = [ 1, 2; 3, 4 ];
idx = (data <= 2);
data(idx)

⇒ ans = [ 1; 2 ]

Instead of creating the idx array it is possible to replace data(idx) with data( data <= 2
) in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.

[Function File]logical (arg )
Convert arg to a logical value. For example,

logical ([-1, 0, 1])

is equivalent to
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[-1, 0, 1] != 0

[Built-in Function]true (x )
[Built-in Function]true (n, m )
[Built-in Function]true (n, m, k, . . . )

Return a matrix or N-dimensional array whose elements are all logical 1. The argu-
ments are handled the same as the arguments for eye.

[Built-in Function]false (x )
[Built-in Function]false (n, m )
[Built-in Function]false (n, m, k, . . . )

Return a matrix or N-dimensional array whose elements are all logical 0. The argu-
ments are handled the same as the arguments for eye.

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example
uint8 (1) + 1

⇒ 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)
⇒ 2

which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as

single (1) + 1
⇒ 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as
min (single (1), 0)
⇒ 0

where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example
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x = ones (2, 2);
x (1, 1) = single (2)

⇒ x = 2 1
1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation
of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.

function a = abs (x)
if (isreal (x))
a = sign (x) .* x;

elseif (iscomplex (x))
a = sqrt (real(x).^2 + imag(x).^2);

endif
endfunction

The following functions are available for determining the type of a variable.

[Built-in Function]isnumeric (x )
Return nonzero if x is a numeric object.

[Built-in Function]isreal (x )
Return true if x is a real-valued numeric object.

[Built-in Function]isfloat (x )
Return true if x is a floating-point numeric object.

[Built-in Function]iscomplex (x )
Return true if x is a complex-valued numeric object.

[Built-in Function]ismatrix (a )
Return 1 if a is a matrix. Otherwise, return 0.

[Function File]isvector (a )
Return 1 if a is a vector. Otherwise, return 0.

See also: [size], page 36, [rows], page 36, [columns], page 35, [length], page 36,
[isscalar], page 52, [ismatrix], page 52.

[Function File]isscalar (a )
Return 1 if a is a scalar. Otherwise, return 0.

See also: [size], page 36, [rows], page 36, [columns], page 35, [length], page 36,
[isscalar], page 52, [ismatrix], page 52.
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[Function File]issquare (x )
If x is a square matrix, then return the dimension of x. Otherwise, return 0.

See also: [size], page 36, [rows], page 36, [columns], page 35, [length], page 36,
[ismatrix], page 52, [isscalar], page 52, [isvector], page 52.

[Function File]issymmetric (x, tol )
If x is symmetric within the tolerance specified by tol, then return the dimension of x.
Otherwise, return 0. If tol is omitted, use a tolerance equal to the machine precision.
Matrix x is considered symmetric if norm (x - x.’, inf) / norm (x, inf) < tol .

See also: [size], page 36, [rows], page 36, [columns], page 35, [length], page 36,
[ismatrix], page 52, [isscalar], page 52, [issquare], page 53, [isvector], page 52.

[Function File]isdefinite (x, tol )
Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0
if x is symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a
tolerance equal to 100 times the machine precision.

See also: [issymmetric], page 53.

[Built-in Function]islogical (x )
Return true if x is a logical object.

[Function File]isprime (n )
Return true if n is a prime number, false otherwise.
Something like the following is much faster if you need to test a lot of small numbers:

t = ismember (n, primes (max (n (:))));

If max(n) is very large, then you should be using special purpose factorization code.

See also: [primes], page 306, [factor], page 301, [gcd], page 302, [lcm], page 303.
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5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.
Since the single-quote mark is also used for the transpose operator (see Section 8.3

[Arithmetic Ops], page 111) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

[ "foo" , "bar" , "baz" ]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 39, for more information about creating matrices.

5.1 Escape Sequences in string constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:

toascii ("\n")
⇒ 10

toascii (’\n’)
⇒ [ 92 110 ]

Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘’’.

\0 Represents the “nul” character, control-@, ASCII code 0.

\a Represents the “alert” character, control-g, ASCII code 7.

\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-l, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.

\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,
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’I can’’t escape’
⇒ I can’t escape

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = [ "String #1"; "String #2" ];

This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

[Built-in Function]ischar (a )
Return 1 if a is a character array. Otherwise, return 0.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

ischar(collection)
⇒ ans = 1

ischar(collection) && isvector(collection)
⇒ ans = 0

ischar("my string") && isvector("my string")
⇒ ans = 1

One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_fill_char function.

[Built-in Function]val = string_fill_char ()
[Built-in Function]old_val = string_fill_char (new_val )

Query or set the internal variable used to pad all rows of a character matrix to the
same length. It must be a single character. The default value is " " (a single space).
For example,

string_fill_char ("X");
[ "these"; "are"; "strings" ]

⇒ "theseXX"
"areXXXX"
"strings"
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This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings], page 90.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

[Function File]blanks (n )
Return a string of n blanks, for example:

blanks(10);
whos ans;

⇒
Attr Name Size Bytes Class
==== ==== ==== ===== =====

ans 1x10 10 char

See also: [repmat], page 285.

5.3.1 Concatenating Strings

It has been shown above that strings can be concatenated using matrix notation (see
Chapter 5 [Strings], page 55, Section 5.2 [Character Arrays], page 56). Apart from that,
there are several functions to concatenate string objects: char, strvcat, strcat and
cstrcat. In addition, the general purpose concatenation functions can be used: see [cat],
page 277, [horzcat], page 277 and [vertcat], page 277.

• All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

char([98, 97, 110, 97, 110, 97])
⇒ ans =
banana

• char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char("an apple", "two pears")
⇒ ans =
an apple
two pears

strcat("oc", "tave", " is", " good", " for you")
⇒ ans =
octave is good for you

• char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.



58 GNU Octave

char("orange", "green", "", "red")
⇒ ans =
orange
green

red

strvcat("orange", "green", "", "red")
⇒ ans =
orange
green
red

• All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays], page 85). char and strvcat convert cell arrays into character
arrays, while strcat concatenates within the cells of the cell arrays:

char({"red", "green", "", "blue"})
⇒ ans =
red
green

blue

strcat({"abc"; "ghi"}, {"def"; "jkl"})
⇒ ans =
{

[1,1] = abcdef
[2,1] = ghijkl

}

• strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat(["dir1";"directory2"], ["/";"/"], ["file1";"file2"])
⇒ ans =
dir1/file1
directory2/file2

cstrcat(["thirteen apples"; "a banana"], [" 5$";" 1$"])
⇒ ans =
thirteen apples 5$
a banana 1$

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays],
page 56).

[Built-in Function]char (x )
[Built-in Function]char (x, . . . )
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[Built-in Function]char (s1, s2, . . . )
[Built-in Function]char (cell_array )

Create a string array from one or more numeric matrices, character matrices, or cell
arrays. Arguments are concatenated vertically. The returned values are padded with
blanks as needed to make each row of the string array have the same length. Empty
input strings are significant and will concatenated in the output.
For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example,

char ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
⇒ ["abc "

" "
"98 "
"99 "
"d "
"str1 "
"half "]

See also: [strvcat], page 59, [cellstr], page 90.

[Built-in Function]strvcat (x )
[Built-in Function]strvcat (x, . . . )
[Built-in Function]strvcat (s1, s2, . . . )
[Built-in Function]strvcat (cell_array )

Create a character array from one or more numeric matrices, character matrices, or
cell arrays. Arguments are concatenated vertically. The returned values are padded
with blanks as needed to make each row of the string array have the same length.
Unlike char, empty strings are removed and will not appear in the output.
For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).
For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example,

strvcat ([97, 98, 99], "", {"98", "99", 100}, "str1", ["ha", "lf"])
⇒ ["abc "

"98 "
"99 "
"d "
"str1 "
"half "]

See also: [char], page 58, [strcat], page 59, [cstrcat], page 60.

[Function File]strcat (s1, s2, . . . )
Return a string containing all the arguments concatenated horizontally. If the argu-
ments are cells strings, strcat returns a cell string with the individual cells concate-
nated. For numerical input, each element is converted to the corresponding ASCII
character. Trailing white space is eliminated. For example,
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s = [ "ab"; "cde" ];
strcat (s, s, s)

⇒ ans =
"ab ab ab "
"cdecdecde"

s = { "ab"; "cde" };
strcat (s, s, s)

⇒ ans =
{
[1,1] = ababab
[2,1] = cdecdecde

}

See also: [cstrcat], page 60, [char], page 58, [strvcat], page 59.

[Function File]cstrcat (s1, s2, . . . )
Return a string containing all the arguments concatenated horizontally. Trailing white
space is preserved. For example,

cstrcat ("ab ", "cd")
⇒ "ab cd"

s = [ "ab"; "cde" ];
cstrcat (s, s, s)

⇒ ans =
"ab ab ab "
"cdecdecde"

See also: [strcat], page 59, [char], page 58, [strvcat], page 59.

5.3.2 Conversion of Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 57) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 190, [doc-sprintf], page 191).

[Function File]s = mat2str (x, n )
[Function File]s = mat2str (. . . , ’class’)

Format real/complex numerical matrices as strings. This function returns values that
are suitable for the use of the eval function.

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n (1) defines the
precision of the real part and n (2) defines the precision of the imaginary part. The
default for n is 17.

If the argument ’class’ is given, then the class of x is included in the string in such a
way that the eval will result in the construction of a matrix of the same class.
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mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
⇒ "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
⇒ "[-0.3333+0i,0+0.14i;0.3333+0i,-0-0.14i]"

mat2str (int16([1 -1]), ’class’)
⇒ "int16([1,-1])"

See also: [sprintf], page 191, [num2str], page 61, [int2str], page 61.

[Function File]num2str (x )
[Function File]num2str (x, precision )
[Function File]num2str (x, format )

Convert a number (or array) to a string (or a character array). The optional second
argument may either give the number of significant digits (precision) to be used in
the output or a format template string (format) as in sprintf (see Section 14.2.4
[Formatted Output], page 190). num2str can also handle complex numbers. For
example:

num2str (123.456)
⇒ "123.46"

num2str (123.456, 4)
⇒ "123.5"

s = num2str ([1, 1.34; 3, 3.56], "%5.1f")
⇒ s =

1.0 1.3
3.0 3.6

whos s
⇒
Attr Name Size Bytes Class
==== ==== ==== ===== =====

s 2x8 16 char

num2str (1.234 + 27.3i)
⇒ "1.234+27.3i"

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 190). Note that for complex x,
the format string may only contain one output conversion specification and nothing
else. Otherwise, you will get unpredictable results.

See also: [sprintf], page 191, [int2str], page 61, [mat2str], page 60.

[Function File]int2str (n )
Convert an integer (or array of integers) to a string (or a character array).
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int2str (123)
⇒ "123"

s = int2str ([1, 2, 3; 4, 5, 6])
⇒ s =

1 2 3
4 5 6

whos s
⇒ s =
Attr Name Size Bytes Class
==== ==== ==== ===== =====

s 2x7 14 char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output], page 190).

See also: [sprintf], page 191, [num2str], page 61, [mat2str], page 60.

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")

⇒ spaces =
0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

[Built-in Function]strcmp (s1, s2 )
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.
If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.
Caution: For compatibility with matlab, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 63, [strncmp], page 62, [strncmpi], page 63.

[Built-in Function]strncmp (s1, s2, n )
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
⇒ 1
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If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
⇒ [1, 0, 1]

Caution: For compatibility with matlab, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 63, [strcmp], page 62, [strcmpi], page 63.

[Function File]strcmpi (s1, s2 )
Ignoring case, return 1 if the character strings (or character arrays) s1 and s2 are the
same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with matlab, Octave’s strcmpi function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmp], page 62, [strncmp], page 62, [strncmpi], page 63.

[Function File]strncmpi (s1, s2, n )
Ignoring case, return 1 if the first n characters of character strings (or character
arrays) s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with matlab, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strcmp], page 62, [strcmpi], page 63, [strncmp], page 62.

[Function File]validstr = validatestring (str, strarray )
[Function File]validstr = validatestring (str, strarray, funcname )
[Function File]validstr = validatestring (str, strarray, funcname,

varname )
[Function File]validstr = validatestring (. . . , position )

Verify that str is a string or substring of an element of strarray.

str is a character string to be tested, and strarray is a cellstr of valid values. validstr
will be the validated form of str where validation is defined as str being a member or
substring of validstr. If str is a substring of validstr and there are multiple matches,
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the shortest match will be returned if all matches are substrings of each other, and
an error will be raised if the matches are not substrings of each other.
All comparisons are case insensitive.

See also: [strcmp], page 62, [strcmpi], page 63.

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...
"First things first, but not necessarily in that order";

quote( quote == " " ) = "_"
⇒ quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

[Function File]deblank (s )
Remove trailing blanks and nulls from s. If s is a matrix, deblank trims each row to
the length of longest string. If s is a cell array, operate recursively on each element
of the cell array.

[Function File]strtrim (s )
Remove leading and trailing blanks and nulls from s. If s is a matrix, strtrim trims
each row to the length of longest string. If s is a cell array, operate recursively on
each element of the cell array. For example:

strtrim (" abc ")
⇒ "abc"

strtrim ([" abc "; " def "])
⇒ ["abc "; " def"]

[Function File]strtrunc (s, n )
Truncate the character string s to length n. If s is a char matrix, then the number of
columns is adjusted.
If s is a cell array of strings, then the operation is performed on its members and the
new cell array is returned.

[Function File]findstr (s, t, overlap )
Return the vector of all positions in the longer of the two strings s and t where
an occurrence of the shorter of the two starts. If the optional argument overlap is
nonzero, the returned vector can include overlapping positions (this is the default).
For example,

findstr ("ababab", "a")
⇒ [1, 3, 5]

findstr ("abababa", "aba", 0)
⇒ [1, 5]
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See also: [strfind], page 65, [strmatch], page 66, [strcmp], page 62, [strncmp], page 62,
[strcmpi], page 63, [strncmpi], page 63, [find], page 274.

[Function File]idx = strchr (str, chars )
[Function File]idx = strchr (str, chars, n )
[Function File]idx = strchr (str, chars, n, direction )

Search for the string str for occurrences of characters from the set chars. The return
value, as well as the n and direction arguments behave identically as in find.

This will be faster than using regexp in most cases.

See also: [find], page 274.

[Function File]index (s, t )
[Function File]index (s, t, direction )

Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found. For example,

index ("Teststring", "t")
⇒ 4

If direction is ‘"first"’, return the first element found. If direction is ‘"last"’, return
the last element found. The rindex function is equivalent to index with direction
set to ‘"last"’.

Caution: This function does not work for arrays of character strings.

See also: [find], page 274, [rindex], page 65.

[Function File]rindex (s, t )
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found. For example,

rindex ("Teststring", "t")
⇒ 6

Caution: This function does not work for arrays of character strings.

See also: [find], page 274, [index], page 65.

[Function File]idx = strfind (str, pattern )
[Function File]idx = strfind (cellstr, pattern )

Search for pattern in the string str and return the starting index of every such oc-
currence in the vector idx. If there is no such occurrence, or if pattern is longer than
str, then idx is the empty array [].

If the cell array of strings cellstr is specified instead of the string str, then idx is a
cell array of vectors, as specified above. Examples:
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strfind ("abababa", "aba")
⇒ [1, 3, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")
⇒ ans =

{
[1,1] =

1 3 5

[1,2] = [](1x0)
[1,3] = [](1x0)

}

See also: [findstr], page 64, [strmatch], page 66, [strcmp], page 62, [strncmp], page 62,
[strcmpi], page 63, [strncmpi], page 63, [find], page 274.

[Function File]strmatch (s, a, "exact")
Return indices of entries of a that match the string s. The second argument a may be
a string matrix or a cell array of strings. If the third argument "exact" is not given,
then s only needs to match a up to the length of s. Nul characters match blanks.
Results are returned as a column vector. For example:

strmatch ("apple", "apple juice")
⇒ 1

strmatch ("apple", ["apple pie"; "apple juice"; "an apple"])
⇒ [1; 2]

strmatch ("apple", {"apple pie"; "apple juice"; "tomato"})
⇒ [1; 2]

See also: [strfind], page 65, [findstr], page 64, [strcmp], page 62, [strncmp], page 62,
[strcmpi], page 63, [strncmpi], page 63, [find], page 274.

[Function File][tok, rem] = strtok (str, delim )
Find all characters up to but not including the first character which is in the string
delim. If rem is requested, it contains the remainder of the string, starting at the first
delimiter. Leading delimiters are ignored. If delim is not specified, space is assumed.
For example:

strtok ("this is the life")
⇒ "this"

[tok, rem] = strtok ("14*27+31", "+-*/")
⇒

tok = 14
rem = *27+31

See also: [index], page 65, [strsplit], page 67.
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[Function File][s] = strsplit (p, sep, strip_empty )
Split a single string using one or more delimiters and return a cell array of strings.
Consecutive delimiters and delimiters at boundaries result in empty strings, unless
strip empty is true. The default value of strip empty is false.

See also: [strtok], page 66.

[Function File]strrep (s, x, y )
Replace all occurrences of the substring x of the string s with the string y and return
the result. For example,

strrep ("This is a test string", "is", "&%$")
⇒ "Th&%$ &%$ a test string"

See also: [regexprep], page 69, [strfind], page 65, [findstr], page 64.

[Function File]substr (s, offset, len )
Return the substring of s which starts at character number offset and is len characters
long.
If offset is negative, extraction starts that far from the end of the string. If len is
omitted, the substring extends to the end of S.
For example,

substr ("This is a test string", 6, 9)
⇒ "is a test"

This function is patterned after AWK. You can get the same result by s(offset :
(offset + len - 1)).

[Loadable Function][s, e, te, m, t, nm] = regexp (str, pat )
[Loadable Function][...] = regexp (str, pat, opts, . . . )

Regular expression string matching. Matches pat in str and returns the position and
matching substrings or empty values if there are none.
The matched pattern pat can include any of the standard regex operators, including:

. Match any character

* + ? {} Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{} Match range operator, which is of the form {n} to match
exactly n times, {m,} to match m or more times, {m,n} to
match between m and n times.

[...] [^...]
List operators, where for example [ab]c matches ac and bc

() Grouping operator

| Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above
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^ $ Anchoring operator. ^ matches the start of the string str and $ the end

In addition the following escaped characters have special meaning. It should be noted
that it is recommended to quote pat in single quotes rather than double quotes, to
avoid the escape sequences being interpreted by Octave before being passed to regexp.

\b Match a word boundary

\B Match within a word

\w Matches any word character

\W Matches any non word character

\< Matches the beginning of a word

\> Matches the end of a word

\s Matches any whitespace character

\S Matches any non whitespace character

\d Matches any digit

\D Matches any non-digit

The outputs of regexp by default are in the order as given below

s The start indices of each of the matching substrings

e The end indices of each matching substring

te The extents of each of the matched token surrounded by (...) in pat.

m A cell array of the text of each match.

t A cell array of the text of each token matched.

nm A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted as
(?<name>...)

Particular output arguments or the order of the output arguments can be selected
by additional opts arguments. These are strings and the correspondence between the
output arguments and the optional argument are

’start’ s
’end’ e
’tokenExtents’ te
’match’ m
’tokens’ t
’names’ nm

A further optional argument is ’once’, that limits the number of returned matches to
the first match. Additional arguments are

matchcase Make the matching case sensitive.

ignorecase Make the matching case insensitive.
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stringanchors
Match the anchor characters at the beginning and end of the string.

lineanchors
Match the anchor characters at the beginning and end of the line.

dotall The character . matches the newline character.

dotexceptnewline
The character . matches all but the newline character.

freespacing
The pattern can include arbitrary whitespace and comments starting with
#.

literalspacing
The pattern is taken literally.

See also: [regexpi], page 69, [regexprep], page 69.

[Loadable Function][s, e, te, m, t, nm] = regexpi (str, pat )
[Loadable Function][...] = regexpi (str, pat, opts, . . . )

Case insensitive regular expression string matching. Matches pat in str and returns
the position and matching substrings or empty values if there are none. See [regexp],
page 67, for more details

[Loadable Function]string = regexprep (string, pat, repstr, options )
Replace matches of pat in string with repstr.
The replacement can contain $i, which substitutes for the ith set of parentheses in
the match string. E.g.,

regexprep("Bill Dunn",’(\w+) (\w+)’,’$2, $1’)

returns "Dunn, Bill"
options may be zero or more of

‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

‘ignorecase or matchcase’
Ignore case for the pattern matching (see regexpi). Alternatively, use
(?i) or (?-i) in the pattern.

‘lineanchors and stringanchors’
Whether characters ^ and $ match the beginning and ending of lines.
Alternatively, use (?m) or (?-m) in the pattern.

‘dotexceptnewline and dotall’
Whether . matches newlines in the string. Alternatively, use (?s) or (?-s)
in the pattern.
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‘freespacing or literalspacing’
Whether whitespace and # comments can be used to make the regular
expression more readable. Alternatively, use (?x) or (?-x) in the pattern.

See also: [regexp], page 67, [regexpi], page 69, [strrep], page 67.

[Function File]regexptranslate (op, s )
Translate a string for use in a regular expression. This might include either wildcard
replacement or special character escaping. The behavior can be controlled by the op
that can have the values

"wildcard"
The wildcard characters ., * and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
⇒ ".*\.m"

"escape" The characters $.?[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
⇒ "12\.5"

See also: [regexp], page 67, [regexpi], page 69, [regexprep], page 69.

5.6 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.

hex2dec ("FF")
⇒ ans = 255

[Function File]bin2dec (s )
Return the decimal number corresponding to the binary number stored in the string
s. For example,

bin2dec ("1110")
⇒ 14

If s is a string matrix, returns a column vector of converted numbers, one per row of
s. Invalid rows evaluate to NaN.

See also: [dec2hex], page 71, [base2dec], page 72, [dec2base], page 71, [hex2dec],
page 71, [dec2bin], page 70.

[Function File]dec2bin (n, len )
Return a binary number corresponding to the non-negative decimal number n, as a
string of ones and zeros. For example,

dec2bin (14)
⇒ "1110"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros
to the width of the largest value.
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The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec], page 70, [dec2base], page 71, [base2dec], page 72, [hex2dec],
page 71, [dec2hex], page 71.

[Function File]dec2hex (n, len )
Return the hexadecimal string corresponding to the non-negative integer n. For
example,

dec2hex (2748)
⇒ "ABC"

If n is a vector, returns a string matrix, one row per value, padded with leading zeros
to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 71, [dec2base], page 71, [base2dec], page 72, [bin2dec],
page 70, [dec2bin], page 70.

[Function File]hex2dec (s )
Return the integer corresponding to the hexadecimal number stored in the string s.
For example,

hex2dec ("12B")
⇒ 299

hex2dec ("12b")
⇒ 299

If s is a string matrix, returns a column vector of converted numbers, one per row of
s. Invalid rows evaluate to NaN.

See also: [dec2hex], page 71, [base2dec], page 72, [dec2base], page 71, [bin2dec],
page 70, [dec2bin], page 70.

[Function File]dec2base (n, b, len )
Return a string of symbols in base b corresponding to the non-negative integer n.

dec2base (123, 3)
⇒ "11120"

If n is a vector, return a string matrix with one row per value, padded with leading
zeros to the width of the largest value.

If b is a string then the characters of b are used as the symbols for the digits of n.
Space (’ ’) may not be used as a symbol.

dec2base (123, "aei")
⇒ "eeeia"

The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 72, [dec2bin], page 70, [bin2dec], page 70, [hex2dec],
page 71, [dec2hex], page 71.
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[Function File]base2dec (s, b )
Convert s from a string of digits of base b into an integer.

base2dec ("11120", 3)
⇒ 123

If s is a matrix, returns a column vector with one value per row of s. If a row contains
invalid symbols then the corresponding value will be NaN. Rows are right-justified
before converting so that trailing spaces are ignored.
If b is a string, the characters of b are used as the symbols for the digits of s. Space
(’ ’) may not be used as a symbol.

base2dec ("yyyzx", "xyz")
⇒ 123

See also: [dec2base], page 71, [dec2bin], page 70, [bin2dec], page 70, [hex2dec],
page 71, [dec2hex], page 71.

[Loadable Function]s = num2hex (n )
Typecast a double precision number or vector to a 16 character hexadecimal string
of the IEEE 754 representation of the number. For example

num2hex ([-1, 1, e, Inf, NaN, NA]);
⇒ "bff0000000000000

3ff0000000000000
4005bf0a8b145769
7ff0000000000000
fff8000000000000
7ff00000000007a2"

See also: [hex2num], page 72, [hex2dec], page 71, [dec2hex], page 71.

[Loadable Function]n = hex2num (s )
Typecast the 16 character hexadecimal character matrix to an IEEE 754 double pre-
cision number. If fewer than 16 characters are given the strings are right padded with
’0’ characters.
Given a string matrix, hex2num treats each row as a separate number.

hex2num (["4005bf0a8b145769";"4024000000000000"])
⇒ [2.7183; 10.000]

See also: [num2hex], page 72, [hex2dec], page 71, [dec2hex], page 71.

[Function File][num, status, strarray] = str2double (str, cdelim,
rdelim, ddelim )

Convert strings into numeric values.
str2double can replace str2num, but avoids the use of eval on unknown data.
str can be the form ‘[+-]d[.]dd[[eE][+-]ddd]’ in which ‘d’ can be any of digit from
0 to 9, and ‘[]’ indicate optional elements.
num is the corresponding numeric value. If the conversion fails, status is -1 and num
is NaN.
status is 0 if the conversion was successful and -1 otherwise.
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strarray is a cell array of strings.

Elements which are not defined or not valid return NaN and the status becomes -1.

If str is a character array or a cell array of strings, then num and status return
matrices of appropriate size.

str can also contain multiple elements separated by row and column delimiters (cdelim
and rdelim).

The parameters cdelim, rdelim, and ddelim are optional column, row, and decimal
delimiters.

The default row-delimiters are newline, carriage return and semicolon (ASCII 10, 13
and 59). The default column-delimiters are tab, space and comma (ASCII 9, 32, and
44). The default decimal delimiter is ‘.’ (ASCII 46).

cdelim, rdelim, and ddelim must contain only nul, newline, carriage return, semicolon,
colon, slash, tab, space, comma, or ‘()[]{}’ (ASCII 0, 9, 10, 11, 12, 13, 14, 32, 33,
34, 40, 41, 44, 47, 58, 59, 91, 93, 123, 124, 125).

Examples:

str2double ("-.1e-5")
⇒ -1.0000e-006

str2double (".314e1, 44.44e-1, .7; -1e+1")
⇒

3.1400 4.4440 0.7000
-10.0000 NaN NaN

line = "200, 300, NaN, -inf, yes, no, 999, maybe, NaN";
[x, status] = str2double (line)
⇒ x =

200 300 NaN -Inf NaN NaN 999 NaN NaN
⇒ status =

0 0 0 0 -1 -1 0 -1 0

See also: [str2num], page 73.

[Function File]strjust (s, ["left"|"right"|"center"])
Shift the non-blank text of s to the left, right or center of the string. If s is a string
array, justify each string in the array. Null characters are replaced by blanks. If no
justification is specified, then all rows are right-justified. For example:

strjust (["a"; "ab"; "abc"; "abcd"])
⇒ ans =

a
ab
abc
abcd

[Function File]str2num (s )
Convert the string (or character array) s to a number (or an array). Examples:



74 GNU Octave

str2num("3.141596")
⇒ 3.141596

str2num(["1, 2, 3"; "4, 5, 6"]);
⇒ ans =

1 2 3
4 5 6

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double instead if you want to
avoid the use of eval.

See also: [str2double], page 72, [eval], page 121.

[Mapping Function]toascii (s )
Return ASCII representation of s in a matrix. For example,

toascii ("ASCII")
⇒ [ 65, 83, 67, 73, 73 ]

See also: [char], page 58.

[Mapping Function]tolower (s )
[Mapping Function]lower (s )

Return a copy of the string or cell string s, with each upper-case character replaced
by the corresponding lower-case one; non-alphabetic characters are left unchanged.
For example,

tolower ("MiXeD cAsE 123")
⇒ "mixed case 123"

See also: [toupper], page 74.

[Built-in Function]toupper (s )
[Built-in Function]upper (s )

Return a copy of the string or cell string s, with each lower-case character replaced
by the corresponding upper-case one; non-alphabetic characters are left unchanged.
For example,

toupper ("MiXeD cAsE 123")
⇒ "MIXED CASE 123"

See also: [tolower], page 74.

[Built-in Function]do_string_escapes (string )
Convert special characters in string to their escaped forms.

[Built-in Function]undo_string_escapes (s )
Converts special characters in strings back to their escaped forms. For example, the
expression

bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
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This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example,

isalpha ("!Q@WERT^Y&")
⇒ [ 0, 1, 0, 1, 1, 1, 1, 0, 1, 0 ]

[Mapping Function]isalnum (s )
Return 1 for characters that are letters or digits (isalpha (s) or isdigit (s) is
true).

[Mapping Function]isalpha (s )
[Mapping Function]isletter (s )

Return true for characters that are letters (isupper (s) or islower (s) is true).

[Mapping Function]isascii (s )
Return 1 for characters that are ASCII (in the range 0 to 127 decimal).

[Mapping Function]iscntrl (s )
Return 1 for control characters.

[Mapping Function]isdigit (s )
Return 1 for characters that are decimal digits.

[Mapping Function]isgraph (s )
Return 1 for printable characters (but not the space character).

[Function File]isletter (s )
Returns true if s is a letter, false otherwise.

See also: [isalpha], page 75.

[Mapping Function]islower (s )
Return 1 for characters that are lower case letters.

[Mapping Function]isprint (s )
Return 1 for printable characters (including the space character).

[Mapping Function]ispunct (s )
Return 1 for punctuation characters.
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[Mapping Function]isspace (s )
Return 1 for whitespace characters (space, formfeed, newline, carriage return, tab,
and vertical tab).

[Mapping Function]isupper (s )
Return 1 for upper case letters.

[Mapping Function]isxdigit (s )
Return 1 for characters that are hexadecimal digits.

[Function File]isstrprop (str, pred )
Test character string properties. For example,

isstrprop ("abc123", "alpha")
⇒ [1, 1, 1, 0, 0, 0]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.
The second argument pred may be one of

"alpha" True for characters that are alphabetic

"alnum"
"alphanum"

True for characters that are alphabetic or digits.

"ascii" True for characters that are in the range of ASCII encoding.

"cntrl" True for control characters.

"digit" True for decimal digits.

"graph"
"graphic"

True for printing characters except space.

"lower" True for lower-case letters.

"print" True for printing characters including space.

"punct" True for printing characters except space or letter or digit.

"space"
"wspace" True for whitespace characters (space, formfeed, newline, carriage return,

tab, vertical tab).

"upper" True for upper-case letters.

"xdigit" True for hexadecimal digits.

See also: [isalnum], page 75, [isalpha], page 75, [isascii], page 75, [iscntrl], page 75,
[isdigit], page 75, [isgraph], page 75, [islower], page 75, [isprint], page 75, [ispunct],
page 75, [isspace], page 76, [isupper], page 76, [isxdigit], page 76.
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6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Data Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.
Elements of structures can be of any value type. For example, the three expressions

x.a = 1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. To print the value of the structure, you can type its
name, just as for any other variable:

x
⇒ x =

{
a = 1
b =

1 2
3 4

c = string
}

Note that Octave may print the elements in any order.
Structures may be copied just like any other variable:

y = x
⇒ y =

{
a = 1
b =

1 2
3 4

c = string
}
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Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b.d = 3;
x.b

⇒ ans =
{

d = 3
}

x
⇒ x =

{
a = 1
b =
{
d = 3

}

c = string
}

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example,

a.b.c.d.e = 1;
a

⇒ a =
{

b =
{
c =
{
1x1 struct array containing the fields:

d: 1x1 struct
}

}
}

This prevents long and confusing output from large deeply nested structures. The number of
levels to print for nested structures can be set with the function struct_levels_to_print:

[Built-in Function]val = struct_levels_to_print ()
[Built-in Function]old_val = struct_levels_to_print (new_val )

Query or set the internal variable that specifies the number of structure levels to
display.
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Functions can return structures. For example, the following function separates the real
and complex parts of a matrix and stores them in two elements of the same structure
variable.

function y = f (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, f returns the data structure containing
the real and imaginary parts of the original function argument.

f (rand (2) + rand (2) * I)
⇒ ans =

{
im =

0.26475 0.14828
0.18436 0.83669

re =

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example,

[ x.u, x.s(2:3,2:3), x.v ] = svd ([1, 2; 3, 4]);
x

⇒ x =
{

u =

-0.40455 -0.91451
-0.91451 0.40455

s =

0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597

v =

-0.57605 0.81742
-0.81742 -0.57605

}
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It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 131).

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.
Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "string1";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;

which creates a 2-by-1 structure array with two fields. Another way to create a structure
array is with the struct function (see Section 6.1.3 [Creating Structures], page 81). As
previously, to print the value of the structure array, you can type its name:

x
⇒ x =

{
1x2 struct array containing the fields:

a
b

}

Individual elements of the structure array can be returned by indexing the variable like
x(1), which returns a structure with two fields:

x(1)
⇒ ans =

{
a = string1
b = 1

}

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists], page 93), if indexed by one of its own field names.
For example

x.a
⇒

ans = string1
ans = string2

Here is another example, using this comma separated list on the left-hand side of an
assignment:
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[x.a] = deal("new string1", "new string2");
x(1).a

⇒ ans = new string1
x(2).a

⇒ ans = new string2

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 107):

x(3:4) = x(1:2);
[x([1,3]).a] = deal("other string1", "other string2");
x.a

⇒
ans = other string1
ans = new string2
ans = other string2
ans = new string2

The function size will return the size of the structure. For the example above

size(x)
⇒ ans =

1 4

Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example

in = struct ("call1", {x, Inf, "last"},
"call2", {x, Inf, "first"})

⇒ in =
{

1x3 struct array containing the fields:

call1
call2

}

in(1) = [];
in.call1

⇒
ans = Inf
ans = last

6.1.3 Creating Structures

As well as indexing a structure with ".", Octave can create a structure with the struct
command. struct takes pairs of arguments, where the first argument in the pair is the
fieldname to include in the structure and the second is a scalar or cell array, representing
the values to include in the structure or structure array. For example
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struct ("field1", 1, "field2", 2)
⇒ ans =

{
field1 = 1
field2 = 2

}

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example

s = struct ("field1", {1, "one"}, "field2", {2, "two"},
"field3", 3);

s.field1
⇒

ans = 1
ans = one

s.field2
⇒

ans = 2
ans = two

s.field3
⇒

ans = 3
ans = 3

If you want to create a struct which contains a cell array as an individual field, you have
to put it into another cell array like in the following example:

struct ("field1", {{1, "one"}}, "field2", 2)
⇒ ans =

{
field1 =

{
[1,1] = 1
[1,2] = one

}

field2 = 2
}

[Built-in Function]struct ("field", value, "field", value, . . . )
Create a structure and initialize its value.
If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.



Chapter 6: Data Containers 83

If the argument is an object, return the underlying struct.

The function isstruct can be used to test if an object is a structure or a structure
array.

[Built-in Function]isstruct (expr )
Return 1 if the value of the expression expr is a structure.

6.1.4 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

[Built-in Function]rmfield (s, f )
Remove field f from the structure s. If f is a cell array of character strings or a
character array, remove the named fields.

See also: [cellstr], page 90, [iscellstr], page 91, [setfield], page 83.

[Function File][k1, ..., v1] = setfield (s, k1, v1, . . . )
Set field members in a structure.

oo(1,1).f0 = 1;
oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);
oo(1,2).fd(3).b == 6
⇒ ans = 1

Note that this function could be written
i1 = {1,2}; i2 = "fd"; i3 = {3}; i4 = "b";
oo(i1{:}).(i2)(i3{:}).(i4) == 6;

See also: [getfield], page 83, [rmfield], page 83, [isfield], page 83, [isstruct], page 83,
[fieldnames], page 83, [struct], page 82.

[Function File][t, p] = orderfields (s1, s2 )
Return a struct with fields arranged alphabetically or as specified by s2 and a corre-
sponding permutation vector.
Given one struct, arrange field names in s1 alphabetically.
Given two structs, arrange field names in s1 as they appear in s2. The second argu-
ment may also specify the order in a permutation vector or a cell array of strings.

See also: [getfield], page 83, [rmfield], page 83, [isfield], page 83, [isstruct], page 83,
[fieldnames], page 83, [struct], page 82.

[Built-in Function]fieldnames (struct )
Return a cell array of strings naming the elements of the structure struct. It is an
error to call fieldnames with an argument that is not a structure.

[Built-in Function]isfield (expr, name )
Return true if the expression expr is a structure and it includes an element named
name. The first argument must be a structure and the second must be a string.

[Function File][v1, ...] = getfield (s, key, . . . )
Extract fields from a structure. For example
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ss(1,2).fd(3).b = 5;
getfield (ss, {1,2}, "fd", {3}, "b")
⇒ ans = 5

Note that the function call in the previous example is equivalent to the expression
i1 = {1,2}; i2 = "fd"; i3 = {3}; i4= "b";
ss(i1{:}).(i2)(i3{:}).(i4)

See also: [setfield], page 83, [rmfield], page 83, [isfield], page 83, [isstruct], page 83,
[fieldnames], page 83, [struct], page 82.

[Function File]substruct (type, subs, . . . )
Create a subscript structure for use with subsref or subsasgn.

See also: [subsref], page 502, [subsasgn], page 504.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements], page 131). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.

[Function File]structfun (func, s )
[Function File][a, b] = structfun (. . . )
[Function File]structfun (. . . , "ErrorHandler", errfunc )
[Function File]structfun (. . . , "UniformOutput", val )

Evaluate the function named name on the fields of the structure s. The fields of s are
passed to the function func individually.
structfun accepts an arbitrary function func in the form of an inline function, func-
tion handle, or the name of a function (in a character string). In the case of a
character string argument, the function must accept a single argument named x, and
it must return a string value. If the function returns more than one argument, they
are returned as separate output variables.
If the parameter "UniformOutput" is set to true (the default), then the function
must return a single element which will be concatenated into the return value. If
"UniformOutput" is false, the outputs placed in a structure with the same fieldnames
as the input structure.

s.name1 = "John Smith";
s.name2 = "Jill Jones";
structfun (@(x) regexp (x, ’(\w+)$’, "matches"){1}, s,

"UniformOutput", false)

Given the parameter "ErrorHandler", then errfunc defines a function to call in case
func generates an error. The form of the function is

function [...] = errfunc (se, ...)

where there is an additional input argument to errfunc relative to func, given by
se. This is a structure with the elements "identifier", "message" and "index", giv-
ing respectively the error identifier, the error message, and the index into the input
arguments of the element that caused the error.

See also: [cellfun], page 91, [arrayfun], page 282.
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Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

[Built-in Function]struct2cell (S )
Create a new cell array from the objects stored in the struct object. If f is the
number of fields in the structure, the resulting cell array will have a dimension vector
corresponding to [F size(S)].

See also: [cell2struct], page 93, [fieldnames], page 83.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N -dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix

c = {"a string", rand(2, 2)};

To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:

c{1}
⇒ ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes

c{1:2}
⇒ ans =

(,
[1] = a string
[2] =

0.593993 0.627732
0.377037 0.033643

,)

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array
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c{3} = 3
⇒ c =

{
[1,1] = a string
[1,2] =

0.593993 0.627732
0.377037 0.033643

[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 88.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

[Function File]celldisp (c, name )
Recursively display the contents of a cell array. By default the values are displayed
with the name of the variable c. However, this name can be replaced with the variable
name.

See also: [disp], page 175.

To test if an object is a cell array, use the iscell function. For example:

iscell(c)
⇒ ans = 1

iscell(3)
⇒ ans = 0

[Built-in Function]iscell (x )
Return true if x is a cell array object. Otherwise, return false.

6.2.2 Creating Cell Array

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays], page 85) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices
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c = cell(2,2)
⇒ c =

{
[1,1] = [](0x0)
[2,1] = [](0x0)
[1,2] = [](0x0)
[2,2] = [](0x0)

}

Just like numerical arrays, cell arrays can be multidimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

c1 = cell(3, 4, 5);
c2 = cell( [3, 4, 5] );
size(c1)

⇒ ans =
3 4 5

As can be seen, the [doc-size], page 36 function also works for cell arrays. As do other
functions describing the size of an object, such as [doc-length], page 36, [doc-numel], page 36,
[doc-rows], page 36, and [doc-columns], page 35.

[Built-in Function]cell (x )
[Built-in Function]cell (n, m )

Create a new cell array object. If invoked with a single scalar argument, cell returns
a square cell array with the dimension specified. If you supply two scalar arguments,
cell takes them to be the number of rows and columns. If given a vector with two
elements, cell uses the values of the elements as the number of rows and columns,
respectively.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell and mat2cell functions.

[Loadable Function]c = num2cell (m )
[Loadable Function]c = num2cell (m, dim )

Convert the matrix m to a cell array. If dim is defined, the value c is of dimension 1
in this dimension and the elements of m are placed in slices in c.

See also: [mat2cell], page 87.

[Loadable Function]b = mat2cell (a, m, n )
[Loadable Function]b = mat2cell (a, d1, d2, . . . )
[Loadable Function]b = mat2cell (a, r )

Convert the matrix a to a cell array. If a is 2-D, then it is required that sum (m)
== size (a, 1) and sum (n) == size (a, 2). Similarly, if a is a multi-dimensional
and the number of dimensional arguments is equal to the dimensions of a, then it is
required that sum (di) == size (a, i).
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Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (a,i).

An example of the use of mat2cell is

mat2cell (reshape(1:16,4,4),[3,1],[3,1])
⇒ {
[1,1] =

1 5 9
2 6 10
3 7 11

[2,1] =

4 8 12

[1,2] =

13
14
15

[2,2] = 16
}

See also: [num2cell], page 87, [cell2mat], page 92.

6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays], page 85 elements can be extracted
from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access subarrays
which are still cell arrays, you need to use the ‘(’ and ‘)’ operators. The following example
illustrates the difference:

c = {"1", "2", "3"; "a", "b", "c"; "4", "5", "6"};
c{2,3}

⇒ ans = c

c(2,3)
⇒ ans =

{
[1,1] = c

}

So with ‘{}’ you access elements of a cell array, while with ‘()’ you access a sub array of a
cell array.

Using the ‘(’ and ‘)’ operators, indexing works for cell arrays like for multidimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:
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c(:, [1, 3]) = {0}
⇒ =

{
[1,1] = 0
[2,1] = 0
[3,1] = 0
[1,2] = 2
[2,2] = 10
[3,2] = 20
[1,3] = 0
[2,3] = 0
[3,3] = 0

}

Note, that the above can also be achieved like this:

c(:, [1, 3]) = 0;

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ‘()’, you can exchange the first
and the second row of a cell array as in the following command:

c = {1, 2, 3; 4, 5, 6};
c([1, 2], :) = c([2, 1], :)

⇒ =
{

[1,1] = 4
[2,1] = 1
[1,2] = 5
[2,2] = 2
[1,3] = 6
[2,3] = 3

}

Accessing multiple elements of a cell array with the ‘{’ and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists], page 93). Using the ‘{’ and ‘}’ operators the first two rows in the above example can
be swapped back like this:

[c{[1,2], :}] = deal(c{[2, 1], :})
⇒ =

{
[1,1] = 1
[2,1] = 4
[1,2] = 2
[2,2] = 5
[1,3] = 3
[2,3] = 6

}
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As for struct arrays and numerical arrays, the empty matrix ‘[]’ can be used to delete
elements from a cell array:

x = {"1", "2"; "3", "4"};
x(1, :) = []

⇒ x =
{

[1,1] = 3
[1,2] = 4

}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

x = {"1", "2"; "3", "4"};
x{1, :} = []
⇒ x =

{
[1,1] = [](0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4

}

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings], page 57), while the function
cellstr converts a character array to a cell array of strings:

a = ["hello"; "world"];
c = cellstr (a)

⇒ c =
{

[1,1] = hello
[2,1] = world

}

[Built-in Function]cellstr (string )
Create a new cell array object from the elements of the string array string.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:
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c = {"hello", "world"};
strcmp ("hello", c)

⇒ ans =
1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings], page 57), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.4 [Comparing Strings], page 62), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings], page 64)
and str2double (see Section 5.6 [String Conversions], page 70).

The function iscellstr can be used to test if an object is a cell array of strings.

[Built-in Function]iscellstr (cell )
Return true if every element of the cell array cell is a character string

[Function File][idxvec, errmsg] = cellidx (listvar, strlist )
Return indices of string entries in listvar that match strings in strlist.
Both listvar and strlist may be passed as strings or string matrices. If they are
passed as string matrices, each entry is processed by deblank prior to searching for
the entries.
The first output is the vector of indices in listvar.
If strlist contains a string not in listvar, then an error message is returned in errmsg.
If only one output argument is requested, then cellidx prints errmsg to the screen
and exits with an error.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array.

[Loadable Function]cellfun (name, c )
[Loadable Function]cellfun ("size", c, k )
[Loadable Function]cellfun ("isclass", c, class )
[Loadable Function]cellfun (func, c )
[Loadable Function]cellfun (func, c, d )
[Loadable Function][a, b] = cellfun (. . . )
[Loadable Function]cellfun (. . . , ’ErrorHandler’, errfunc )
[Loadable Function]cellfun (. . . , ’UniformOutput’, val )

Evaluate the function named name on the elements of the cell array c. Elements in c
are passed on to the named function individually. The function name can be one of
the functions

isempty Return 1 for empty elements.

islogical
Return 1 for logical elements.

isreal Return 1 for real elements.
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length Return a vector of the lengths of cell elements.

ndims Return the number of dimensions of each element.

prodofsize
Return the product of dimensions of each element.

size Return the size along the k-th dimension.

isclass Return 1 for elements of class.

Additionally, cellfun accepts an arbitrary function func in the form of an inline
function, function handle, or the name of a function (in a character string). In the
case of a character string argument, the function must accept a single argument named
x, and it must return a string value. The function can take one or more arguments,
with the inputs args given by c, d, etc. Equally the function can return one or more
output arguments. For example

cellfun (@atan2, {1, 0}, {0, 1})
⇒ans = [1.57080 0.00000]

Note that the default output argument is an array of the same size as the input
arguments.
If the parameter ’UniformOutput’ is set to true (the default), then the function must
return a single element which will be concatenated into the return value. If ’Unifor-
mOutput’ is false, the outputs are concatenated in a cell array. For example

cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
"UniformOutput",false)

⇒ ans = {"foo", "bar", "foobar"}

Given the parameter ’ErrorHandler’, then errfunc defines a function to call in case
func generates an error. The form of the function is

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by s.
This is a structure with the elements ’identifier’, ’message’ and ’index’, giving respec-
tively the error identifier, the error message, and the index into the input arguments
of the element that caused the error. For example

function y = foo (s, x), y = NaN; endfunction
cellfun (@factorial, {-1,2},’ErrorHandler’,@foo)
⇒ ans = [NaN 2]

See also: [isempty], page 36, [islogical], page 53, [isreal], page 52, [length], page 36,
[ndims], page 35, [numel], page 36, [size], page 36.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

[Function File]m = cell2mat (c )
Convert the cell array c into a matrix by concatenating all elements of c into a
hyperrectangle. Elements of c must be numeric, logical or char, and cat must be able
to concatenate them together.

See also: [mat2cell], page 87, [num2cell], page 87.
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[Built-in Function]cell2struct (cell, fields, dim )
Convert cell to a structure. The number of fields in fields must match the number of
elements in cell along dimension dim, that is numel (fields) == size (cell, dim).

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’;
185, 170, 168},

{’Name’,’Height’}, 1);
A(1)
⇒ ans =

{
Height = 185
Name = Peter

}

6.3 Comma Separated Lists

Comma separated lists1 are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)

‘a, b ’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x = [1 0 1 0 0 1 1; 0 0 0 0 0 0 7];
[i, j] = find (x, 2, "last");

Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘i, j ’.

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices], page 40) or the creation of a cell array with {}
(see Section 6.2.1 [Basic Usage of Cell Arrays], page 85). In the expressions

a = [1, 2, 3, 4];
c = {4, 5, 6, 7};

both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

Comma separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma separated lists, and thus used
in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays], page 88), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [ and ], it can be concatenated into an array. For example:

1 Comma-separated lists are also sometimes informally referred to as cs-lists.
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a = {1, [2, 3], 4, 5, 6};
b = [a{1:4}]

⇒ b =
1 2 3 4

Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:

a = {1, rand(2, 2), "three"};
b = { a{ [1, 3] } }

⇒ b =
{

[1,1] = 1
[1,2] = three

}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, c{5});

a GNU Octave is Free Software
printf ("%s ", c{:});

a GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in{2} = inf;
in{3} = "last";
in{4} = "first";
out = cell (4, 1);
[out{1:3}] = find (in{1 : 3});
[out{4:6}] = find (in{[1, 2, 4]})

⇒ out =
{

[1,1] = 1
[2,1] = 9
[3,1] = 90
[4,1] = 1
[3,1] = 1
[4,1] = 10

}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example
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x = ceil (randn (10, 1));
in = struct ("call1", {x, 3, "last"},

"call2", {x, inf, "first"});
out = struct ("call1", cell (2, 1), "call2", cell (2, 1));
[out.call1] = find (in.call1);
[out.call2] = find (in.call2);
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7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

x
x15
__foo_bar_baz__
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.
A variable name is a valid expression by itself. It represents the variable’s current value.

Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions], page 115.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

[Automatic Variable]ans
The most recently computed result that was not explicitly assigned to a variable. For
example, after the expression

3^2 + 4^2

is evaluated, the value returned by ans is 25.

[Built-in Function]isvarname (name )
Return true if name is a valid variable name

[Function File]varname = genvarname (str )
[Function File]varname = genvarname (str, exclusions )

Create unique variable(s) from str. If exclusions is given, then the variable(s) will be
unique to each other and to exclusions (exclusions may be either a string or a cellstr).
If str is a cellstr, then a unique variable is created for each cell in str.

x = 3.141;
genvarname ("x", who ())
⇒ x1

If wanted is a cell array, genvarname will make sure the returned strings are distinct:
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genvarname ({"foo", "foo"})
⇒
{
[1,1] = foo
[1,2] = foo1

}

Note that the result is a char array/cell array of strings, not the variables themselves.
To define a variable, eval() can be used. The following trivial example sets x to 42.

name = genvarname ("x");
eval([name " = 42"]);
⇒ x = 42

Also, this can be useful for creating unique struct field names.

x = struct ();
for i = 1:3
x.(genvarname ("a", fieldnames (x))) = i;

endfor
⇒
x =
{
a = 1
a1 = 2
a2 = 3

}

Since variable names may only contain letters, digits and underscores, genvarname
replaces any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an underscore is added before the variable
name.

Variable names beginning and ending with two underscores " " are valid but they
are used internally by octave and should generally be avoided, therefore genvarname
will not generate such names.

genvarname will also make sure that returned names do not clash with keywords such
as "for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names, such as "sin". Such names should be included in
avoid if necessary.

See also: [isvarname], page 97, [exist], page 104, [tmpnam], page 202, [eval], page 121.

[Function File]namelengthmax ()
Returns the matlab compatible maximum variable name length. Octave is capable
of storing strings up to 231 − 1 in length. However for matlab compatibility all
variable, function and structure field names should be shorter than the length supplied
by namelengthmax. In particular variables stored to a matlab file format will have
their names truncated to this length.
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7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a
global a b
global c = 2
global d = 3 e f = 5

A global variable may only be initialized once in a global statement. For example, after
executing the following code

global gvar = 1
global gvar = 2

the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

It is necessary declare a variable as global within a function body in order to access it.
For example,

global x
function f ()
x = 1;

endfunction
f ()

does not set the value of the global variable x to 1. In order to change the value of the
global variable x, you must also declare it to be global within the function body, like this

function f ()
global x;
x = 1;

endfunction

Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function

function f (x)
x = 0

endfunction

and the definition of x as a global variable at the top level,

global x = 13

the expression

f (x)

will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

[Built-in Function]isglobal (name )
Return 1 if name is globally visible. Otherwise, return 0. For example,
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global x
isglobal ("x")

⇒ 1

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()
persistent calls = 0;
printf ("’count_calls’ has been called %d times\n",

++calls);
endfunction

for i = 1:3
count_calls ();

endfor

a ’count_calls’ has been called 1 times
a ’count_calls’ has been called 2 times
a ’count_calls’ has been called 3 times

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a
persistent a b
persistent c = 2
persistent d = 3 e f = 5

The behavior of persistent variables is equivalent to the behavior of static variables in
C. The command static in Octave is also recognized and is equivalent to persistent.

Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.
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function count_calls ()
persistent calls;
if (isempty (calls))
calls = 0;

endif
printf ("’count_calls’ has been called %d times\n",

++calls);
endfunction

This implementation behaves in exactly the same way as the previous implementation of
count_calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following
behavior.

for i = 1:2
count_calls ();

endfor
a ’count_calls’ has been called 1 times
a ’count_calls’ has been called 2 times

clear
for i = 1:2
count_calls();

endfor
a ’count_calls’ has been called 3 times
a ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls();

endfor
a ’count_calls’ has been called 1 times
a ’count_calls’ has been called 2 times

clear count_calls
for i = 1:2
count_calls();

endfor
a ’count_calls’ has been called 1 times
a ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
as described in See Section 11.7.5 [Function Locking], page 152.
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7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format
will show different information about what is in memory, as the following shows.

str = "A random string";
who -variables

a *** local user variables:
a
a __nargin__ str

[Command]who
[Command]who pattern . . .
[Command]who option pattern . . .
[Command]C = who("pattern", . . . )

List currently defined variables matching the given patterns. Valid pattern syntax
is the same as described for the clear command. If no patterns are supplied, all
variables are listed. By default, only variables visible in the local scope are displayed.
The following are valid options but may not be combined.

global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp
function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos], page 102, [regexp], page 67.

[Command]whos
[Command]whos pattern . . .
[Command]whos option pattern . . .
[Command]S = whos("pattern", . . . )

Provide detailed information on currently defined variables matching the given pat-
terns. Options and pattern syntax are the same as for the who command. Extended
information about each variable is summarized in a table with the following default
entries.

Attr Attributes of the listed variable. Possible attributes are:

blank Variable in local scope

g Variable with global scope

p Persistent variable

Name The name of the variable.
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Size The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1,
a 2-D matrix is MxN.

Bytes The amount of memory currently used to store the variable.

Class The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.
If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who], page 102, [whos line format], page 103.

[Built-in Function]val = whos_line_format ()
[Built-in Function]old_val = whos_line_format (new_val )

Query or set the format string used by the command whos.
A full format string is:

%[modifier]<command>[:width[:left-min[:balance]]];

The following command sequences are available:

%a Prints attributes of variables (g=global, p=persistent, f=formal parame-
ter, a=automatic variable).

%b Prints number of bytes occupied by variables.

%c Prints class names of variables.

%e Prints elements held by variables.

%n Prints variable names.

%s Prints dimensions of variables.

%t Prints type names of variables.

Every command may also have an alignment modifier:

l Left alignment.

r Right alignment (default).

c Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.
The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within
the field width which will be aligned between entries. Numbering starts from 0 which
indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.
The default format is " %a:4; %ln:6; %cs:16:6:1; %rb:12; %lc:-1;\n".

See also: [whos], page 102.
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Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");

endif

[Built-in Function]exist (name, type )
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an
ordinary file in Octave’s path, or (after appending ‘.m’) a function file in Octave’s
path, 3 if the name is a ‘.oct’ or ‘.mex’ file in Octave’s path, 5 if the name is a
built-in function, 7 if the name is a directory, or 103 if the name is a function not
associated with a file (entered on the command line).
Otherwise, return 0.
This function also returns 2 if a regular file called name exists in Octave’s search path.
If you want information about other types of files, you should use some combination
of the functions file_in_path and stat instead.
If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

‘"var"’ Check only for variables.

‘"builtin"’
Check only for built-in functions.

‘"file"’ Check only for files.

‘"dir"’ Check only for directories.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);

Since having this variable in memory might slow down other computations, it can be nec-
essary to remove it manually from memory. The clear function allows this.

[Command]clear [options] pattern . . .
Delete the names matching the given patterns from the symbol table. The pattern
may contain the following special characters:

? Match any single character.

* Match zero or more characters.

[ list ] Match the list of characters specified by list. If the first character is !
or ^, match all characters except those specified by list. For example,
the pattern ‘[a-zA-Z]’ will match all lower and upper case alphabetic
characters.

For example, the command
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clear foo b*r

clears the name foo and all names that begin with the letter b and end with the letter
r.
If clear is called without any arguments, all user-defined variables (local and global)
are cleared from the symbol table. If clear is called with at least one argument, only
the visible names matching the arguments are cleared. For example, suppose you
have defined a function foo, and then hidden it by performing the assignment foo
= 2. Executing the command clear foo once will clear the variable definition and
restore the definition of foo as a function. Executing clear foo a second time will
clear the function definition.
The following options are available in both long and short form

-all, -a Clears all local and global user-defined variables and all functions from
the symbol table.

-exclusive, -x
Clears the variables that don’t match the following pattern.

-functions, -f
Clears the function names and the built-in symbols names.

-global, -g
Clears the global symbol names.

-variables, -v
Clears the local variable names.

-classes, -c
Clears the class structure table and clears all objects.

-regexp, -r
The arguments are treated as regular expressions as any variables that
match will be cleared.

With the exception of exclusive, all long options can be used without the dash as
well.

Information about a function or variable such as its location in the file system can also be
acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

[Command]type options name . . .
Display the definition of each name that refers to a function.
Normally also displays whether each name is user-defined or built-in; the -q option
suppresses this behavior.
If an output argument is requested nothing is displayed. Instead, a cell array of
strings is returned, where each element corresponds to the definition of each requested
function.

[Command]which name . . .
Display the type of each name. If name is defined from a function file, the full name
of the file is also displayed.

See also: [help], page 17, [lookfor], page 18.
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[Command]what
[Command]what dir

[Function File]w = what (dir )
List the Octave specific files in a directory. If the variable dir is given then check that
directory rather than the current directory. If a return argument is requested, the
files found are returned in the structure w.

See also: [which], page 105.
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8 Expressions

Expressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. As in other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or
vector.

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used
to select entire rows or columns.

Vectors are indexed using a single index expression. Matrices may be indexed using one
or two indices. When using a single index expression, the elements of the matrix are taken
in column-first order; the dimensions of the output match those of the index expression.
For example,

a (2) # a scalar
a (1:2) # a row vector
a ([1; 2]) # a column vector

As a special case, when a colon is used as a single index, the output is a column vector
containing all the elements of the vector or matrix. For example

a (:) # a column vector

Given the matrix
a = [1, 2; 3, 4]

all of the following expressions are equivalent
a (1, [1, 2])
a (1, 1:2)
a (1, :)

and select the first row of the matrix.
In general, an array with ‘n’ dimensions can be indexed using ‘m’ indices. If n == m,

each index corresponds to its respective dimension. The set of index tuples determining
the result is formed by the Cartesian product of the index vectors (or ranges or scalars). If
n < m, then the array is padded by trailing singleton dimensions. If n > m, the last n-m+1
dimensions are folded into a single dimension with extent equal to product of extents of the
original dimensions.

Indexing a scalar with a vector of ones can be used to create a vector the same size as
the index vector, with each element equal to the value of the original scalar. For example,
the following statements

a = 13;
a (ones (1, 4))
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produce a vector whose four elements are all equal to 13.
Similarly, indexing a scalar with two vectors of ones can be used to create a matrix. For

example the following statements
a = 13;
a (ones (1, 2), ones (1, 3))

create a 2 by 3 matrix with all elements equal to 13.
The last example could also be written as

13 (ones (2, 3))

It should be, noted that ones (1, n) (a row vector of ones) results in a range (with zero
increment), and is therefore more efficient when used in index expression than other forms
of ones. In particular, when ‘r’ is a row vector, the expressions

r(ones (1, n), :)

r(ones (n, 1), :)

will produce identical results, but the first one will be significantly faster, at least for ‘r’
and ‘n’ large enough. The reason is that in the first case the index is kept in a compressed
form, which allows Octave to choose a more efficient algorithm to handle the expression.

In general, for an user unaware of these subtleties, it is best to use the function repmat
for spreading arrays into bigger ones.

It is also possible to create a matrix with different values. The following example creates
a 10 dimensional row vector a containing the values ai =

√
i.

for i = 1:10
a(i) = sqrt (i);

endfor

Note that it is quite inefficient to create a vector using a loop like the one shown in the
example above. In this particular case, it would have been much more efficient to use the
expression

a = sqrt (1:10);

thus avoiding the loop entirely. In cases where a loop is still required, or a number of values
must be combined to form a larger matrix, it is generally much faster to set the size of
the matrix first, and then insert elements using indexing commands. For example, given a
matrix a,

[nr, nc] = size (a);
x = zeros (nr, n * nc);
for i = 1:n
x(:,(i-1)*nc+1:i*nc) = a;

endfor

is considerably faster than
x = a;
for i = 1:n-1
x = [x, a];

endfor

particularly for large matrices because Octave does not have to repeatedly resize the result.
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[Function File]ind = sub2ind (dims, i, j )
[Function File]ind = sub2ind (dims, s1, s2, . . . , sN )

Convert subscripts into a linear index.
The following example shows how to convert the two-dimensional index (2,3) of a
3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one
column to next, filling up all rows in each column.

linear_index = sub2ind ([3, 3], 2, 3)
⇒ 8

See also: [ind2sub], page 109.

[Function File][s1, s2, ..., sN] = ind2sub (dims, ind )
Convert a linear index into subscripts.
The following example shows how to convert the linear index 8 in a 3-by-3 matrix
into a subscript. The matrix is linearly indexed moving from one column to next,
filling up all rows in each column.

[r, c] = ind2sub ([3, 3], 8)
⇒ r = 2
c = 3

See also: [sub2ind], page 108.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts], page 137, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x^2 + y^2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the
particular usage, and their behavior is different depending on the number of arguments
supplied.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)
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is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement

[u, s, v] = svd (a)

computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is
allowed to be a list of variable names or index expressions. See also Section 8.1 [Index
Expressions], page 107, and Section 8.6 [Assignment Ops], page 115.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible
to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)
while (n-- > 0)
disp (x);

endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";
fcn (foo)

you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

x = rand (1000);
f (x);

does not actually force two 1000 by 1000 element matrices to exist unless the function f
modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function f, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.
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8.2.2 Recursion

With some restrictions1, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient2 way to
compute the factorial of a given integer:

function retval = fact (n)
if (n > 0)
retval = n * fact (n-1);

else
retval = 1;

endif
endfunction

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

[Built-in Function]val = max_recursion_depth ()
[Built-in Function]old_val = max_recursion_depth (new_val )

Query or set the internal limit on the number of times a function may be called
recursively. If the limit is exceeded, an error message is printed and control returns
to the top level.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices.

x + y Addition. If both operands are matrices, the number of rows and columns must
both agree. If one operand is a scalar, its value is added to all the elements of
the other operand.

x .+ y Element by element addition. This operator is equivalent to +.

x - y Subtraction. If both operands are matrices, the number of rows and columns
of both must agree.

x .- y Element by element subtraction. This operator is equivalent to -.

x * y Matrix multiplication. The number of columns of x must agree with the number
of rows of y.

x .* y Element by element multiplication. If both operands are matrices, the number
of rows and columns must both agree.

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver lsode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so lsode should not be called either directly or indirectly from within the user-supplied
function that lsode requires. Doing so will result in an error.

2 It would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.



112 GNU Octave

x / y Right division. This is conceptually equivalent to the expression
(inverse (y’) * x’)’

but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x ./ y Element by element right division.

x \ y Left division. This is conceptually equivalent to the expression
inverse (x) * y

but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

x .\ y Element by element left division. Each element of y is divided by each corre-
sponding element of x.

x ^ y

x ** y Power operator. If x and y are both scalars, this operator returns x raised to
the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
y is not an integer. An error results if both x and y are matrices.
The implementation of this operator needs to be improved.

x .^ y

x .** y Element by element power operator. If both operands are matrices, the number
of rows and columns must both agree.

-x Negation.

+x Unary plus. This operator has no effect on the operand.

x’ Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.’)

x.’ Transpose.

Note that because Octave’s element by element operators begin with a ‘.’, there is a
possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

(1) ./ m

and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.
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8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.

All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. For example,

[1, 2; 3, 4] == [1, 3; 2, 4]
⇒ 1 0

0 1

If one operand is a scalar and the other is a matrix, the scalar is compared to each
element of the matrix in turn, and the result is the same size as the matrix.

x < y True if x is less than y.

x <= y True if x is less than or equal to y.

x == y True if x is equal to y.

x >= y True if x is greater than or equal to y.

x > y True if x is greater than y.

x != y

x ~= y True if x is not equal to y.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings], page 55.

[Function File]isequal (x1, x2, . . . )
Return true if all of x1, x2, . . . are equal.

See also: [isequalwithequalnans], page 113.

[Function File]isequalwithequalnans (x1, x2, . . . )
Assuming NaN == NaN, return true if all of x1, x2, . . . are equal.

See also: [isequal], page 113.

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression
also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.
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boolean1 & boolean2

Elements of the result are true if both corresponding elements of boolean1 and
boolean2 are true.

boolean1 | boolean2

Elements of the result are true if either of the corresponding elements of
boolean1 or boolean2 is true.

! boolean

~ boolean

Each element of the result is true if the corresponding element of boolean is
false.

For matrix operands, these operators work on an element-by-element basis. For example,
the expression

[1, 0; 0, 1] & [1, 0; 2, 3]

returns a two by two identity matrix.

For the binary operators, the dimensions of the operands must conform if both are
matrices. If one of the operands is a scalar and the other a matrix, the operator is applied
to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions boolean1 and
boolean2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++

the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

boolean1 && boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is false, the result of the overall
expression is 0. If it is true, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: there is one exception to the rule of evaluating all (boolean1(:)),
which is when boolean1 is the empty matrix. The truth value of an empty
matrix is always false so [] && true evaluates to false even though all
([]) is true.
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boolean1 || boolean2

The expression boolean1 is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1(:)). If it is true, the result of the overall
expression is 1. If it is false, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1(:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.
Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

a && b++

the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)
if (nargin > 2 && ischar (c))
...

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write

function f (a, b, c)
if (nargin > 2)
if (ischar (c))

...

Writing
function f (a, b, c)
if (nargin > 2 & ischar (c))
...

would result in an error if f were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

8.6 Assignment Expressions

An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z = 1

After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

thing = "food"
predicate = "good"
message = [ "this " , thing , " is " , predicate ]

(This also illustrates concatenation of strings.)
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Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables],
page 97). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 107) or a list of return values (see Section 8.2 [Calling Functions], page 109). These
are all called lvalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do not have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

octave:13> foo = 1
foo = 1
octave:13> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) = 5

sets all the elements in the second column of a to 5.
Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or

columns of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 42. For example,
given a 4 by 5 matrix A, the assignment

A (3, :) = []

deletes the third row of A, and the assignment
A (:, 1:2:5) = []

deletes the first, third, and fifth columns.
An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the

value 1. One consequence of this is that you can write multiple assignments together:
x = y = z = 0

stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.

This is also true of assignments to lists of values, so the following is a valid expression
[a, b, c] = [u, s, v] = svd (a)

that is exactly equivalent to
[u, s, v] = svd (a)
a = u
b = s
c = v
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In expressions like this, the number of values in each part of the expression need not
match. For example, the expression

[a, b] = [u, s, v] = svd (a)

is equivalent to
[u, s, v] = svd (a)
a = u
b = s

The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.

[a, b, c, d] = [u, s, v] = svd (a);
a error: element number 4 undefined in return list

A very common programming pattern is to increment an existing variable with a given
value, like this

a = a + 2;

This can be written in a clearer and more condensed form using the += operator
a += 2;

Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form

expr1 op= expr2

is evaluated as
expr1 = (expr1) op (expr2)

where op can be either +, -, *, or /. So, the expression
a *= b+1

is evaluated as
a = a * (b+1)

and not
a = a * b + 1

You can use an assignment anywhere an expression is called for. For example, it is valid
to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends
to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘++’. It may be used to increment a variable either before
or after taking its value.

For example, to pre-increment the variable x, you would write ++x . This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.
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For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x-- This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * c means to multiply b and c, and then add a to the product (i.e., a + (b
* c)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write
parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment and exponentiation operators, which group in the opposite
order. Thus, the expression a - b + c groups as (a - b) + c, but the expression a = b = c
groups as a = (b = c).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x^2 means -(x^2), because ‘-’ has lower precedence than ‘^’.

Here is a table of the operators in Octave, in order of increasing precedence.

statement separators
‘;’, ‘,’.

assignment
‘=’, ‘+=’, ‘-=’, ‘*=’,‘/=’. This operator groups right to left.

logical "or" and "and"
‘||’, ‘&&’.

element-wise "or" and "and"
‘|’, ‘&’.

relational
‘<’, ‘<=’, ‘==’, ‘>=’, ‘>’, ‘!=’, ‘~=’.

colon ‘:’.
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add, subtract
‘+’, ‘-’.

multiply, divide
‘*’, ‘/’, ‘\’, ‘.\’, ‘.*’, ‘./’.

transpose
‘’’, ‘.’’

unary plus, minus, increment, decrement, and ‘‘not’’
‘+’, ‘-’, ‘++’, ‘--’, ‘!’, ‘~’.

exponentiation
‘^’, ‘**’, ‘.^’, ‘.**’.
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9 Evaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

[Built-in Function]eval (try, catch )
Parse the string try and evaluate it as if it were an Octave program. If that fails,
evaluate the optional string catch. The string try is evaluated in the current context,
so any results remain available after eval returns.
The following example makes the variable a with the approximate value 3.1416 avail-
able.

eval("a = acos(-1);");

If an error occurs during the evaluation of try the catch string is evaluated, as the
following example shows:

eval (’error ("This is a bad example");’,
’printf ("This error occurred:\n%s\n", lasterr ());’);
a This error occurred:

This is a bad example

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval
function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

# usage: newtroot (fname, x)
#
# fname : a string naming a function f(x).
# x : initial guess

delta = tol = sqrt (eps);
maxit = 200;
fx = feval (fname, x);
for i = 1:maxit
if (abs (fx) < tol)

result = x;
return;

else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;
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x = x - fx / deriv;
fx = fx_new;

endif
endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects], page 52,
for example, for a list of predicates for numeric objects, and see Section 7.3 [Status of
Variables], page 102, for a description of the exist function.

[Built-in Function]feval (name, . . . )
Evaluate the function named name. Any arguments after the first are passed on to
the named function. For example,

feval ("acos", -1)
⇒ 3.1416

calls the function acos with the argument ‘-1’.
The function feval is necessary in order to be able to write functions that call user-
supplied functions, because Octave does not have a way to declare a pointer to a
function (like C) or to declare a special kind of variable that can be used to hold the
name of a function (like EXTERNAL in Fortran). Instead, you must refer to functions
by name, and use feval to call them.

A similar function run exists for calling user script files, that are not necessarily on the
user path

[Function File]run (f )
[Command]run f

Run scripts in the current workspace that are not necessarily on the path. If f is the
script to run, including its path, then run change the directory to the directory where
f is found. run then executes the script, and returns to the original directory.

See also: [system], page 533.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.
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Consider how you might write save and load as m-files. For example,
function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y

endfunction

With evalin, you could write save as follows:
function save (file, name1, name2)
f = open_save_file (file);
save_var(f, name1, evalin ("caller", name1));
save_var(f, name2, evalin ("caller", name2));

endfunction

Here, ‘caller’ is the create_data function and name1 is the string "x", which evaluates
simply as the value of x.

You later want to load the values back from mydata in a different context:
function process_data
load mydata
... do work ...

endfunction

With assignin, you could write load as follows:
function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);

endfunction

Here, ‘caller’ is the process_data function.
You can set and use variables at the command prompt using the context ‘base’ rather

than ‘caller’.
These functions are rarely used in practice. One example is the fail (‘code’,

‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the
error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin
is not needed.

[Built-in Function]evalin (context, try, catch )
Like eval, except that the expressions are evaluated in the context context, which
may be either "caller" or "base".

[Built-in Function]assignin (context, varname, value )
Assign value to varname in context context, which may be either "base" or "caller".
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10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:

if (condition)
then-body

endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)
then-body

else
else-body

endif

If condition is true, then-body is executed; otherwise, else-body is executed.

Here is an example:

if (rem (x, 2) == 0)
printf ("x is even\n");

else
printf ("x is odd\n");

endif
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In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf
statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf
statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");

elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");

else
printf ("x is odd\n");

endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)
body-1

else if (c2)
body-2

endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,
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if (c1)
body-1

else
if (c2)
body-2

endif

using the indentation to show how Octave groups the statements. See Chapter 11 [Functions
and Scripts], page 137.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)
do_something ();

elseif (X == 2)
do_something_else ();

else
do_something_completely_different ();

endif

This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above
example becomes

switch (X)
case 1
do_something ();

case 2
do_something_else ();

otherwise
do_something_completely_different ();

endswitch

This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch expression

case label

command_list

case label

command_list

...

otherwise
command_list

endswitch
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where label can be any expression. However, duplicate label values are not detected, and
only the command list corresponding to the first match will be executed. For the switch
statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A = 7;
switch A
case { 6, 7 }
printf ("variable is either 6 or 7\n");

otherwise
printf ("variable is neither 6 nor 7\n");

endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.

One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write

if (X == "a string") # This is NOT valid

since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this

switch (X)
case "a string"
do_something

...
endswitch

10.2.1 Notes for the C programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C
• Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement

of the C language.
• The command list elements are not optional. Making the list optional would have

meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)
case (1) -2
...

would produce surprising results, as would
switch (foo)
case (1)
case (2)

doit ();
...
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particularly for C programmers. If doit() should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)
case { 1, 2 }

doit ();
...

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is non-zero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

Octave’s while statement looks like this:

while (condition)
body

endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);
i = 3;
while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile

Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of fib is set to the sum of the previous two values in the sequence. Then the i++
increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.
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10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly exe-
cutes a statement until a condition becomes true, and the test of the condition is at the end
of the loop, so the body of the loop is always executed at least once. As with the condition
in an if statement, the condition in a do-until statement is considered true if its value
is non-zero, and false if its value is zero. If the value of the conditional expression in a
do-until statement is a vector or a matrix, it is considered true only if it is non-empty and
all of the elements are non-zero.

Octave’s do-until statement looks like this:

do
body

until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);
i = 2;
do
i++;
fib (i) = fib (i-1) + fib (i-2);

until (i == 10)

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression

body

endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements], page 131, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:
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fib = ones (1, 10);
for i = 3:10
fib (i) = fib (i-1) + fib (i-2);

endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for
statement. For example consider

disp("Loop over a matrix")
for i = [1,3;2,4]
i

endfor
disp("Loop over a cell array")
for i = {1,"two";"three",4}
i

endfor

In this case the variable i takes on the value of the columns of the matrix or cell matrix. So
the first loop iterates twice, producing two column vectors [1;2], followed by [3;4], and
likewise for the loop over the cell array. This can be extended to loops over multidimensional
arrays. For example

a = [1,3;2,4]; b = cat(3, a, 2*a);
for i = c
i

endfor

In the above case, the multidimensional matrix c is reshaped to a two-dimensional matrix
as reshape (c, rows(c), prod(size(c)(2:end))) and then the same behavior as a loop
over a two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements

A special form of the for statement allows you to loop over all the elements of a structure:

for [ val, key ] = expression

body

endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example,
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x.a = 1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val

endfor

a key = a
a val = 1
a key = b
a val =
a
a 1 2
a 3 4
a
a key = c
a val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is
useful for cycling through the values of all the structure elements when the names of the
elements do not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it. The
break statement may only be used within the body of a loop. The following example finds
the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)

if (rem (num, div) == 0)
break;

endif
div++;

endwhile
if (rem (num, div) == 0)

printf ("Smallest divisor of %d is %d\n", num, div)
else

printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following
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the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;

endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;

endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips over
the rest of the loop body, causing the next cycle around the loop to begin immediately.
Contrast this with break, which jumps out of the loop altogether. Here is an example:

# print elements of a vector of random
# integers that are even.

# first, create a row vector of 10 random
# integers with values between 0 and 100:

vec = round (rand (1, 10) * 100);

# print what we’re interested in:

for x = vec
if (rem (x, 2) != 0)
continue;

endif
printf ("%d\n", x);

endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:
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for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);

endif
endfor

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:
unwind_protect
body

unwind_protect_cleanup
cleanup

end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;
...

unwind_protect_cleanup
frobnosticate = save_frobnosticate;

end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

10.9 The try Statement

In addition to unwind protect, Octave supports another limited form of exception handling.
The general form of a try block looks like this:

try
body

catch
cleanup

end_try_catch

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.

No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the function lasterr to access the
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text of the message that would have been printed. This is the same as eval (try, catch)
but it is more efficient since the commands do not need to be parsed each time the try and
catch statements are evaluated. See Chapter 12 [Errors and Warnings], page 161, for more
information about the lasterr function.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to the
next. Lines that end with the characters ... or \ are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name ...
+ longer_variable_name \
- 42

form a single statement. The backslash character on the second line above is interpreted as
a continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, whitespace and com-
ments may appear between the continuation marker and the newline character. For example,
the statement

x = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must
appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having
to use a continuation marker. For example, it is possible to write statements like

if (fine_dining_destination == on_a_boat
|| fine_dining_destination == on_a_train)

seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);

endif

without having to add to the clutter with continuation markers.
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11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks like this:
function name

body

endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.

The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.

For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");

endfunction

The printf statement (see Chapter 14 [Input and Output], page 175) simply tells Octave
to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings], page 55.

Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.

Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is

function name (arg-list)
body

endfunction

where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.

To print a message along with ringing the bell, you might modify the wakeup to look
like this:

function wakeup (message)
printf ("\a%s\n", message);

endfunction

Calling this function using a statement like this
wakeup ("Rise and shine!");

will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).

In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:
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function ret-var = name (arg-list)
body

endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 99, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);

endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);

endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return
variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);

else
error ("avg: expecting vector argument");

endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg
function like this:
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function retval = avg (v)
retval = 0;
if (nargin != 1)
usage ("avg (vector)");

endif
if (isvector (v))
retval = sum (v) / length (v);

else
error ("avg: expecting vector argument");

endif
endfunction

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave
also does not automatically report an error if a function is called with too few arguments,
but any attempt to use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both possibilities and
issue our own error message.

[Built-in Function]nargin ()
[Built-in Function]nargin (fcn_name )

Within a function, return the number of arguments passed to the function. At the
top level, return the number of command line arguments passed to Octave. If called
with the optional argument fcn name, return the maximum number of arguments
the named function can accept, or -1 if the function accepts a variable number of
arguments.

See also: [nargout], page 140, [varargin], page 141, [varargout], page 141.

[Function File]inputname (n )
Return the text defining n-th input to the function.

[Built-in Function]val = silent_functions ()
[Built-in Function]old_val = silent_functions (new_val )

Query or set the internal variable that controls whether internal output from a func-
tion is suppressed. If this option is disabled, Octave will display the results produced
by evaluating expressions within a function body that are not terminated with a
semicolon.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is

function [ret-list] = name (arg-list)
body

endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The
list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.



140 GNU Octave

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)
idx = 1;
max = v (idx);
for i = 2:length (v)
if (v (i) > max)

max = v (i);
idx = i;

endif
endfor

endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not
have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows
you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans
does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and lu functions are examples of built-in functions that behave differently
depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling
the function

function [x, y, z] = f ()
x = 1;
z = 2;

endfunction

as
[a, b, c] = f ()

produces:
a = 1

b = [](0x0)

c = 2

along with a warning.

[Built-in Function]nargout ()
[Built-in Function]nargout (fcn_name )

Within a function, return the number of values the caller expects to receive. If called
with the optional argument fcn name, return the maximum number of values the
named function can produce, or -1 if the function can produce a variable number of
values.
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For example,
f ()

will cause nargout to return 0 inside the function f and
[s, t] = f ()

will cause nargout to return 2 inside the function f.
At the top level, nargout is undefined.

See also: [nargin], page 139, [varargin], page 141, [varargout], page 141.

[Function File]msgstr = nargchk (minargs, maxargs, nargs )
[Function File]msgstr = nargchk (minargs, maxargs, nargs, "string")
[Function File]msgstruct = nargchk (minargs, maxargs, nargs, "struct")

Return an appropriate error message string (or structure) if the number of inputs
requested is invalid.
This is useful for checking to see that the number of input arguments supplied to a
function is within an acceptable range.

See also: [nargoutchk], page 141, [error], page 161, [nargin], page 139, [nargout],
page 140.

[Function File]msgstr = nargoutchk (minargs, maxargs, nargs )
[Function File]msgstr = nargoutchk (minargs, maxargs, nargs, "string")
[Function File]msgstruct = nargoutchk (minargs, maxargs, nargs, "struct")

Return an appropriate error message string (or structure) if the number of outputs
requested is invalid.
This is useful for checking to see that the number of output arguments supplied to a
function is within an acceptable range.

See also: [nargchk], page 141, [error], page 161, [nargout], page 140, [nargin], page 139.

11.3 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example,

a = smallest (1, 2, 3);
b = smallest (1, 2, 3, 4);

In this example both a and b would be 1. One way to write the smallest function is
function val = smallest (arg1, arg2, arg3, arg4, arg5)
body

endfunction

and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin
the function looks like this
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function val = smallest (varargin)
body

endfunction

In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays],
page 85, for details on working with cell arrays. The smallest function can now be defined
like this

function val = smallest (varargin)
val = min ([varargin{:}]);

endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

function print_arguments (varargin)
for i = 1:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{i});

endfor
endfunction

This function produces output like this

print_arguments (1, "two", 3);
a Input argument 1: 1
a Input argument 2: two
a Input argument 3: 3

[Function File][reg, prop] = parseparams (params )
Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element. For example

[reg, prop] = parseparams ({1, 2, "linewidth", 10})
reg =
{

[1,1] = 1
[1,2] = 2

}
prop =
{

[1,1] = linewidth
[1,2] = 10

}

The parseparams function may be used to separate ’regular’ arguments and additional
arguments given as property/value pairs of the varargin cell array.

See also: [varargin], page 141.
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11.4 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

As an example the following function sets the first output argument to 1, the second to
2, and so on.

function varargout = one_to_n ()
for i = 1:nargout
varargout{i} = i;

endfor
endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()
⇒ a = 1
⇒ b = 2
⇒ c = 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[Function File][r1, r2, ..., rn] = deal (a )
[Function File][r1, r2, ..., rn] = deal (a1, a2, . . . , an )

Copy the input parameters into the corresponding output parameters. If only one
input parameter is supplied, its value is copied to each of the outputs.

For example,

[a, b, c] = deal (x, y, z);

is equivalent to

a = x;
b = y;
c = z;

and

[a, b, c] = deal (x);

is equivalent to

a = b = c = x;

11.5 Returning From a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that
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are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.
function retval = any_nonzero (v)
retval = 0;
for i = 1:length (v)
if (v (i) != 0)

retval = 1;
return;

endif
endfor
printf ("no nonzero elements found\n");

endfunction

Note that this function could not have been written using the break statement to exit
the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

[Keyword]return
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.6 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (arg1 = val1, ...)
body

endfunction

If no value is assigned to arg1 by the user, it will have the value val1.
As an example, the following function implements a variant of the classic “Hello, World”

program.
function hello (who = "World")
printf ("Hello, %s!\n", who);

endfunction

When called without an input argument the function prints the following
hello ();

a Hello, World!

and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");

a Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.
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hello (:);
a Hello, World!

11.7 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to
find a definition there, it searches a list of directories (the path) for files ending in ‘.m’ that
have the same base name as the undefined identifier.1 Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.8 [Script Files], page 153, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on func-
tions that are not likely to change, Octave assumes that function files in the directory tree
‘octave-home/share/octave/version/m’ will not change, so it doesn’t have to check their
time stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

[Command]edit name
[Command]edit field value
[Command]value = edit get field

Edit the named function, or change editor settings.
If edit is called with the name of a file or function as its argument it will be opened
in a text editor.
• If the function name is available in a file on your path and that file is modifiable,

then it will be edited in place. If it is a system function, then it will first be

1 The ‘.m’ suffix was chosen for compatibility with matlab.
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copied to the directory HOME (see further down) and then edited. If no file is
found, then the m-file variant, ending with ".m", will be considered. If still no
file is found, then variants with a leading "@" and then with both a leading "@"
and trailing ".m" will be considered.

• If name is the name of a function defined in the interpreter but not in an m-file,
then an m-file will be created in HOME to contain that function along with its
current definition.

• If name.cc is specified, then it will search for name.cc in the path and try to
modify it, otherwise it will create a new ‘.cc’ file in HOME. If name happens to
be an m-file or interpreter defined function, then the text of that function will
be inserted into the .cc file as a comment.

• If name.ext is on your path then it will be edited, otherwise the editor will be
started with ‘HOME/name.ext’ as the filename. If ‘name.ext’ is not modifiable, it
will be copied to HOME before editing.
WARNING! You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to mkoctfile ‘name.cc’ before the definition
will be available.

If edit is called with field and value variables, the value of the control field field will
be value. If an output argument is requested and the first argument is get then edit
will return the value of the control field field. If the control field does not exist, edit
will return a structure containing all fields and values. Thus, edit get all returns a
complete control structure. The following control fields are used:

‘editor’ This is the editor to use to modify the functions. By default it uses
Octave’s EDITOR built-in function, which comes from getenv("EDITOR")
and defaults to emacs. Use %s In place of the function name. For example,

‘[EDITOR, " %s"]’
Use the editor which Octave uses for bug_report.

‘"xedit %s &"’
pop up simple X11 editor in a separate window

‘"gnudoit -q \"(find-file \\\"%s\\\")\""’
Send it to current Emacs; must have (gnuserv-start) in
‘.emacs’.

See also field ’mode’, which controls how the editor is run by Octave.
On Cygwin, you will need to convert the Cygwin path to a Windows path
if you are using a native Windows editor. For example

’"C:/Program Files/Good Editor/Editor.exe" "$(cygpath -wa %s)"’

‘home’ This is the location of user local m-files. Be be sure it is in your path.
The default is ‘~/octave’.

‘author’ This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of password database.

‘email’ This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAME@$HOSTNAME>, and if $HOSTNAME is not de-
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fined it uses uname -n. You probably want to override this. Be sure to
use <user@host> as your format.

‘license’

‘gpl’ GNU General Public License (default).

‘bsd’ BSD-style license without advertising clause.

‘pd’ Public domain.

‘"text"’ Your own default copyright and license.

Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) yyyy Function Author".

‘mode’ This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "async" to start the editor
in async mode. The default is "sync" (see also "system").

‘editinplace’
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is false.

[Built-in Function]mfilename ()
[Built-in Function]mfilename ("fullpath")
[Built-in Function]mfilename ("fullpathext")

Return the name of the currently executing file. At the top-level, return the empty
string. Given the argument "fullpath", include the directory part of the file name,
but not the extension. Given the argument "fullpathext", include the directory
part of the file name and the extension.

[Built-in Function]val = ignore_function_time_stamp ()
[Built-in Function]old_val = ignore_function_time_stamp (new_val )

Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files. If the internal variable
is set to "system", Octave will not automatically recompile function files in subdi-
rectories of ‘octave-home/lib/version ’ if they have changed since they were last
compiled, but will recompile other function files in the search path if they change. If
set to "all", Octave will not recompile any function files unless their definitions are
removed with clear. If set to "none", Octave will always check time stamps on files
to determine whether functions defined in function files need to recompiled.

11.7.1 Manipulating the load path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/Octave’ to the load path.
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addpath("~/Octave")

After this the directory ‘~/Octave’ will be searched for functions.

[Built-in Function]addpath (dir1, . . . )
[Built-in Function]addpath (dir1, . . . , option )

Add dir1, . . . to the current function search path. If option is ‘"-begin"’ or 0 (the
default), prepend the directory name to the current path. If option is ‘"-end"’ or 1,
append the directory name to the current path. Directories added to the path must
exist.

See also: [path], page 148, [rmpath], page 148, [genpath], page 148, [pathdef],
page 148, [savepath], page 148, [pathsep], page 149.

[Built-in Function]genpath (dir )
Return a path constructed from dir and all its subdirectories.

[Built-in Function]rmpath (dir1, . . . )
Remove dir1, . . . from the current function search path.

See also: [path], page 148, [addpath], page 148, [genpath], page 148, [pathdef],
page 148, [savepath], page 148, [pathsep], page 149.

[Function File]savepath (file )
Save the portion of the current function search path, that is not set during Octave’s
initialization process, to file. If file is omitted, ‘~/.octaverc’ is used. If successful,
savepath returns 0.

See also: [path], page 148, [addpath], page 148, [rmpath], page 148, [genpath],
page 148, [pathdef], page 148, [pathsep], page 149.

[Built-in Function]path (. . . )
Modify or display Octave’s load path.
If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.
If nargin is zero and nargout is greater than zero, return the current load path.
If nargin is greater than zero, concatenate the arguments, separating them with
pathsep(). Set the internal search path to the result and return it.
No checks are made for duplicate elements.

See also: [addpath], page 148, [rmpath], page 148, [genpath], page 148, [pathdef],
page 148, [savepath], page 148, [pathsep], page 149.

[Function File]val = pathdef ()
Return the default path for Octave. The path information is extracted from one of
three sources. In order of preference, those are;
1. ‘~/.octaverc’
2. ‘<octave-home>/.../<version>/m/startup/octaverc’
3. Octave’s path prior to changes by any octaverc.

See also: [path], page 148, [addpath], page 148, [rmpath], page 148, [genpath],
page 148, [savepath], page 148, [pathsep], page 149.
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[Built-in Function]val = pathsep ()
[Built-in Function]old_val = pathsep (new_val )

Query or set the character used to separate directories in a path.

See also: [filesep], page 529, [dir], page 540, [ls], page 540.

[Built-in Function]rehash ()
Reinitialize Octave’s load path directory cache.

[Built-in Function]file_in_loadpath (file )
[Built-in Function]file_in_loadpath (file, "all")

Return the absolute name of file if it can be found in the list of directories specified
by path. If no file is found, return an empty matrix.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file in path], page 528, [path], page 148.

[Built-in Function]restoredefaultpath (. . . )
Restore Octave’s path to it’s initial state at startup.

See also: [path], page 148, [addpath], page 148, [rmpath], page 148, [genpath],
page 148, [pathdef], page 148, [savepath], page 148, [pathsep], page 149.

[Built-in Function]command_line_path (. . . )
Return the command line path variable.

See also: [path], page 148, [addpath], page 148, [rmpath], page 148, [genpath],
page 148, [pathdef], page 148, [savepath], page 148, [pathsep], page 149.

[Built-in Function]find_dir_in_path (dir )
Return the full name of the path element matching dir. The match is performed
at the end of each path element. For example, if dir is "foo/bar", it matches
the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz" or
"/some/dir/allfoo/bar".

11.7.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
‘f.m’ containing
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function f ()
printf ("in f, calling g\n");
g ()

endfunction
function g ()
printf ("in g, calling h\n");
h ()

endfunction
function h ()
printf ("in h\n")

endfunction

defines a main function f and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file ‘f.m’.

11.7.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function func1, that calls a helper function func2 to
do much of the work. For example

function y = func1 (x)
y = func2 (x);

endfunction

Then if the path to func1 is <directory>/func1.m, and if func2 is found in the directory
<directory>/private/func2.m, then func2 is only available for use of the functions, like
func1, that are found in <directory>.

11.7.4 Overloading and Autoloading

The dispatch function can be used to alias one function name to another. It can be used to
alias all calls to a particular function name to another function, or the alias can be limited
to only a particular variable type. Consider the example

function y = spsin (x)
printf ("Calling spsin\n");
fflush(stdout);
y = spfun ("sin", x);

endfunction

dispatch ("sin", "spsin", "sparse matrix");
y0 = sin(eye(3));
y1 = sin(speye(3));
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which aliases the user-defined function spsin to sin, but only for real sparse matrices. Note
that the builtin sin already correctly treats sparse matrices and so this example is only
illustrative.

[Loadable Function]dispatch (f, r, type )
Replace the function f with a dispatch so that function r is called when f is called
with the first argument of the named type. If the type is any then call r if no other
type matches. The original function f is accessible using builtin (f, ...).

If r is omitted, clear dispatch function associated with type.

If both r and type are omitted, list dispatch functions for f.

See also: [builtin], page 151.

[Loadable Function][...] builtin (f, . . . )
Call the base function f even if f is overloaded to some other function for the given
type signature.

See also: [dispatch], page 151.

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

[Built-in Function]autoload (function, file )
Define function to autoload from file.

The second argument, file, should be an absolute file name or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG ADD script files that are evaluated when
a directory is added to the Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above when bar.oct is not in
the same directory or uses like

autoload ("foo", file_in_loadpath ("bar.oct"))

are strongly discouraged, as their behavior might be unpredictable.

With no arguments, return a structure containing the current autoload map.

See also: [PKG ADD], page 551.
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11.7.5 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in Oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

As an example,
mlock ("my_function");

prevents my_function from being removed from memory, even if clear is called. It is
possible to determine if a function is locked into memory with the mislocked, and to
unlock a function with munlock, which the following illustrates.

mlock ("my_function");
mislocked ("my_function")
⇒ ans = 1
munlock ("my_function");
mislocked ("my_function")
⇒ ans = 0

A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:

function count_calls()
persistent calls = 0;
printf ("’count_calls’ has been called %d times\n",

++calls);
endfunction
mlock ("count_calls");

count_calls ();
a ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
a ’count_calls’ has been called 2 times

It is, however, often inconvenient to lock a function from the prompt, so it is also possible
to lock a function from within its body. This is simply done by calling mlock from within
the function.

function count_calls ()
mlock ();
persistent calls = 0;
printf ("’count_calls’ has been called %d times\n",

++calls);
endfunction

mlock might equally be used to prevent changes to a function from having effect in
Octave, though a similar effect can be had with the ignore_function_time_stamp function.

[Built-in Function]mlock ()
Lock the current function into memory so that it can’t be cleared.

See also: [munlock], page 153, [mislocked], page 153, [persistent], page 100.
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[Built-in Function]munlock (fcn )
Unlock the named function. If no function is named then unlock the current function.

See also: [mlock], page 152, [mislocked], page 153, [persistent], page 100.

[Built-in Function]mislocked (fcn )
Return true if the named function is locked. If no function is named then return true
if the current function is locked.

See also: [mlock], page 152, [munlock], page 153, [persistent], page 100.

11.7.6 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by
1. Subfunction A subfunction with the required function name in the given scope.
2. Private function A function defined within a private directory of the directory which

contains the current function.
3. Class constructor A function that constuctors a user class as defined in chapter

Chapter 33 [Object Oriented Programming], page 497.
4. Class method An overloaded function of a class as in chapter Chapter 33 [Object

Oriented Programming], page 497.
5. Legacy Dispatch An overloaded function as defined by See [doc-dispatch], page 151.
6. Command-line Function A function that has been defined on the command-line.
7. Autoload function A function that is marked as autoloaded with See [doc-autoload],

page 151.
8. A Function on the Path A function that can be found on the users load-path. There can

also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

9. Built-in function A function that is builtin to Octave itself such as numel, size, etc.

11.8 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
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must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

# Prevent Octave from thinking that this
# is a function file:

1;

# Define function one:

function one ()
...

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

# not a function file:
1;
function foo ()
do_something ();

endfunction
function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called ‘bar.m’ in
Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).
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Although Octave normally executes commands from script files that have the name
‘file.m’, you can use the function source to execute commands from any file.

[Built-in Function]source (file )
Parse and execute the contents of file. This is equivalent to executing commands from
a script file, but without requiring the file to be named ‘file.m’.

11.9 Function Handles, Inline Functions, and Anonymous
Functions

It can be very convenient store a function in a variable so that it can be passed to a different
function. For example, a function that performs numerical minimization needs access to
the function that should be minimized.

11.9.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax

@function-name

For example

f = @sin;

Creates a function handle called f that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example

f = @sin;
quad (f, 0, pi)

⇒ 2

You may use feval to call a function using function handle, or simply write the name
of the function handle followed by an argument list. If there are no arguments, you must
use an empty argument list ‘()’. For example

f = @sin;
feval (f, pi/4)

⇒ 0.70711
f (pi/4)

⇒ 0.70711

[Built-in Function]functions (fcn_handle )
Return a struct containing information about the function handle fcn handle.

[Built-in Function]func2str (fcn_handle )
Return a string containing the name of the function referenced by the function handle
fcn handle.

[Built-in Function]str2func (fcn_name )
Return a function handle constructed from the string fcn name.
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11.9.2 Anonymous Functions

Anonymous functions are defined using the syntax
@(argument-list) expression

Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or
for wrapping calls to other functions to adapt them for use by functions like quad. For
example,

f = @(x) x.^2;
quad (f, 0, 10)

⇒ 333.33

creates a simple unnamed function from the expression x.^2 and passes it to quad,
quad (@(x) sin (x), 0, pi)

⇒ 2

wraps another function, and
a = 1;
b = 2;
quad (@(x) betainc (x, a, b), 0, 0.4)

⇒ 0.13867

adapts a function with several parameters to the form required by quad. In this example,
the values of a and b that are passed to betainc are inherited from the current environment.

11.9.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = x2 + 2.

f = inline("x^2 + 2");

After this it is possible to evaluate f at any x by writing f(x).

[Built-in Function]inline (str )
[Built-in Function]inline (str, arg1, . . . )
[Built-in Function]inline (str, n )

Create an inline function from the character string str. If called with a single argu-
ment, the arguments of the generated function are extracted from the function itself.
The generated function arguments will then be in alphabetical order. It should be
noted that i, and j are ignored as arguments due to the ambiguity between their use as
a variable or their use as an inbuilt constant. All arguments followed by a parenthesis
are considered to be functions.
If the second and subsequent arguments are character strings, they are the names of
the arguments of the function.
If the second argument is an integer n, the arguments are "x", "P1", . . . , "PN".

See also: [argnames], page 156, [formula], page 157, [vectorize], page 157.

[Built-in Function]argnames (fun )
Return a cell array of character strings containing the names of the arguments of the
inline function fun.

See also: [inline], page 156, [formula], page 157, [vectorize], page 157.
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[Built-in Function]formula (fun )
Return a character string representing the inline function fun. Note that char (fun)
is equivalent to formula (fun).

See also: [argnames], page 156, [inline], page 156, [vectorize], page 157.

[Built-in Function]vectorize (fun )
Create a vectorized version of the inline function fun by replacing all occurrences of
*, /, etc., with .*, ./, etc.

[Function File]symvar (s )
Identifies the argument names in the function defined by a string. Common constant
names such as pi, NaN, Inf, eps, i or j are ignored. The arguments that are found
are returned in a cell array of strings. If no variables are found then the returned cell
array is empty.

11.10 Commands

Commands are a special class of functions that only accept string input arguments. A
command can be called as an ordinary function, but it can also be called without the
parentheses like the following example shows

my_command hello world

which is the same as

my_command("hello", "world")

The general form of a command call is

name arg1 arg2 ...

which translates directly to

name ("arg1", "arg2", ...)

A function can be used as a command if it accepts string input arguments. To do this,
the function must be marked as a command, which can be done with the mark_as_command
command like this

mark_as_command name

where name is the function to be marked as a command.

One difficulty of commands occurs when one of the string input arguments are stored in
a variable. Since Octave can’t tell the difference between a variable name, and an ordinary
string, it is not possible to pass a variable as input to a command. In such a situation a
command must be called as a function.

[Built-in Function]mark_as_command (name )
This function is obsolete and will be removed from a future version of Octave.

[Built-in Function]unmark_command (name )
This function is obsolete and will be removed from a future version of Octave.

[Built-in Function]iscommand (name )
This function is obsolete and will be removed from a future version of Octave.
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[Built-in Function]mark_as_rawcommand (name )
This function is obsolete and will be removed from a future version of Octave.

[Built-in Function]unmark_rawcommand (name )
This function is obsolete and will be removed from a future version of Octave.

[Built-in Function]israwcommand (name )
This function is obsolete and will be removed from a future version of Octave.

11.11 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely
organized by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make
it easier to find them.

The following is a list of all the function file subdirectories, and the types of functions
you will find there.

‘audio’ Functions for playing and recording sounds.

‘control’ Functions for design and simulation of automatic control systems.

‘elfun’ Elementary functions.

‘finance’ Functions for computing interest payments, investment values, and rates of
return.

‘general’ Miscellaneous matrix manipulations, like flipud, rot90, and triu, as well as
other basic functions, like ismatrix, nargchk, etc.

‘image’ Image processing tools. These functions require the X Window System.

‘io’ Input-output functions.

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’
Functions that don’t really belong anywhere else.

‘optimization’
Minimization of functions.

‘path’ Functions to manage the directory path Octave uses to find functions.

‘pkg’ Install external packages of functions in Octave.

‘plot’ Functions for displaying and printing two- and three-dimensional graphs.

‘polynomial’
Functions for manipulating polynomials.

‘set’ Functions for creating and manipulating sets of unique values.

‘signal’ Functions for signal processing applications.

‘sparse’ Functions for handling sparse matrices.

‘specfun’ Special functions.
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‘special-matrix’
Functions that create special matrix forms.

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.

‘testfun’ Perform unit tests on other functions.

‘time’ Functions related to time keeping.
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12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you
should print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand
them, so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking
input arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be
able to detect that an error occurred, so that the error can be fixed. This is possible with
the try statement described in Section 10.9 [The try Statement], page 134.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (arg1)
if (nargin == 0)
error("not enough input arguments");

endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

[Built-in Function]error (template, . . . )
[Built-in Function]error (id, template, . . . )

Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 190) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘error: ’.
Calling error also sets Octave’s internal error state such that control will return to
the top level without evaluating any more commands. This is useful for aborting from
functions or scripts.
If the error message does not end with a new line character, Octave will print a
traceback of all the function calls leading to the error. For example, given the following
function definitions:

function f () g (); end
function g () h (); end
function h () nargin == 1 || error ("nargin != 1"); end

calling the function f will result in a list of messages that can help you to quickly
locate the exact location of the error:
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f ()
error: nargin != 1
error: called from:
error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15

If the error message ends in a new line character, Octave will print the message but
will not display any traceback messages as it returns control to the top level. For
example, modifying the error message in the previous example to end in a new line
causes Octave to only print a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end
f ()
error: nargin != 1

Since it is common to use errors when there is something wrong with the input to a
function, Octave supports functions to simplify such code. When the print_usage function
is called, it reads the help text of the function calling print_usage, and presents a useful
error. If the help text is written in Texinfo it is possible to present an error message that
only contains the function prototypes as described by the @deftypefn parts of the help
text. When the help text isn’t written in Texinfo, the error message contains the entire
help message.

Consider the following function.

## -*- texinfo -*-
## @deftypefn {Function File} f (@var{arg1})
## Function help text goes here...
## @end deftypefn
function f (arg1)
if (nargin == 0)
print_usage ();

endif
endfunction

When it is called with no input arguments it produces the following error.
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f ()

a error: Invalid call to f. Correct usage is:
a
a -- Function File: f (ARG1)
a
a
a Additional help for built-in functions and operators is
a available in the on-line version of the manual. Use the command
a ‘doc <topic>’ to search the manual index.
a
a Help and information about Octave is also available on the WWW
a at http://www.octave.org and via the help@octave.org
a mailing list.

[Function File]print_usage ()
[Function File]print_usage (name )

Print the usage message for a function. When called with no input arguments the
print_usage function displays the usage message of the currently executing function.

See also: [help], page 17.

[Built-in Function]usage (msg )
Print the message msg, prefixed by the string ‘usage: ’, and set Octave’s internal
error state such that control will return to the top level without evaluating any more
commands. This is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls leading
to the usage message.

You should use this function for reporting problems errors that result from an im-
proper call to a function, such as calling a function with an incorrect number of
arguments, or with arguments of the wrong type. For example, most functions dis-
tributed with Octave begin with code like this

if (nargin != 2)
usage ("foo (a, b)");

endif

to check for the proper number of arguments.

[Function File]beep ()
Produce a beep from the speaker (or visual bell).

See also: [puts], page 190, [fputs], page 189, [printf], page 190, [fprintf], page 191.

[Built-in Function]val = beep_on_error ()
[Built-in Function]old_val = beep_on_error (new_val )

Query or set the internal variable that controls whether Octave will try to ring the
terminal bell before printing an error message.
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12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described
in Section 10.9 [The try Statement], page 134. As an example, the following piece of code
counts the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
...

catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be
necessary to discriminate between errors, and take different actions depending on the error.
The lasterror function returns a structure containing information about the last error
that occurred. As an example, the code above could be changed to count the number of
errors related to the ‘*’ operator.

number_of_errors = 0;
for n = 1:100
try
...

catch
msg = lasterror.message;
if (strfind (msg, "operator *"))

number_of_errors++;
endif

end_try_catch
endfor

[Built-in Function]err = lasterror (err )
[Built-in Function]lasterror (’reset’)

Returns or sets the last error message. Called without any arguments returns a
structure containing the last error message, as well as other information related to
this error. The elements of this structure are:

’message’ The text of the last error message

’identifier’ The message identifier of this error message

’stack’ A structure containing information on where the message occurred. This
might be an empty structure if this in the case where this information
cannot be obtained. The fields of this structure are:

’file’ The name of the file where the error occurred

’name’ The name of function in which the error occurred

’line’ The line number at which the error occurred

’column’ An optional field with the column number at which the error
occurred
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The err structure may also be passed to lasterror to set the information about the
last error. The only constraint on err in that case is that it is a scalar structure. Any
fields of err that match the above are set to the value passed in err, while other fields
are set to their default values.

If lasterror is called with the argument ’reset’, all values take their default values.

[Built-in Function][msg, msgid] = lasterr (msg, msgid )
Without any arguments, return the last error message. With one argument, set the
last error message to msg. With two arguments, also set the last message identifier.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using
the rethrow function. The previous example can now be changed to count the number of
errors related to the ‘*’ operator, but still abort if another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
...

catch
msg = lasterror.message;
if (strfind (msg, "operator *"))

number_of_errors++;
else

rethrow (lasterror);
endif

end_try_catch
endfor

[Built-in Function]rethrow (err )
Reissues a previous error as defined by err. err is a structure that must contain at
least the ’message’ and ’identifier’ fields. err can also contain a field ’stack’ that gives
information on the assumed location of the error. Typically err is returned from
lasterror.

See also: [lasterror], page 164, [lasterr], page 165, [error], page 161.

[Built-in Function]err = errno ()
[Built-in Function]err = errno (val )
[Built-in Function]err = errno (name )

Return the current value of the system-dependent variable errno, set its value to
val and return the previous value, or return the named error code given name as a
character string, or -1 if name is not found.

[Built-in Function]errno_list ()
Return a structure containing the system-dependent errno values.
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12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error,
a warning doesn’t abort the currently running program. A simple example of a warning is
when a number is divided by zero. In this case Octave will issue a warning and assign the
value Inf to the result.

a = 1/0
a warning: division by zero
⇒ a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As
an example, the following code controls if the variable ‘a’ is non-negative, and if not issues
a warning and sets ‘a’ to zero.

a = -1;
if (a < 0)
warning ("’a’ must be non-negative. Setting ’a’ to zero.");
a = 0;

endif
a ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning
using the try statement or something similar. It is however possible to access the last
warning as a string using the lastwarn function.

It is also possible to assign an identification string to a warning. If a warning has such
an ID the user can enable and disable this warning as will be described in the next section.
To assign an ID to a warning, simply call warning with two string arguments, where the
first is the identification string, and the second is the actual warning.

[Built-in Function]warning (template, . . . )
[Built-in Function]warning (id, template, . . . )

Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 190) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘warning: ’. You should use this function
when you want to notify the user of an unusual condition, but only when it makes
sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by
id. The special identifier ‘"all"’ may be used to set the state of all warnings.

[Built-in Function]warning ("on", id )
[Built-in Function]warning ("off", id )
[Built-in Function]warning ("error", id )
[Built-in Function]warning ("query", id )

Set or query the state of a particular warning using the identifier id. If the identifier is
omitted, a value of ‘"all"’ is assumed. If you set the state of a warning to ‘"error"’,
the warning named by id is handled as if it were an error instead.
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See also: [warning ids], page 167.

[Built-in Function][msg, msgid] = lastwarn (msg, msgid )
Without any arguments, return the last warning message. With one argument, set
the last warning message to msg. With two arguments, also set the last message
identifier.

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to
the screen. If the warning function is called with a string argument that is either "on" or
"off" all warnings will be enabled or disabled.

It is also possible to enable and disable individual warnings through their string identi-
fications. The following code will issue a warning

warning ("non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

while the following won’t issue a warning
warning ("off", "non-negative-variable");
warning ("non-negative-variable",

"’a’ must be non-negative. Setting ’a’ to zero.");

The functions distributed with Octave can issue one of the following warnings.

Octave:array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default,
the Octave:array-to-scalar warning is disabled.

Octave:array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default,
the Octave:array-to-vector warning is disabled.

Octave:assign-as-truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued
for statements like

if (s = t)
...

since such statements are not common, and it is likely that the intent was to
write

if (s == t)
...

instead.
There are times when it is useful to write code that contains assignments within
the condition of a while or if statement. For example, statements like

while (c = getc())
...

are common in C programming.
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It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors
like

if (x = 1) # intended to test (x == 1)!
...

slip by.
In such cases, it is possible suppress errors for specific statements by writing
them with an extra set of parentheses. For example, writing the previous ex-
ample as

while ((c = getc()))
...

will prevent the warning from being printed for this statement, while allowing
Octave to warn about other assignments used in conditional contexts.
By default, the Octave:assign-as-truth-value warning is enabled.

Octave:associativity-change
If the Octave:associativity-change warning is enabled, Octave will warn
about possible changes in the meaning of some code due to changes in associa-
tivity for some operators. Associativity changes have typically been made for
matlab compatibility. By default, the Octave:associativity-change warn-
ing is enabled.

Octave:divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when
Octave encounters a division by zero. By default, the Octave:divide-by-zero
warning is enabled.

Octave:empty-list-elements
If the Octave:empty-list-elements warning is enabled, a warning is issued
when an empty matrix is found in a matrix list. For example,

a = [1, [], 3, [], 5]

By default, the Octave:empty-list-elements warning is enabled.

Octave:fortran-indexing
If the Octave:fortran-indexing warning is enabled, a warning is printed for
expressions which select elements of a two-dimensional matrix using a single
index. By default, the Octave:fortran-indexing warning is disabled.

Octave:function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued
when Octave finds that the name of a function defined in a function file differs
from the name of the file. (If the names disagree, the name declared inside
the file is ignored.) By default, the Octave:function-name-clash warning is
enabled.

Octave:future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a
warning if it finds a function file with a time stamp that is in the future. By
default, the Octave:future-time-stamp warning is enabled.
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Octave:imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for
implicit conversions of complex numbers to real numbers. By default, the
Octave:imag-to-real warning is disabled.

Octave:matlab-incompatible
Print warnings for Octave language features that may cause compatibility prob-
lems with matlab.

Octave:missing-semicolon
If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

Octave:neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for ex-
pressions like

eye (-1)

By default, the Octave:neg-dim-as-zero warning is disabled.

Octave:num-to-str
If the Octave:num-to-str warning is enable, a warning is printed for implicit
conversions of numbers to their ASCII character equivalents when strings are
constructed using a mixture of strings and numbers in matrix notation. For
example,

[ "f", 111, 111 ]
⇒ "foo"

elicits a warning if the Octave:num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

Octave:precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in precedence
for some operators. Precedence changes have typically been made for matlab
compatibility. By default, the Octave:precedence-change warning is enabled.

Octave:reload-forces-clear
If several functions have been loaded from the same file, Octave must clear all
the functions before any one of them can be reloaded. If the Octave:reload-
forces-clear warning is enabled, Octave will warn you when this happens,
and print a list of the additional functions that it is forced to clear. By default,
the Octave:reload-forces-clear warning is enabled.

Octave:resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning
when a matrix is resized by an indexed assignment with indices outside the
current bounds. By default, the Octave:resize-on-range-error warning is
disabled.
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Octave:separator-insert
Print warning if commas or semicolons might be inserted automatically in literal
matrices.

Octave:single-quote-string
Print warning if a single quote character is used to introduce a string constant.

Octave:str-to-num
If the Octave:str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0
⇒ 97 98 99

elicits a warning if the Octave:str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:string-concat
If the Octave:string-concat warning is enabled, print a warning when con-
catenating a mixture of double and single quoted strings. By default, the
Octave:string-concat warning is disabled.

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning
if a function does not define all the values in the return list which are expected.
By default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.
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13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used
to interrupt the execution of an Octave script at a certain point, or when certain conditions
are met. Once execution has stopped, and debug mode is entered, the symbol table at the
point where execution has stopped can be examined and modified to check for errors.

The normal command-line editing and history functions are available in debug mode.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are
breakpoints see Section 13.3 [Breakpoints], page 172, discussed in the next section and
interruption based on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning and debug_on_error.

[Built-in Function]val = debug_on_interrupt ()
[Built-in Function]old_val = debug_on_interrupt (new_val )

Query or set the internal variable that controls whether Octave will try to enter
debugging mode when it receives an interrupt signal (typically generated with C-c).
If a second interrupt signal is received before reaching the debugging mode, a normal
interrupt will occur.

[Built-in Function]val = debug_on_warning ()
[Built-in Function]old_val = debug_on_warning (new_val )

Query or set the internal variable that controls whether Octave will try to enter the
debugger when a warning is encountered.

[Built-in Function]val = debug_on_error ()
[Built-in Function]old_val = debug_on_error (new_val )

Query or set the internal variable that controls whether Octave will try to enter the
debugger when an error is encountered. This will also inhibit printing of the normal
traceback message (you will only see the top-level error message).

13.2 Leavinging Debug Mode

To leave the debug mode, use either dbcont or return.

[Command]dbcont ()
In debugging mode, quit debugging mode and continue execution.

See also: [dbstep], page 174, [dbstep], page 174.

To quit debug mode and return directly to the prompt dbquit should be used instead

[Command]dbquit ()
In debugging mode, quit debugging mode and return to the top level.

See also: [dbstep], page 174, [dbcont], page 171.

Finally, typing exit or quit at the debug prompt will result in Octave terminating
normally.
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13.3 Breakpoints

Breakpoints can be set in any Octave function, using the dbstop function.

[Loadable Function]rline = dbstop (func, line, . . . )
Set a breakpoint in a function

func String representing the function name. When already in debug mode this
should be left out and only the line should be given.

line Line number you would like the breakpoint to be set on. Multiple lines
might be given as separate arguments or as a vector.

The rline returned is the real line that the breakpoint was set at.

See also: [dbclear], page 172, [dbstatus], page 172, [dbstep], page 174.

Note that breakpoints cannot be set in built-in functions (e.g., sin, etc.) or dynamically
loaded function (i.e., oct-files). To set a breakpoint immediately on entering a function,
the breakpoint should be set to line 1. The leading comment block will be ignored and the
breakpoint will be set to the first executable statement in the function. For example

dbstop ("asind", 1)
⇒ 27

Note that the return value of 27 means that the breakpoint was effectively set to line 27.
The status of breakpoints in a function can be queried with the dbstatus function.

[Loadable Function]lst = dbstatus (func )
Return a vector containing the lines on which a function has breakpoints set.

func String representing the function name. When already in debug mode this
should be left out.

See also: [dbclear], page 172, [dbwhere], page 173.

Taking the above as an example, dbstatus ("asind") should return 27. The breakpoints
can then be cleared with the dbclear function

[Loadable Function]dbclear (func, line, . . . )
Delete a breakpoint in a function

func String representing the function name. When already in debug mode this
should be left out and only the line should be given.

line Line number where you would like to remove the breakpoint. Multiple
lines might be given as separate arguments or as a vector.

No checking is done to make sure that the line you requested is really a breakpoint.
If you get the wrong line nothing will happen.

See also: [dbstop], page 172, [dbstatus], page 172, [dbwhere], page 173.

These functions can be used to clear all the breakpoints in a function. For example,
dbclear ("asind", dbstatus ("asind"));

A breakpoint can be set in a subfunction. For example if a file contains the functions
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function y = func1 (x)
y = func2 (x);

endfunction
function y = func2 (x)
y = x + 1;

endfunction

then a breakpoint can be set at the start of the subfunction directly with
dbstop (["func1", filemarker(), "func2"])
⇒ 5

Note that filemarker returns a character that marks the subfunctions from the file
containing them.

Another simple way of setting a breakpoint in an Octave script is the use of the keyboard
function.

[Built-in Function]keyboard ()
[Built-in Function]keyboard (prompt )

This function is normally used for simple debugging. When the keyboard function
is executed, Octave prints a prompt and waits for user input. The input strings are
then evaluated and the results are printed. This makes it possible to examine the
values of variables within a function, and to assign new values if necessary. To leave
the prompt and return to normal execution type ‘return’ or ‘dbcont’. The keyboard
function does not return an exit status.
If keyboard is invoked without arguments, a default prompt of ‘debug> ’ is used.

See also: [dbcont], page 171, [dbquit], page 171.

The keyboard function is typically placed in a script at the point where the user desires
that the execution is stopped. It automatically sets the running script into the debug mode.

13.4 Debug Mode

There are two additional support functions that allow the user to interrogate where in the
execution of a script Octave entered the debug mode and to print the code in the script
surrounding the point where Octave entered debug mode.

[Loadable Function]dbwhere ()
Show where we are in the code

See also: [dbclear], page 172, [dbstatus], page 172, [dbstop], page 172.

[Loadable Function]dbtype ()
List script file with line numbers.

See also: [dbclear], page 172, [dbstatus], page 172, [dbstop], page 172.

You may also use isdebugmode to determine whether the debugger is currently active.

[Command]isdebugmode ()
Return true if debug mode is on, otherwise false.

See also: [dbstack], page 174, [dbclear], page 172, [dbstop], page 172, [dbstatus],
page 172.
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Debug mode also allows single line stepping through a function using the commands
dbstep.

[Command]dbstep n
[Command]dbstep in
[Command]dbstep out

In debugging mode, execute the next n lines of code. If n is omitted execute the next
line of code. If the next line of code is itself defined in terms of an m-file remain in
the existing function.
Using dbstep in will cause execution of the next line to step into any m-files defined
on the next line. Using dbstep out with cause execution to continue until the current
function returns.

See also: [dbcont], page 171, [dbquit], page 171.

13.5 Call Stack

[Loadable Function][stack, idx] dbstack (n )
Print or return current stack information. With optional argument n, omit the n
innermost stack frames.

See also: [dbclear], page 172, [dbstatus], page 172, [dbstop], page 172.

[Loadable Function]dbup (n )
In debugging mode, move up the execution stack n frames. If n is omitted, move up
one frame.

See also: [dbstack], page 174.

[Loadable Function]dbdown (n )
In debugging mode, move down the execution stack n frames. If n is omitted, move
down one frame.

See also: [dbstack], page 174.
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14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file.
The simplest functions for data Input and Output (I/O) are easy to use, but only provides
limited control of how data is processed. For more control, a set of functions modelled after
the C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression
will display the value of ‘pi’

pi
a pi = 3.1416

This works well as long as it is acceptable to have the name of the variable (or ‘ans’)
printed along with the value. To print the value of a variable without printing its name,
use the function disp.

The format command offers some control over the way Octave prints values with disp
and through the normal echoing mechanism.

[Built-in Function]disp (x )
Display the value of x. For example,

disp ("The value of pi is:"), disp (pi)

a the value of pi is:
a 3.1416

Note that the output from disp always ends with a newline.
If an output value is requested, disp prints nothing and returns the formatted output
in a string.

See also: [fdisp], page 184.

[Command]format
[Command]format options

Reset or specify the format of the output produced by disp and Octave’s normal
echoing mechanism. This command only affects the display of numbers but not how
they are stored or computed. To change the internal representation from the default
double use one of the conversion functions such as single, uint8, int64, etc.
By default, Octave displays 5 significant digits in a human readable form (option
‘short’ paired with ‘loose’ format for matrices). If format is invoked without any
options, this default format is restored.
Valid formats for floating point numbers are listed in the following table.

short Fixed point format with 5 significant figures in a field that is a maximum
of 10 characters wide. (default).
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If Octave is unable to format a matrix so that columns line up on the
decimal point and all numbers fit within the maximum field width then
it switches to an exponential ‘e’ format.

long Fixed point format with 15 significant figures in a field that is a maximum
of 20 characters wide.
As with the ‘short’ format, Octave will switch to an exponential ‘e’
format if it is unable to format a matrix properly using the current format.

short e
long e Exponential format. The number to be represented is split between a

mantissa and an exponent (power of 10). The mantissa has 5 significant
digits in the short format and 15 digits in the long format. For example,
with the ‘short e’ format, pi is displayed as 3.1416e+00.

short E
long E Identical to ‘short e’ or ‘long e’ but displays an uppercase ‘E’ to indicate

the exponent. For example, with the ‘long E’ format, pi is displayed as
3.14159265358979E+00.

short g
long g Optimally choose between fixed point and exponential format based on

the magnitude of the number. For example, with the ‘short g’ format,
pi .^ [2; 4; 8; 16; 32] is displayed as

ans =

9.8696
97.409
9488.5

9.0032e+07
8.1058e+15

long G
short G Identical to ‘short g’ or ‘long g’ but displays an uppercase ‘E’ to indicate

the exponent.

free
none Print output in free format, without trying to line up columns of matrices

on the decimal point. This also causes complex numbers to be format-
ted as numeric pairs like this ‘(0.60419, 0.60709)’ instead of like this
‘0.60419 + 0.60709i’.

The following formats affect all numeric output (floating point and integer types).

+
+ chars

plus
plus chars

Print a ‘+’ symbol for nonzero matrix elements and a space for zero matrix
elements. This format can be very useful for examining the structure of
a large sparse matrix.
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The optional argument chars specifies a list of 3 characters to use for
printing values greater than zero, less than zero and equal to zero. For
example, with the ‘+ "+-."’ format, [1, 0, -1; -1, 0, 1] is displayed
as

ans =

+.-
-.+

bank Print in a fixed format with two digits to the right of the decimal point.

native-hex
Print the hexadecimal representation of numbers as they are stored in
memory. For example, on a workstation which stores 8 byte real values
in IEEE format with the least significant byte first, the value of pi when
printed in native-hex format is 400921fb54442d18.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example,
the value of pi is

01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed
in native-bit format on a workstation which stores 8 byte real values in
IEEE format with the least significant byte first.

bit The same as native-bit, but always print the most significant bits first.

rat Print a rational approximation, i.e., values are approximated as the ratio
of small integers. For example, with the ‘rat’ format, pi is displayed as
355/113.

The following two options affect the display of all matrices.

compact Remove extra blank space around column number labels producing more
compact output with more data per page.

loose Insert blank lines above and below column number labels to produce a
more readable output with less data per page. (default).

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal
that is more than one screen long to a paging program, such as less or more. This avoids
the problem of having a large volume of output stream by before you can read it. With
less (and some versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on



178 GNU Octave

your screen if you have asked Octave to perform a significant amount of work with a single
command statement. The function fflush may be used to force output to be sent to the
pager (or any other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can
turn paging off by using the function more.

[Command]more
[Command]more on
[Command]more off

Turn output pagination on or off. Without an argument, more toggles the current
state. The current state can be determined via page_screen_output.

[Built-in Function]val = PAGER ()
[Built-in Function]old_val = PAGER (new_val )

Query or set the internal variable that specifies the program to use to display ter-
minal output on your system. The default value is normally "less", "more", or
"pg", depending on what programs are installed on your system. See Appendix F
[Installation], page 627.

See also: [more], page 178, [page screen output], page 178, [page output immediately],
page 178, [PAGER FLAGS], page 178.

[Built-in Function]val = PAGER_FLAGS ()
[Built-in Function]old_val = PAGER_FLAGS (new_val )

Query or set the internal variable that specifies the options to pass to the pager.

See also: [PAGER], page 178.

[Built-in Function]val = page_screen_output ()
[Built-in Function]old_val = page_screen_output (new_val )

Query or set the internal variable that controls whether output intended for the
terminal window that is longer than one page is sent through a pager. This allows
you to view one screenful at a time. Some pagers (such as less—see Appendix F
[Installation], page 627) are also capable of moving backward on the output.

[Built-in Function]val = page_output_immediately ()
[Built-in Function]val = page_output_immediately (new_val )

Query or set the internal variable that controls whether Octave sends output to the
pager as soon as it is available. Otherwise, Octave buffers its output and waits until
just before the prompt is printed to flush it to the pager.

[Built-in Function]fflush (fid )
Flush output to fid. This is useful for ensuring that all pending output makes it to
the screen before some other event occurs. For example, it is always a good idea to
flush the standard output stream before calling input.

fflush returns 0 on success and an OS dependent error value (−1 on unix) on error.

See also: [fopen], page 188, [fclose], page 189.



Chapter 14: Input and Output 179

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and
menu functions are normally used for managing an interactive dialog with a user, and the
keyboard function is normally used for doing simple debugging.

[Built-in Function]input (prompt )
[Built-in Function]input (prompt, "s")

Print a prompt and wait for user input. For example,
input ("Pick a number, any number! ")

prints the prompt
Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is evaluated
as an expression, so it may be a literal constant, a variable name, or any other valid
expression.
Currently, input only returns one value, regardless of the number of values produced
by the evaluation of the expression.
If you are only interested in getting a literal string value, you can call input with the
character string "s" as the second argument. This tells Octave to return the string
entered by the user directly, without evaluating it first.
Because there may be output waiting to be displayed by the pager, it is a good
idea to always call fflush (stdout) before calling input. This will ensure that all
pending output is written to the screen before your prompt. See Chapter 14 [Input
and Output], page 175.

[Function File]menu (title, opt1, . . . )
Print a title string followed by a series of options. Each option will be printed along
with a number. The return value is the number of the option selected by the user.
This function is useful for interactive programs. There is no limit to the number of
options that may be passed in, but it may be confusing to present more than will fit
easily on one screen.

See also: [disp], page 175, [printf], page 190, [input], page 179.

[Built-in Function]yes_or_no (prompt )
Ask the user a yes-or-no question. Return 1 if the answer is yes. Takes one argu-
ment, which is the string to display to ask the question. It should end in a space;
‘yes-or-no-p’ adds ‘(yes or no) ’ to it. The user must confirm the answer with
RET and can edit it until it has been confirmed.

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the
keyboard without requiring the user to type a carriage return.

[Built-in Function]kbhit ()
Read a single keystroke from the keyboard. If called with one argument, don’t wait
for a keypress. For example,
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x = kbhit ();

will set x to the next character typed at the keyboard as soon as it is typed.

x = kbhit (1);

identical to the above example, but don’t wait for a keypress, returning the empty
string if no key is available.

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using
the functions default_save_options and save_precision.

As an example the following code creates a 3-by-3 matrix and saves it to the file
‘myfile.mat’.

A = [ 1:3; 4:6; 7:9 ];
save myfile.mat A

Once one or more variables have been saved to a file, they can be read into memory
using the load command.

load myfile.mat
A

a A =
a
a 1 2 3
a 4 5 6
a 7 8 9

[Command]save file
[Command]save options file
[Command]save options file v1 v2 . . .
[Command]save options file -struct STRUCT f1 f2 . . .

Save the named variables v1, v2, . . . , in the file file. The special filename ‘-’ may
be used to write output to the terminal. If no variable names are listed, Octave
saves all the variables in the current scope. Otherwise, full variable names or pattern
syntax can be used to specify the variables to save. If the -struct modifier is used,
fields f1 f2 . . . of the scalar structure STRUCT are saved as if they were variables
with corresponding names. Valid options for the save command are listed in the
following table. Options that modify the output format override the format specified
by default_save_options.

If save is invoked using the functional form

save ("-option1", ..., "file", "v1", ...)

then the options, file, and variable name arguments (v1, . . . ) must be specified as
character strings.

-ascii Save a single matrix in a text file without header or any other information.

-binary Save the data in Octave’s binary data format.
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-float-binary
Save the data in Octave’s binary data format but only using single pre-
cision. Only use this format if you know that all the values to be saved
can be represented in single precision.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format
developed by the National Center for Supercomputing Applications at
the University of Illinois.)

-float-hdf5
Save the data in HDF5 format but only using single precision. Only use
this format if you know that all the values to be saved can be represented
in single precision.

-V7
-v7
-7
-mat7-binary

Save the data in matlab’s v7 binary data format.

-V6
-v6
-6
-mat
-mat-binary

Save the data in matlab’s v6 binary data format.

-V4
-v4
-4
-mat4-binary

Save the data in the binary format written by matlab version 4.

-text Save the data in Octave’s text data format. (default).

-zip
-z Use the gzip algorithm to compress the file. This works equally on files

that are compressed with gzip outside of octave, and gzip can equally be
used to convert the files for backward compatibility.

The list of variables to save may use wildcard patterns containing the following special
characters:

? Match any single character.

* Match zero or more characters.

[ list ] Match the list of characters specified by list. If the first character is !
or ^, match all characters except those specified by list. For example,
the pattern [a-zA-Z] will match all lower and upper case alphabetic
characters.
Wildcards may also be used in the field name specifications when using
the -struct modifier (but not in the struct name itself).
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Except when using the matlab binary data file format or the ‘-ascii’ format, saving
global variables also saves the global status of the variable. If the variable is restored
at a later time using ‘load’, it will be restored as a global variable.

The command

save -binary data a b*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s
binary format.

See also: [load], page 182, [default save options], page 183, [dlmread], page 185,
[csvread], page 185, [fread], page 199.

[Command]load file
[Command]load options file
[Command]load options file v1 v2 . . .
[Command]S = load("options", "file", "v1", "v2", . . . )

Load the named variables v1, v2, . . . , from the file file. If no variables are specified
then all variables found in the file will be loaded. As with save, the list of variables
to extract can be full names or use a pattern syntax. The format of the file is
automatically detected but may be overridden by supplying the appropriate option.

If load is invoked using the functional form

load ("-option1", ..., "file", "v1", ...)

then the options, file, and variable name arguments (v1, . . . ) must be specified as
character strings.

If a variable that is not marked as global is loaded from a file when a global symbol
with the same name already exists, it is loaded in the global symbol table. Also, if
a variable is marked as global in a file and a local symbol exists, the local symbol is
moved to the global symbol table and given the value from the file.

If invoked with a single output argument, Octave returns data instead of insert-
ing variables in the symbol table. If the data file contains only numbers (TAB- or
space-delimited columns), a matrix of values is returned. Otherwise, load returns a
structure with members corresponding to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats,
and matlab’s binary format. If compiled with zlib support, it can also load
gzip-compressed files. It will automatically detect the type of file and do conversion
from different floating point formats (currently only IEEE big and little endian,
though other formats may be added in the future).

Valid options for load are listed in the following table.

-force This option is accepted for backward compatibility but is ignored. Octave
now overwrites variables currently in memory with those of the same name
found in the file.

-ascii Force Octave to assume the file contains columns of numbers in text
format without any header or other information. Data in the file will be
loaded as a single numeric matrix with the name of the variable derived
from the name of the file.
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-binary Force Octave to assume the file is in Octave’s binary format.

-hdf5 Force Octave to assume the file is in HDF5 format. (HDF5 is a free,
portable binary format developed by the National Center for Supercom-
puting Applications at the University of Illinois.) Note that Octave can
read HDF5 files not created by itself, but may skip some datasets in
formats that it cannot support.

-import This option is accepted for backward compatibility but is ignored. Octave
can now support multi-dimensional HDF data and automatically modifies
variable names if they are invalid Octave identifiers.

-mat
-mat-binary
-6
-v6
-7
-v7 Force Octave to assume the file is in matlab’s version 6 or 7 binary

format.

-mat4-binary
-4
-v4
-V4 Force Octave to assume the file is in the binary format written by matlab

version 4.

-text Force Octave to assume the file is in Octave’s text format.

See also: [save], page 180, [dlmwrite], page 184, [csvwrite], page 185, [fwrite], page 201.

There are three functions that modify the behavior of save.

[Built-in Function]val = default_save_options ()
[Built-in Function]old_val = default_save_options (new_val )

Query or set the internal variable that specifies the default options for the save
command, and defines the default format. Typical values include "-ascii", "-text
-zip". The default value is -text.

See also: [save], page 180.

[Built-in Function]val = save_precision ()
[Built-in Function]old_val = save_precision (new_val )

Query or set the internal variable that specifies the number of digits to keep when
saving data in text format.

[Built-in Function]val = save_header_format_string ()
[Built-in Function]old_val = save_header_format_string (new_val )

Query or set the internal variable that specifies the format string used for the comment
line written at the beginning of text-format data files saved by Octave. The format
string is passed to strftime and should begin with the character ‘#’ and contain no
newline characters. If the value of save_header_format_string is the empty string,
the header comment is omitted from text-format data files. The default value is
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"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

See also: [strftime], page 517, [save], page 180.

[Built-in Function]native_float_format ()
Return the native floating point format as a string

It is possible to write data to a file in a similar way to the disp function for writing data
to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");
fdisp (fid, 3/8);
fclose (fid);

See Section 14.2.1 [Opening and Closing Files], page 188, for details on how to use fopen
and fclose.

[Built-in Function]fdisp (fid, x )
Display the value of x on the stream fid. For example,

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

a the value of pi is:
a 3.1416

Note that the output from fdisp always ends with a newline.

See also: [disp], page 175.

Octave can also read and write matrices text files such as comma separated lists.

[Function File]dlmwrite (file, a )
[Function File]dlmwrite (file, a, delim, r, c )
[Function File]dlmwrite (file, a, key, val . . . )
[Function File]dlmwrite (file, a, "-append", . . . )

Write the matrix a to the named file using delimiters.
The parameter delim specifies the delimiter to use to separate values on a row.
The value of r specifies the number of delimiter-only lines to add to the start of the
file.
The value of c specifies the number of delimiters to prepend to each line of data.
If the argument "-append" is given, append to the end of the file.
In addition, the following keyword value pairs may appear at the end of the argument
list:

"append" Either ‘"on"’ or ‘"off"’. See ‘"-append"’ above.

"delimiter"
See delim above.

"newline"
The character(s) to use to separate each row. Three special cases exist for
this option. ‘"unix"’ is changed into ’\n’, ‘"pc"’ is changed into ’\r\n’,
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and ‘"mac"’ is changed into ’\r’. Other values for this option are kept as
is.

"roffset"
See r above.

"coffset"
See c above.

"precision"
The precision to use when writing the file. It can either be a format string
(as used by fprintf) or a number of significant digits.

dlmwrite ("file.csv", reshape (1:16, 4, 4));

dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")

See also: [dlmread], page 185, [csvread], page 185, [csvwrite], page 185.

[Loadable Function]data = dlmread (file )
[Loadable Function]data = dlmread (file, sep )
[Loadable Function]data = dlmread (file, sep, r0, c0 )
[Loadable Function]data = dlmread (file, sep, range )

Read the matrix data from a text file. If not defined the separator between fields is
determined from the file itself. Otherwise the separation character is defined by sep.
Given two scalar arguments r0 and c0, these define the starting row and column of
the data to be read. These values are indexed from zero, such that the first row
corresponds to an index of zero.
The range parameter must be a 4 element vector containing the upper left and lower
right corner [R0,C0,R1,C1] or a spreadsheet style range such as ’A2..Q15’. The
lowest index value is zero.

[Function File]x = csvwrite (filename, x )
Write the matrix x to a file.
This function is equivalent to

dlmwrite (filename, x, ",", ...)

See also: [dlmread], page 185, [dlmwrite], page 184, [csvread], page 185.

[Function File]x = csvread (filename )
Read the matrix x from a file.
This function is equivalent to

dlmread (filename, "," , ...)

See also: [dlmread], page 185, [dlmwrite], page 184, [csvwrite], page 185.

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpectedly it will by default save the variables available in
the workspace to a file in the current directory. By default this file is named ‘octave-core’
and can be loaded into memory with the load command. While the default behavior most
often is reasonable it can be changed through the following functions.
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[Built-in Function]val = crash_dumps_octave_core ()
[Built-in Function]old_val = crash_dumps_octave_core (new_val )

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it crashes or receives a hangup, terminate or
similar signal.

See also: [octave core file limit], page 186, [octave core file name], page 186,
[octave core file options], page 186.

[Built-in Function]val = sighup_dumps_octave_core ()
[Built-in Function]old_val = sighup_dumps_octave_core (new_val )

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a hangup signal.

[Built-in Function]val = sigterm_dumps_octave_core ()
[Built-in Function]old_val = sigterm_dumps_octave_core (new_val )

Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a terminate signal.

[Built-in Function]val = octave_core_file_options ()
[Built-in Function]old_val = octave_core_file_options (new_val )

Query or set the internal variable that specifies the options used for saving the
workspace data if Octave aborts. The value of octave_core_file_options should
follow the same format as the options for the save function. The default value is
Octave’s binary format.

See also: [crash dumps octave core], page 185, [octave core file name], page 186,
[octave core file limit], page 186.

[Built-in Function]val = octave_core_file_limit ()
[Built-in Function]old_val = octave_core_file_limit (new_val )

Query or set the internal variable that specifies the maximum amount of memory (in
kilobytes) of the top-level workspace that Octave will attempt to save when writing
data to the crash dump file (the name of the file is specified by octave core file name).
If octave core file options flags specify a binary format, then octave core file limit
will be approximately the maximum size of the file. If a text file format is used, then
the file could be much larger than the limit. The default value is -1 (unlimited)

See also: [crash dumps octave core], page 185, [octave core file name], page 186,
[octave core file options], page 186.

[Built-in Function]val = octave_core_file_name ()
[Built-in Function]old_val = octave_core_file_name (new_val )

Query or set the internal variable that specifies the name of the file used for saving
data from the top-level workspace if Octave aborts. The default value is "octave-
core"

See also: [crash dumps octave core], page 185, [octave core file name], page 186,
[octave core file options], page 186.
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14.1.4 Rational Approximations

[Function File]s = rat (x, tol )
[Function File][n, d] = rat (x, tol )

Find a rational approximation to x within the tolerance defined by tol using a con-
tinued fraction expansion. For example,

rat(pi) = 3 + 1/(7 + 1/16) = 355/113
rat(e) = 3 + 1/(-4 + 1/(2 + 1/(5 + 1/(-2 + 1/(-7)))))

= 1457/536

Called with two arguments returns the numerator and denominator separately as two
matrices.

See also: [rats], page 187.

[Built-in Function]rats (x, len )
Convert x into a rational approximation represented as a string. You can convert the
string back into a matrix as follows:

r = rats(hilb(4));
x = str2num(r)

The optional second argument defines the maximum length of the string representing
the elements of x. By default len is 9.

See also: [format], page 175, [rat], page 187.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C
programming language’s standard I/O library. The argument lists for some of the input
functions are slightly different, however, because Octave has no way of passing arguments
by reference.

In the following, file refers to a file name and fid refers to an integer file number, as
returned by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

[Built-in Function]stdin ()
Return the numeric value corresponding to the standard input stream. When Octave
is used interactively, this is filtered through the command line editing functions.

See also: [stdout], page 187, [stderr], page 188.

[Built-in Function]stdout ()
Return the numeric value corresponding to the standard output stream. Data written
to the standard output is normally filtered through the pager.

See also: [stdin], page 187, [stderr], page 188.
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[Built-in Function]stderr ()
Return the numeric value corresponding to the standard error stream. Even if paging
is turned on, the standard error is not sent to the pager. It is useful for error messages
and prompts.

See also: [stdin], page 187, [stdout], page 187.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing
to a file. The fopen function returns a pointer to an open file that is ready to be read or
written. Once all data has been read from or written to the opened file it should be closed.
The fclose function does this. The following code illustrates the basic pattern for writing
to a file, but a very similar pattern is used when reading a file.

filename = "myfile.txt";
fid = fopen (filename, "w");
# Do the actual I/O here...
fclose (fid);

[Built-in Function][fid, msg] = fopen (name, mode, arch )
[Built-in Function]fid_list = fopen ("all")
[Built-in Function][file, mode, arch] = fopen (fid )

The first form of the fopen function opens the named file with the specified mode
(read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE
little endian, etc.), and returns an integer value that may be used to refer to the file
later. If an error occurs, fid is set to −1 and msg contains the corresponding system
error message. The mode is a one or two character string that specifies whether the
file is to be opened for reading, writing, or both.
The second form of the fopen function returns a vector of file ids corresponding to
all the currently open files, excluding the stdin, stdout, and stderr streams.
The third form of the fopen function returns information about the open file given
its file id.
For example,

myfile = fopen ("splat.dat", "r", "ieee-le");

opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be
read assuming they are stored in IEEE format with the least significant bit first, and
then converted to the native representation.
Opening a file that is already open simply opens it again and returns a separate file
id. It is not an error to open a file several times, though writing to the same file
through several different file ids may produce unexpected results.
The possible values ‘mode’ may have are

‘r’ Open a file for reading.

‘w’ Open a file for writing. The previous contents are discarded.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.
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‘w+’ Open a file for reading or writing. The previous contents are discarded.

‘a+’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in
binary mode. On Windows and Macintosh systems, text mode reading and writing
automatically converts linefeeds to the appropriate line end character for the system
(carriage-return linefeed on Windows, carriage-return on Macintosh). The default if
no mode is specified is binary mode.
Additionally, you may append a "z" to the mode string to open a gzipped file for
reading or writing. For this to be successful, you must also open the file in binary
mode.
The parameter arch is a string specifying the default data format for the file. Valid
values for arch are:

‘native’ The format of the current machine (this is the default).
‘ieee-be’ IEEE big endian format.
‘ieee-le’ IEEE little endian format.
‘vaxd’ VAX D floating format.
‘vaxg’ VAX G floating format.
‘cray’ Cray floating format.

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and
‘ieee-le’ formats.

See also: [fclose], page 189, [fgets], page 190, [fputs], page 189, [fread], page 199,
[fseek], page 203, [ferror], page 203, [fprintf], page 191, [fscanf], page 195, [ftell],
page 203, [fwrite], page 201.

[Built-in Function]fclose (fid )
Closes the specified file. If successful, fclose returns 0, otherwise, it returns -1.

See also: [fopen], page 188, [fseek], page 203, [ftell], page 203.

14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed
for Free Science’ to the file ‘free.txt’.

filename = "free.txt";
fid = fopen (filename, "w");
fputs (fid, "Free Software is needed for Free Science");
fclose (fid);

[Built-in Function]fputs (fid, string )
Write a string to a file with no formatting.
Return a non-negative number on success and EOF on error.

See also: [scanf], page 196, [sscanf], page 196, [fread], page 199, [fprintf], page 191,
[fgets], page 190, [fscanf], page 195.
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A function much similar to fputs is available for writing data to the screen. The puts
function works just like fputs except it doesn’t take a file pointer as its input.

[Built-in Function]puts (string )
Write a string to the standard output with no formatting.

Return a non-negative number on success and EOF on error.

14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read
from the file using fgetl as the following code illustrates

fid = fopen ("free.txt");
txt = fgetl (fid)

a Free Software is needed for Free Science
fclose (fid);

This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software
is needed for Free Science’.

[Built-in Function]fgetl (fid, len )
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, excluding the possible trailing newline, are returned
as a string.

If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns −1.

See also: [fread], page 199, [fscanf], page 195.

[Built-in Function]fgets (fid, len )
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, including the possible trailing newline, are returned
as a string.

If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns −1.

See also: [fputs], page 189, [fopen], page 188, [fread], page 199, [fscanf], page 195.

14.2.4 Formatted Output

This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modelled after the
C language functions of the same name, but they interpret the format template differently
in order to improve the performance of printing vector and matrix values.

[Built-in Function]printf (template, . . . )
Print optional arguments under the control of the template string template to the
stream stdout and return the number of characters printed.

See also: [fprintf], page 191, [sprintf], page 191, [scanf], page 196.
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[Built-in Function]fprintf (fid, template, . . . )
This function is just like printf, except that the output is written to the stream fid
instead of stdout. If fid is omitted, the output is written to stdout.

See also: [printf], page 190, [sprintf], page 191, [fread], page 199, [fscanf], page 195,
[fopen], page 188, [fclose], page 189.

[Built-in Function]sprintf (template, . . . )
This is like printf, except that the output is returned as a string. Unlike the C
library function, which requires you to provide a suitably sized string as an argument,
Octave’s sprintf function returns the string, automatically sized to hold all of the
items converted.

See also: [printf], page 190, [fprintf], page 191, [sscanf], page 196.

The printf function can be used to print any number of arguments. The template
string argument you supply in a call provides information not only about the number of
additional arguments, but also about their types and what style should be used for printing
them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template cause
subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;
filename = "foo.txt";
printf ("Processed %d%% of ‘%s’.\nPlease be patient.\n",

pct, filename);

produces output like
Processed 37% of ‘foo.txt’.
Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a scalar argument
should be printed in decimal notation, the ‘%s’ conversion to specify printing of a string
argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value in
octal, decimal, or hexadecimal radix (‘%o’, ‘%u’, or ‘%x’, respectively); or as a character
value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’
conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses
either ‘%e’ or ‘%f’ format, depending on what is more appropriate for the magnitude of the
particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and
the character that indicates which conversion to apply. These slightly alter the ordinary
behavior of the conversion. For example, most conversion specifications permit you to
specify a minimum field width and a flag indicating whether you want the result left- or
right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary de-
pending on the particular conversion. They’re all described in more detail in the following
sections.
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14.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example,

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

a 1.00 5.00e-01 0.3333
a 0.50 3.33e-01 0.25
a 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not
return to the beginning of the format template when moving on from one value to the next.
This can lead to confusing output if the number of elements in the matrices are not exact
multiples of the number of conversions in the format template. For example,

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 4]);

a 1.00 2.00e+00 3
a 4.00

If this is not what you want, use a series of calls instead of just one.

14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can
appear in a printf template string.

Characters in the template string that are not part of a conversion specification are
printed as-is to the output stream.

The conversion specifications in a printf template string have the general form:

% flags width [ . precision ] type conversion

For example, in the conversion specifier ‘%-10.8ld’, the ‘-’ is a flag, ‘10’ specifies the field
width, the precision is ‘8’, the letter ‘l’ is a type modifier, and ‘d’ specifies the conversion
style. (This particular type specifier says to print a numeric argument in decimal notation,
with a minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed
in sequence by:

• Zero or more flag characters that modify the normal behavior of the conversion speci-
fication.

• An optional decimal integer specifying the minimum field width. If the normal conver-
sion produces fewer characters than this, the field is padded with spaces to the specified
width. This is a minimum value; if the normal conversion produces more characters
than this, the field is not truncated. Normally, the output is right-justified within the
field.

You can also specify a field width of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the field width. The
value is rounded to the nearest integer. If the value is negative, this means to set the
‘-’ flag (see below) and to use the absolute value as the field width.
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• An optional precision to specify the number of digits to be written for the numeric
conversions. If the precision is specified, it consists of a period (‘.’) followed optionally
by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the precision. The value
must be an integer, and is ignored if it is negative.

• An optional type modifier character. This character is ignored by Octave’s printf
function, but is recognized to provide compatibility with the C language printf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they use.

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%i’ Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions], page 194, for details. ‘%d’ and ‘%i’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input
Conversions], page 197).

‘%o’ Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Con-
versions], page 194, for details.

‘%u’ Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer
Conversions], page 194, for details.

‘%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’ uses lower-case letters
and ‘%X’ uses upper-case. See Section 14.2.8 [Integer Conversions], page 194,
for details.

‘%f’ Print a floating-point number in normal (fixed-point) notation. See
Section 14.2.9 [Floating-Point Conversions], page 194, for details.

‘%e’, ‘%E’ Print a floating-point number in exponential notation. ‘%e’ uses lower-case let-
ters and ‘%E’ uses upper-case. See Section 14.2.9 [Floating-Point Conversions],
page 194, for details.

‘%g’, ‘%G’ Print a floating-point number in either normal (fixed-point) or exponential no-
tation, whichever is more appropriate for its magnitude. ‘%g’ uses lower-case
letters and ‘%G’ uses upper-case. See Section 14.2.9 [Floating-Point Conver-
sions], page 194, for details.

‘%c’ Print a single character. See Section 14.2.10 [Other Output Conversions],
page 195.

‘%s’ Print a string. See Section 14.2.10 [Other Output Conversions], page 195.

‘%%’ Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 195.
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If the syntax of a conversion specification is invalid, unpredictable things will happen,
so don’t do this. If there aren’t enough function arguments provided to supply values for
all the conversion specifications in the template string, or if the arguments are not of the
correct types, the results are unpredictable. If you supply more arguments than conversion
specifications, the extra argument values are simply ignored; this is sometimes useful.

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’, and ‘%X’ conversion
specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%o’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’
except that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:

‘-’ Left-justify the result in the field (instead of the normal right-justification).

‘+’ For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if the value is positive.

‘ ’ For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus
or minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures
that the result includes a sign, this flag is ignored if you supply both of them.

‘#’ For the ‘%o’ conversion, this forces the leading digit to be ‘0’, as if by increasing
the precision. For ‘%x’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to
the result. This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any
indication of sign or base. This flag is ignored if the ‘-’ flag is also specified, or
if a precision is specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading
zeros are produced if necessary. If you don’t specify a precision, the number is printed with
as many digits as it needs. If you convert a value of zero with an explicit precision of zero,
then no characters at all are produced.

14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’,
‘%e’, ‘%E’, ‘%g’, and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, producing output of the
form [-]ddd.ddd, where the number of digits following the decimal point is controlled by
the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of
the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is
controlled by the precision. The exponent always contains at least two digits. The ‘%E’
conversion is similar but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘%E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise
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they use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result
and a decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:

‘-’ Left-justify the result in the field. Normally the result is right-justified.

‘+’ Always include a plus or minus sign in the result.

‘ ’ If the result doesn’t start with a plus or minus sign, prefix it with a space
instead. Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘#’ Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after
the decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign.
This flag is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’,
‘%e’, and ‘%E’ conversions. For these conversions, the default precision is 6. If the precision
is explicitly 0, this suppresses the decimal point character entirely. For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the precision is 0
or not specified for ‘%g’ or ‘%G’, it is treated like a value of 1. If the value being printed
cannot be expressed precisely in the specified number of digits, the value is rounded to the
nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

The ‘%c’ conversion prints a single character. The ‘-’ flag can be used to specify left-
justification in the field, but no other flags are defined, and no precision or type modifier
can be given. For example:

printf ("%c%c%c%c%c", "h", "e", "l", "l", "o");

prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A
precision can be specified to indicate the maximum number of characters to write; otherwise
characters in the string up to but not including the terminating null character are written
to the output stream. The ‘-’ flag can be used to specify left-justification in the field, but
no other flags or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).

14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There
are two forms of each of these functions. One can be used to extract vectors of data from
a file, and the other is more ‘C-like’.
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[Built-in Function][val, count] = fscanf (fid, template, size )
[Built-in Function][v1, v2, ..., count] = fscanf (fid, template, "C")

In the first form, read from fid according to template, returning the result in the
matrix val.
The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.
A string is returned if template specifies only character conversions.
The number of items successfully read is returned in count.
In the second form, read from fid according to template, with each conversion specifier
in template corresponding to a single scalar return value. This form is more ‘C-like’,
and also compatible with previous versions of Octave. The number of successful
conversions is returned in count

See also: [scanf], page 196, [sscanf], page 196, [fread], page 199, [fprintf], page 191,
[fgets], page 190, [fputs], page 189.

[Built-in Function][val, count] = scanf (template, size )
[Built-in Function][v1, v2, ..., count]] = scanf (template, "C")

This is equivalent to calling fscanf with fid = stdin.
It is currently not useful to call scanf in interactive programs.

See also: [fscanf], page 195, [sscanf], page 196, [printf], page 190.

[Built-in Function][val, count] = sscanf (string, template, size )
[Built-in Function][v1, v2, ..., count] = sscanf (string, template, "C")

This is like fscanf, except that the characters are taken from the string string instead
of from a stream. Reaching the end of the string is treated as an end-of-file condition.

See also: [fscanf], page 195, [scanf], page 196, [sprintf], page 191.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is
oriented more towards free-format input and simple pattern matching, rather than fixed-
field formatting. For example, most scanf conversions skip over any amount of “white
space” (including spaces, tabs, and newlines) in the input file, and there is no concept
of precision for the numeric input conversions as there is for the corresponding output
conversions. Ordinarily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.
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When a matching failure occurs, scanf returns immediately, leaving the first non-
matching character as the next character to be read from the stream, and scanf returns all
the items that were successfully converted.

The formatted input functions are not used as frequently as the formatted output func-
tions. Partly, this is because it takes some care to use them properly. Another reason is
that it is difficult to recover from a matching error.

14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters
in the input stream to be read and discarded. The whitespace characters that are matched
need not be exactly the same whitespace characters that appear in the template string. For
example, write ‘ , ’ in the template to recognize a comma with optional whitespace before
and after.

Other characters in the template string that are not part of conversion specifications
must match characters in the input stream exactly; if this is not the case, a matching
failure occurs.

The conversion specifications in a scanf template string have the general form:

% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ character fol-
lowed in sequence by:

• An optional flag character ‘*’, which says to ignore the text read for this specification.
When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return
any value, and does not increment the count of successful assignments.

• An optional decimal integer that specifies the maximum field width. Reading of char-
acters from the input stream stops either when this maximum is reached or when a
non-matching character is found, whichever happens first. Most conversions discard
initial whitespace characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial whitespace are explicitly
documented.

• An optional type modifier character. This character is ignored by Octave’s scanf
function, but is recognized to provide compatibility with the C language scanf.

• A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

‘%d’ Matches an optionally signed integer written in decimal. See Section 14.2.14
[Numeric Input Conversions], page 198.
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‘%i’ Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input
Conversions], page 198.

‘%o’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Nu-
meric Input Conversions], page 198.

‘%u’ Matches an unsigned integer written in decimal radix. See Section 14.2.14
[Numeric Input Conversions], page 198.

‘%x’, ‘%X’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14
[Numeric Input Conversions], page 198.

‘%e’, ‘%f’, ‘%g’, ‘%E’, ‘%G’
Matches an optionally signed floating-point number. See Section 14.2.14 [Nu-
meric Input Conversions], page 198.

‘%s’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions], page 198.

‘%c’ Matches a string of one or more characters; the number of characters read is con-
trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions], page 198.

‘%%’ This matches a literal ‘%’ character in the input stream. No corresponding
argument is used.

If the syntax of a conversion specification is invalid, the behavior is undefined. If there
aren’t enough function arguments provided to supply addresses for all the conversion spec-
ifications in the template strings that perform assignments, or if the arguments are not of
the correct types, the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

14.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.

The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%i’ conversion matches an optionally signed integer in any of the formats that the
C language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘0xa’, or ‘012’ could be read in as integers under
the ‘%i’ conversion. Each of these specifies a number with decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hex-
adecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase
or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’, ‘l’, and ‘L’ modifiers.

14.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character values:
‘%s’ and ‘%c’.
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The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum,
the default is 1. This conversion does not skip over initial whitespace characters. It reads
precisely the next n characters, and fails if it cannot get that many.

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and dis-
cards initial whitespace, but stops when it encounters more whitespace after having read
something.

For example, reading the input:

hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input with the
conversion ‘%10s’ produces "hello,".

14.2.16 Binary I/O

Octave can read and write binary data using the functions fread and fwrite, which are
patterned after the standard C functions with the same names. They are able to automat-
ically swap the byte order of integer data and convert among the supported floating point
formats as the data are read.

[Built-in Function][val, count] = fread (fid, size, precision, skip, arch )
Read binary data of type precision from the specified file ID fid.

The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read and
may be one of

"schar"
"signed char"

Signed character.

"uchar"
"unsigned char"

Unsigned character.

"int8"
"integer*1"

8-bit signed integer.
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"int16"
"integer*2"

16-bit signed integer.

"int32"
"integer*4"

32-bit signed integer.

"int64"
"integer*8"

64-bit signed integer.

"uint8" 8-bit unsigned integer.

"uint16" 16-bit unsigned integer.

"uint32" 32-bit unsigned integer.

"uint64" 64-bit unsigned integer.

"single"
"float32"
"real*4" 32-bit floating point number.

"double"
"float64"
"real*8" 64-bit floating point number.

"char"
"char*1" Single character.

"short" Short integer (size is platform dependent).

"int" Integer (size is platform dependent).

"long" Long integer (size is platform dependent).

"ushort"
"unsigned short"

Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"

Unsigned integer (size is platform dependent).

"ulong"
"unsigned long"

Unsigned long integer (size is platform dependent).

"float" Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example,
‘32*single’ causes fread to read a block of 32 single precision floating point numbers.
Reading in blocks is useful in combination with the skip argument.
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The precision argument may also specify a type conversion. For example,
‘int16=>int32’ causes fread to read 16-bit integer values and return an array of
32-bit integer values. By default, fread returns a double precision array. The special
form ‘*TYPE’ is shorthand for ‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, the specification
‘32*single=>single’ causes fread to read blocks of single precision floating point
values and return an array of single precision values instead of the default array of
double precision values.

The optional argument skip specifies the number of bytes to skip after each element
(or block of elements) is read. If it is not specified, a value of 0 is assumed. If the
final block read is not complete, the final skip is omitted. For example,

fread (f, 10, "3*single=>single", 8)

will omit the final 8-byte skip because the last read will not be a complete block of 3
values.

The optional argument arch is a string specifying the data format for the file. Valid
values are

"native" The format of the current machine.

"ieee-be"
IEEE big endian.

"ieee-le"
IEEE little endian.

"vaxd" VAX D floating format.

"vaxg" VAX G floating format.

"cray" Cray floating format.

Conversions are currently only supported for "ieee-be" and "ieee-le" formats.

The data read from the file is returned in val, and the number of values read is
returned in count

See also: [fwrite], page 201, [fopen], page 188, [fclose], page 189.

[Built-in Function]count = fwrite (fid, data, precision, skip, arch )
Write data in binary form of type precision to the specified file ID fid, returning the
number of values successfully written to the file.

The argument data is a matrix of values that are to be written to the file. The values
are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted
as described for fread.

The behavior of fwrite is undefined if the values in data are too large to fit in the
specified precision.

See also: [fread], page 199, [fopen], page 188, [fclose], page 189.
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14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly
used when an external program launched from within Octave needs to access data. When
Octave exits all temporary files will be deleted, so this step need not be executed manually.

[Built-in Function][fid, name, msg] = mkstemp (template, delete )
Return the file ID corresponding to a new temporary file with a unique name created
from template. The last six characters of template must be XXXXXX and these are
replaced with a string that makes the filename unique. The file is then created with
mode read/write and permissions that are system dependent (on GNU/Linux systems,
the permissions will be 0600 for versions of glibc 2.0.7 and later). The file is opened
with the O_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted auto-
matically when Octave exits, or when the function purge_tmp_files is called.

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty
string. Otherwise, fid is -1, name is empty, and msg contains a system-dependent
error message.

See also: [tmpfile], page 202, [tmpnam], page 202, [P tmpdir], page 530.

[Built-in Function][fid, msg] = tmpfile ()
Return the file ID corresponding to a new temporary file with a unique name. The file
is opened in binary read/write ("w+b") mode. The file will be deleted automatically
when it is closed or when Octave exits.

If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1
and msg contains a system-dependent error message.

See also: [tmpnam], page 202, [mkstemp], page 202, [P tmpdir], page 530.

[Built-in Function]tmpnam (dir, prefix )
Return a unique temporary file name as a string.

If prefix is omitted, a value of "oct-" is used. If dir is also omitted, the default
directory for temporary files is used. If dir is provided, it must exist, otherwise the
default directory for temporary files is used. Since the named file is not opened, by
tmpnam, it is possible (though relatively unlikely) that it will not be available by the
time your program attempts to open it.

See also: [tmpfile], page 202, [mkstemp], page 202, [P tmpdir], page 530.

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading
small parts of a file at a time. The following example shows how to read one line at a time
from a file until the end has been reached.
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filename = "myfile.txt";
fid = fopen (filename, "r");
while (! feof (fid) )
text_line = fgetl (fid);

endwhile
fclose (fid);

Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing
the loop in the above code.

[Built-in Function]feof (fid )
Return 1 if an end-of-file condition has been encountered for a given file and 0 other-
wise. Note that it will only return 1 if the end of the file has already been encountered,
not if the next read operation will result in an end-of-file condition.

See also: [fread], page 199, [fopen], page 188, [fclose], page 189.

[Built-in Function]ferror (fid )
Return 1 if an error condition has been encountered for a given file and 0 otherwise.
Note that it will only return 1 if an error has already been encountered, not if the
next operation will result in an error condition.

[Built-in Function]fclear (fid )
Clear the stream state for the specified file.

[Built-in Function]freport ()
Print a list of which files have been opened, and whether they are open for reading,
writing, or both. For example,

freport ()

a number mode name
a
a 0 r stdin
a 1 w stdout
a 2 w stderr
a 3 r myfile

14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for
a given file.

[Built-in Function]ftell (fid )
Return the position of the file pointer as the number of characters from the beginning
of the file fid.

See also: [fseek], page 203, [fopen], page 188, [fclose], page 189.

[Built-in Function]fseek (fid, offset, origin )
Set the file pointer to any location within the file fid.
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The pointer is positioned offset characters from the origin, which may be one of the
predefined variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END
(end of file) or strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is assumed.
The offset must be zero, or a value returned by ftell (in which case origin must be
SEEK_SET).
Return 0 on success and -1 on error.

See also: [ftell], page 203, [fopen], page 188, [fclose], page 189.

[Built-in Function]SEEK_SET ()
[Built-in Function]SEEK_CUR ()
[Built-in Function]SEEK_END ()

Return the value required to request that fseek perform one of the following actions:

SEEK_SET Position file relative to the beginning.

SEEK_CUR Position file relative to the current position.

SEEK_END Position file relative to the end.

[Built-in Function]frewind (fid )
Move the file pointer to the beginning of the file fid, returning 0 for success, and -1 if
an error was encountered. It is equivalent to fseek (fid, 0, SEEK_SET).

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);
frewind (myfile);
fourch = fgets (myfile, 4);
fseek (myfile, marker, SEEK_SET);
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15 Plotting

15.1 Plotting Basics

Octave makes it easy to create many different types of two- and three-dimensional plots
using a few high-level functions.

If you need finer control over graphics, see Section 15.2 [Advanced Plotting], page 243.

15.1.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,
x = -10:0.1:10;
plot (x, sin (x));

displays a sine wave shown in Figure 15.1. On most systems, this command will open a
separate plot window to display the graph.
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Figure 15.1: Simple Two-Dimensional Plot.

[Function File]plot (y )
[Function File]plot (x, y )
[Function File]plot (x, y, property, value, . . . )
[Function File]plot (x, y, fmt )
[Function File]plot (h, . . . )

Produces two-dimensional plots. Many different combinations of arguments are pos-
sible. The simplest form is

plot (y)

where the argument is taken as the set of y coordinates and the x coordinates are
taken to be the indices of the elements, starting with 1.
To save a plot, in one of several image formats such as PostScript or PNG, use the
print command.
If more than one argument is given, they are interpreted as
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plot (y, property, value, ...)

or
plot (x, y, property, value, ...)

or
plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are
interpreted as follows:
• If a single data argument is supplied, it is taken as the set of y coordinates and

the x coordinates are taken to be the indices of the elements, starting with 1.
• If the x is a vector and y is a matrix, then the columns (or rows) of y are plotted

versus x. (using whichever combination matches, with columns tried first.)
• If the x is a matrix and y is a vector, y is plotted versus the columns (or rows)

of x. (using whichever combination matches, with columns tried first.)
• If both arguments are vectors, the elements of y are plotted versus the elements

of x.
• If both arguments are matrices, the columns of y are plotted versus the columns

of x. In this case, both matrices must have the same number of rows and columns
and no attempt is made to transpose the arguments to make the number of rows
match.
If both arguments are scalars, a single point is plotted.

Multiple property-value pairs may be specified, but they must appear in pairs. These
arguments are applied to the lines drawn by plot.
If the fmt argument is supplied, it is interpreted as follows. If fmt is missing, the
default gnuplot line style is assumed.

‘-’ Set lines plot style (default).

‘.’ Set dots plot style.

‘n ’ Interpreted as the plot color if n is an integer in the range 1 to 6.

‘nm ’ If nm is a two digit integer and m is an integer in the range 1 to 6, m is
interpreted as the point style. This is only valid in combination with the
@ or -@ specifiers.

‘c ’ If c is one of "k" (black), "r" (red), "g" (green), "b" (blue), "m" (ma-
genta), "c" (cyan), or "w" (white), it is interpreted as the line plot color.

‘";title;"’
Here "title" is the label for the key.

‘+’
‘*’
‘o’
‘x’
‘^’ Used in combination with the points or linespoints styles, set the point

style.
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The fmt argument may also be used to assign key titles. To do so, include the desired
title between semi-colons after the formatting sequence described above, e.g., "+3;Key
Title;" Note that the last semi-colon is required and will generate an error if it is left
out.
Here are some plot examples:

plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")

This command will plot y with points of type 2 (displayed as ‘+’) and color 1 (red),
y2 with lines, y3 with lines of color 4 (magenta) and y4 with points displayed as ‘+’.

plot (b, "*", "markersize", 3)

This command will plot the data in the variable b, with points displayed as ‘*’ with
a marker size of 3.

t = 0:0.1:6.3;
plot (t, cos(t), "-;cos(t);", t, sin(t), "+3;sin(t);");

This will plot the cosine and sine functions and label them accordingly in the key.
If the first argument is an axis handle, then plot into these axes, rather than the
current axis handle returned by gca.

See also: [semilogx], page 208, [semilogy], page 208, [loglog], page 208, [polar],
page 218, [mesh], page 227, [contour], page 213, [bar], page 208, [stairs], page 210,
[errorbar], page 216, [xlabel], page 236, [ylabel], page 236, [title], page 236, [print],
page 239.

The plotyy function may be used to create a plot with two independent y axes.

[Function File]plotyy (x1, y1, x2, y2 )
[Function File]plotyy (. . . , fun )
[Function File]plotyy (. . . , fun1, fun2 )
[Function File]plotyy (h, . . . )
[Function File][ax, h1, h2] = plotyy (. . . )

Plots two sets of data with independent y-axes. The arguments x1 and y1 define the
arguments for the first plot and x1 and y2 for the second.
By default the arguments are evaluated with feval (@plot, x, y). However the type
of plot can be modified with the fun argument, in which case the plots are generated
by feval (fun, x, y). fun can be a function handle, an inline function or a string
of a function name.
The function to use for each of the plots can be independently defined with fun1 and
fun2.
If given, h defines the principal axis in which to plot the x1 and y1 data. The return
value ax is a two element vector with the axis handles of the two plots. h1 and h2
are handles to the objects generated by the plot commands.

x = 0:0.1:2*pi;
y1 = sin (x);
y2 = exp (x - 1);
ax = plotyy (x, y1, x - 1, y2, @plot, @semilogy);
xlabel ("X");
ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");
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The functions semilogx, semilogy, and loglog are similar to the plot function, but
produce plots in which one or both of the axes use log scales.

[Function File]semilogx (args )
Produce a two-dimensional plot using a log scale for the x axis. See the description
of plot for a description of the arguments that semilogx will accept.

See also: [plot], page 205, [semilogy], page 208, [loglog], page 208.

[Function File]semilogy (args )
Produce a two-dimensional plot using a log scale for the y axis. See the description
of plot for a description of the arguments that semilogy will accept.

See also: [plot], page 205, [semilogx], page 208, [loglog], page 208.

[Function File]loglog (args )
Produce a two-dimensional plot using log scales for both axes. See the description of
plot for a description of the arguments that loglog will accept.

See also: [plot], page 205, [semilogx], page 208, [semilogy], page 208.

The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,

hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in
Figure 15.2.
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Figure 15.2: Histogram.

[Function File]bar (x, y )
[Function File]bar (y )
[Function File]bar (x, y, w )
[Function File]bar (x, y, w, style )
[Function File]h = bar (. . . , prop, val )
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[Function File]bar (h, . . . )
Produce a bar graph from two vectors of x-y data.
If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.
The default width of 0.8 for the bars can be changed using w.
If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".
The optional return value h provides a handle to the "bar series" object with one
handle per column of the variable y. This series allows common elements of the group
of bar series objects to be changed in a single bar series and the same properties are
changed in the other "bar series". For example

h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);

changes the position on the base of all of the bar series.
The optional input handle h allows an axis handle to be passed. Properties of the
patch graphics object can be changed using prop, val pairs.

See also: [barh], page 209, [plot], page 205.

[Function File]barh (x, y )
[Function File]barh (y )
[Function File]barh (x, y, w )
[Function File]barh (x, y, w, style )
[Function File]h = barh (. . . , prop, val )
[Function File]barh (h, . . . )

Produce a horizontal bar graph from two vectors of x-y data.
If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.
The default width of 0.8 for the bars can be changed using w.
If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".
The optional return value h provides a handle to the bar series object. See bar for a
description of the use of the bar series.
The optional input handle h allows an axis handle to be passed. Properties of the
patch graphics object can be changed using prop, val pairs.

See also: [bar], page 208, [plot], page 205.

[Function File]hist (y, x, norm )
Produce histogram counts or plots.
With one vector input argument, plot a histogram of the values with 10 bins. The
range of the histogram bins is determined by the range of the data. With one matrix
input argument, plot a histogram where each bin contains a bar per input column.
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Given a second scalar argument, use that as the number of bins.
Given a second vector argument, use that as the centers of the bins, with the width
of the bins determined from the adjacent values in the vector.
If third argument is provided, the histogram is normalized such that the sum of the
bars is equal to norm.
Extreme values are lumped in the first and last bins.
With two output arguments, produce the values nn and xx such that bar (xx, nn)
will plot the histogram.

See also: [bar], page 208.

[Function File]stairs (x, y )
[Function File]stairs (. . . , style )
[Function File]stairs (. . . , prop, val )
[Function File]stairs (h, . . . )
[Function File]h = stairs (. . . )

Produce a stairstep plot. The arguments may be vectors or matrices.
If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.
If two output arguments are specified, the data are generated but not plotted. For
example,

stairs (x, y);

and
[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

See also: [plot], page 205, [semilogx], page 208, [semilogy], page 208, [loglog], page 208,
[polar], page 218, [mesh], page 227, [contour], page 213, [bar], page 208, [xlabel],
page 236, [ylabel], page 236, [title], page 236.

[Function File]h = stem (x, y, linespec )
[Function File]h = stem (. . . , "filled")

Plot a stem graph from two vectors of x-y data. If only one argument is given, it is
taken as the y-values and the x coordinates are taken from the indices of the elements.
If y is a matrix, then each column of the matrix is plotted as a separate stem graph.
In this case x can either be a vector, the same length as the number of rows in y, or
it can be a matrix of the same size as y.
The default color is "r" (red). The default line style is "-" and the default marker is
"o". The line style can be altered by the linespec argument in the same manner as
the plot command. For example

x = 1:10;
y = ones (1, length (x))*2.*x;
stem (x, y, "b");

plots 10 stems with heights from 2 to 20 in blue;
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The return value of stem is a vector if "stem series" graphics handles, with one handle
per column of the variable y. This handle regroups the elements of the stem graph
together as the children of the "stem series" handle, allowing them to be altered
together. For example

x = [0 : 10].’;
y = [sin(x), cos(x)]
h = stem (x, y);
set (h(2), "color", "g");
set (h(1), "basevalue", -1)

changes the color of the second "stem series" and moves the base line of the first.

See also: [bar], page 208, [barh], page 209, [plot], page 205.

[Function File]h = stem3 (x, y, z, linespec )
Plot a three-dimensional stem graph and return the handles of the line and marker
objects used to draw the stems as "stem series" object. The default color is "r" (red).
The default line style is "-" and the default marker is "o".
For example,

theta = 0:0.2:6;
stem3 (cos (theta), sin (theta), theta)

plots 31 stems with heights from 0 to 6 lying on a circle. Color definitions with
rgb-triples are not valid!

See also: [bar], page 208, [barh], page 209, [stem], page 210, [plot], page 205.

[Function File]scatter (x, y, s, c )
[Function File]scatter (. . . , ’filled’)
[Function File]scatter (. . . , style )
[Function File]scatter (. . . , prop, val )
[Function File]scatter (h, . . . )
[Function File]h = scatter (. . . )

Plot a scatter plot of the data. A marker is plotted at each point defined by the
points in the vectors x and y. The size of the markers used is determined by the s,
which can be a scalar, a vector of the same length of x and y. If s is not given or is
an empty matrix, then the default value of 8 points is used.
The color of the markers is determined by c, which can be a string defining a fixed
color, a 3 element vector giving the red, green and blue components of the color, a
vector of the same length as x that gives a scaled index into the current colormap, or
a n-by-3 matrix defining the colors of each of the markers individually.
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument ’filled’ is given
then the markers as filled. All additional arguments are passed to the underlying
patch command.
The optional return value h provides a handle to the patch object

x = randn (100, 1);
y = randn (100, 1);
scatter (x, y, [], sqrt(x.^2 + y.^2));
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See also: [plot], page 205, [patch], page 246, [scatter3], page 212.

[Function File]scatter3 (x, y, z, s, c )
[Function File]scatter3 (. . . , ’filled’)
[Function File]scatter3 (. . . , style )
[Function File]scatter3 (. . . , prop, val )
[Function File]scatter3 (h, . . . )
[Function File]h = scatter3 (. . . )

Plot a scatter plot of the data in 3D. A marker is plotted at each point defined by
the points in the vectors x, y and z. The size of the markers used is determined by s,
which can be a scalar or a vector of the same length of x, y and z. If s is not given
or is an empty matrix, then the default value of 8 points is used.
The color of the markers is determined by c, which can be a string defining a fixed
color, a 3 element vector giving the red, green and blue components of the color, a
vector of the same length as x that gives a scaled index into the current colormap, or
a n-by-3 matrix defining the colors of each of the markers individually.
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument ’filled’ is given
then the markers as filled. All additional arguments are passed to the underlying
patch command.
The optional return value h provides a handle to the patch object

[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [], z(:));

See also: [plot], page 205, [patch], page 246, [scatter], page 211.

[Function File]plotmatrix (x, y )
[Function File]plotmatrix (x )
[Function File]plotmatrix (. . . , style )
[Function File]plotmatrix (h, . . . )
[Function File][h, ax, bigax, p, pax] = plotmatrix (. . . )

Scatter plot of the columns of one matrix against another. Given the arguments x and
y, that have a matching number of rows, plotmatrix plots a set of axes corresponding
to

plot (x (:, i), y (:, j)

Given a single argument x, then this is equivalent to
plotmatrix (x, x)

except that the diagonal of the set of axes will be replaced with the histogram hist
(x (:, i)).
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If a leading axes handle h is
passed to plotmatrix, then this axis will be used for the plot.
The optional return value h provides handles to the individual graphics objects in the
scatter plots, whereas ax returns the handles to the scatter plot axis objects. bigax is
a hidden axis object that surrounds the other axes, such that the commands xlabel,
title, etc., will be associated with this hidden axis. Finally p returns the graphics
objects associated with the histogram and pax the corresponding axes objects.
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plotmatrix (randn (100, 3), ’g+’)

[Function File]pareto (x )
[Function File]pareto (x, y )
[Function File]pareto (h, . . . )
[Function File]h = pareto (. . . )

Draw a Pareto chart, also called ABC chart. A Pareto chart is a bar graph used
to arrange information in such a way that priorities for process improvement can be
established. It organizes and displays information to show the relative importance of
data. The chart is similar to the histogram or bar chart, except that the bars are
arranged in decreasing order from left to right along the abscissa.
The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the
majority of an effect is due to a small subset of the causes, so for quality improvement
the first few (as presented on the diagram) contributing causes to a problem usually
account for the majority of the result. Thus, targeting these "major causes" for
elimination results in the most cost-effective improvement scheme.
The data are passed as x and the abscissa as y. If y is absent, then the abscissa are
assumed to be 1 : length (x). y can be a string array, a cell array of strings or a
numerical vector.
An example of the use of pareto is

Cheese = {"Cheddar", "Swiss", "Camembert", ...
"Munster", "Stilton", "Blue"};

Sold = [105, 30, 70, 10, 15, 20];
pareto(Sold, Cheese);

[Function File]rose (th, r )
[Function File]rose (h, . . . )
[Function File]h = rose (. . . )
[Function File][r, th] = rose (. . . )

Plot an angular histogram. With one vector argument th, plots the histogram with 20
angular bins. If th is a matrix, then each column of th produces a separate histogram.
If r is given and is a scalar, then the histogram is produced with r bins. If r is a
vector, then the center of each bin are defined by the values of r.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).
If two output arguments are requested, then rather than plotting the histogram, the
polar vectors necessary to plot the histogram are returned.

[r, t] = rose ([2*randn(1e5,1), pi + 2 * randn(1e5,1)]);
polar (r, t);

See also: [plot], page 205, [compass], page 220, [polar], page 218, [hist], page 209.

The contour, contourf and contourc functions produce two-dimensional contour plots
from three-dimensional data.

[Function File]contour (z )
[Function File]contour (z, vn )



214 GNU Octave

[Function File]contour (x, y, z )
[Function File]contour (x, y, z, vn )
[Function File]contour (. . . , style )
[Function File]contour (h, . . . )
[Function File][c, h] = contour (. . . )

Plot level curves (contour lines) of the matrix z, using the contour matrix c computed
by contourc from the same arguments; see the latter for their interpretation. The
set of contour levels, c, is only returned if requested. For example:

x = 0:2;
y = x;
z = x’ * y;
contour (x, y, z, 2:3)

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.
The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc], page 214, [patch], page 246, [plot], page 205.

[Function File][c, h] = contourf (x, y, z, lvl )
[Function File][c, h] = contourf (x, y, z, n )
[Function File][c, h] = contourf (x, y, z )
[Function File][c, h] = contourf (z, n )
[Function File][c, h] = contourf (z, lvl )
[Function File][c, h] = contourf (z )
[Function File][c, h] = contourf (ax, . . . )
[Function File][c, h] = contourf (. . . , "property", val )

Compute and plot filled contours of the matrix z. Parameters x, y and n or lvl are
optional.
The return value c is a 2xn matrix containing the contour lines as described in the
help to the contourc function.
The return value h is handle-vector to the patch objects creating the filled contours.
If x and y are omitted they are taken as the row/column index of z. n is a scalar
denoting the number of lines to compute. Alternatively lvl is a vector containing the
contour levels. If only one value (e.g., lvl0) is wanted, set lvl to [lvl0, lvl0]. If both n
or lvl are omitted a default value of 10 contour level is assumed.
If provided, the filled contours are added to the axes object ax instead of the current
axis.
The following example plots filled contours of the peaks function.

[x, y, z] = peaks (50);
contourf (x, y, z, -7:9)

See also: [contour], page 213, [contourc], page 214, [patch], page 246.

[Function File][c, lev] = contourc (x, y, z, vn )
Compute isolines (contour lines) of the matrix z. Parameters x, y and vn are optional.
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The return value lev is a vector of the contour levels. The return value c is a 2 by n
matrix containing the contour lines in the following format

c = [lev1, x1, x2, ..., levn, x1, x2, ...
len1, y1, y2, ..., lenn, y1, y2, ...]

in which contour line n has a level (height) of levn and length of lenn.

If x and y are omitted they are taken as the row/column index of z. vn is either a
scalar denoting the number of lines to compute or a vector containing the values of
the lines. If only one value is wanted, set vn = [val, val]; If vn is omitted it defaults
to 10.

For example,

x = 0:2;
y = x;
z = x’ * y;
contourc (x, y, z, 2:3)

⇒ 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000

See also: [contour], page 213.

[Function File]contour3 (z )
[Function File]contour3 (z, vn )
[Function File]contour3 (x, y, z )
[Function File]contour3 (x, y, z, vn )
[Function File]contour3 (. . . , style )
[Function File]contour3 (h, . . . )
[Function File][c, h] = contour3 (. . . )

Plot level curves (contour lines) of the matrix z, using the contour matrix c computed
by contourc from the same arguments; see the latter for their interpretation. The
contours are plotted at the Z level corresponding to their contour. The set of contour
levels, c, is only returned if requested. For example:

contour3 (peaks (19));
hold on
surface (peaks (19), "facecolor", "none", "EdgeColor", "black")
colormap hot

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.

The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc], page 214, [patch], page 246, [plot], page 205.

The errorbar, semilogxerr, semilogyerr, and loglogerr functions produce plots
with error bar markers. For example,
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x = 0:0.1:10;
y = sin (x);
yp = 0.1 .* randn (size (x));
ym = -0.1 .* randn (size (x));
errorbar (x, sin (x), ym, yp);

produces the figure shown in Figure 15.3.
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Figure 15.3: Errorbar plot.

[Function File]errorbar (args )
This function produces two-dimensional plots with errorbars. Many different combi-
nations of arguments are possible. The simplest form is

errorbar (y, ey)

where the first argument is taken as the set of y coordinates and the second argument
ey is taken as the errors of the y values. x coordinates are taken to be the indices of
the elements, starting with 1.

If more than two arguments are given, they are interpreted as

errorbar (x, y, ..., fmt, ...)

where after x and y there can be up to four error parameters such as ey, ex, ly, uy,
etc., depending on the plot type. Any number of argument sets may appear, as long
as they are separated with a format string fmt.

If y is a matrix, x and error parameters must also be matrices having same dimensions.
The columns of y are plotted versus the corresponding columns of x and errorbars
are drawn from the corresponding columns of error parameters.

If fmt is missing, yerrorbars ("~") plot style is assumed.

If the fmt argument is supplied, it is interpreted as in normal plots. In addition the
following plot styles are supported by errorbar:

‘~’ Set yerrorbars plot style (default).
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‘>’ Set xerrorbars plot style.

‘~>’ Set xyerrorbars plot style.

‘#’ Set boxes plot style.

‘#~’ Set boxerrorbars plot style.

‘#~>’ Set boxxyerrorbars plot style.

Examples:
errorbar (x, y, ex, ">")

produces an xerrorbar plot of y versus x with x errorbars drawn from x-ex to x+ex.
errorbar (x, y1, ey, "~",

x, y2, ly, uy)

produces yerrorbar plots with y1 and y2 versus x. Errorbars for y1 are drawn from
y1-ey to y1+ey, errorbars for y2 from y2-ly to y2+uy.

errorbar (x, y, lx, ux,
ly, uy, "~>")

produces an xyerrorbar plot of y versus x in which x errorbars are drawn from x-lx
to x+ux and y errorbars from y-ly to y+uy.

See also: [semilogxerr], page 217, [semilogyerr], page 217, [loglogerr], page 217.

[Function File]semilogxerr (args )
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different
combinations of arguments are possible. The most used form is

semilogxerr (x, y, ey, fmt)

which produces a semi-logarithm plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.

See also: [errorbar], page 216, [loglogerr], page 217, [semilogyerr], page 217.

[Function File]semilogyerr (args )
Produce two-dimensional plots on a semilogarithm axis with errorbars. Many different
combinations of arguments are possible. The most used form is

semilogyerr (x, y, ey, fmt)

which produces a semi-logarithm plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.

See also: [errorbar], page 216, [loglogerr], page 217, [semilogxerr], page 217.

[Function File]loglogerr (args )
Produce two-dimensional plots on double logarithm axis with errorbars. Many differ-
ent combinations of arguments are possible. The most used form is

loglogerr (x, y, ey, fmt)

which produces a double logarithm plot of y versus x with errors in the y-scale
defined by ey and the plot format defined by fmt. See errorbar for available formats
and additional information.

See also: [errorbar], page 216, [semilogxerr], page 217, [semilogyerr], page 217.
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Finally, the polar function allows you to easily plot data in polar coordinates. However,
the display coordinates remain rectangular and linear. For example,

polar (0:0.1:10*pi, 0:0.1:10*pi);

produces the spiral plot shown in Figure 15.4.
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Figure 15.4: Polar plot.

[Function File]polar (theta, rho, fmt )
Make a two-dimensional plot given the polar coordinates theta and rho.
The optional third argument specifies the line type.

See also: [plot], page 205.

[Function File]pie (y )
[Function File]pie (y, explode )
[Function File]pie (. . . , labels )
[Function File]pie (h, . . . );
[Function File]h = pie (. . . );

Produce a pie chart.
Called with a single vector argument, produces a pie chart of the elements in x, with
the size of the slice determined by percentage size of the values of x.
The variable explode is a vector of the same length as x that if non zero ’explodes’
the slice from the pie chart.
If given labels is a cell array of strings of the same length as x, giving the labels of
each of the slices of the pie chart.
The optional return value h provides a handle to the patch object.

See also: [bar], page 208, [stem], page 210.

[Function File]quiver (u, v )
[Function File]quiver (x, y, u, v )
[Function File]quiver (. . . , s )
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[Function File]quiver (. . . , style )
[Function File]quiver (. . . , ’filled’)
[Function File]quiver (h, . . . )
[Function File]h = quiver (. . . )

Plot the (u, v) components of a vector field in an (x, y) meshgrid. If the grid is
uniform, you can specify x and y as vectors.
If x and y are undefined they are assumed to be (1:m, 1:n) where [m, n] = size(u).
The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.
The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
’filled’ is given then the markers as filled.
The optional return value h provides a quiver group that regroups the components of
the quiver plot (body, arrow and marker), and allows them to be changed together

[x, y] = meshgrid (1:2:20);
h = quiver (x, y, sin (2*pi*x/10), sin (2*pi*y/10));
set (h, "maxheadsize", 0.33);

See also: [plot], page 205.

[Function File]quiver3 (u, v, w )
[Function File]quiver3 (x, y, z, u, v, w )
[Function File]quiver3 (. . . , s )
[Function File]quiver3 (. . . , style )
[Function File]quiver3 (. . . , ’filled’)
[Function File]quiver3 (h, . . . )
[Function File]h = quiver3 (. . . )

Plot the (u, v, w) components of a vector field in an (x, y), z meshgrid. If the
grid is uniform, you can specify x, y z as vectors.
If x, y and z are undefined they are assumed to be (1:m, 1:n, 1:p) where [m, n]
= size(u) and p = max (size (w)).
The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.
The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
’filled’ is given then the markers as filled.
The optional return value h provides a quiver group that regroups the components of
the quiver plot (body, arrow and marker), and allows them to be changed together

[x, y, z] = peaks (25);
surf (x, y, z);
hold on;
[u, v, w] = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);
set (h, "maxheadsize", 0.33);
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See also: [plot], page 205.

[Function File]compass (u, v )
[Function File]compass (z )
[Function File]compass (. . . , style )
[Function File]compass (h, . . . )
[Function File]h = compass (. . . )

Plot the (u, v) components of a vector field emanating from the origin of a polar
plot. If a single complex argument z is given, then u = real (z) and v = imag (z).
The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

a = toeplitz([1;randn(9,1)],[1,randn(1,9)]);
compass (eig (a))

See also: [plot], page 205, [polar], page 218, [quiver], page 218, [feather], page 220.

[Function File]feather (u, v )
[Function File]feather (z )
[Function File]feather (. . . , style )
[Function File]feather (h, . . . )
[Function File]h = feather (. . . )

Plot the (u, v) components of a vector field emanating from equidistant points on
the x-axis. If a single complex argument z is given, then u = real (z) and v = imag
(z).
The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

phi = [0 : 15 : 360] * pi / 180;
feather (sin (phi), cos (phi))

See also: [plot], page 205, [quiver], page 218, [compass], page 220.

[Function File]pcolor (x, y, c )
[Function File]pcolor (c )

Density plot for given matrices x, and y from meshgrid and a matrix c corresponding
to the x and y coordinates of the mesh’s vertices. If x and y are vectors, then a typical
vertex is (x(j), y(i), c(i,j)). Thus, columns of c correspond to different x values and
rows of c correspond to different y values.
The colormap is scaled to the extents of c. Limits may be placed on the color axis
by the command caxis, or by setting the clim property of the parent axis.
The face color of each cell of the mesh is determined by interpolating the values of
c for the cell’s vertices. Contrast this with imagesc which renders one cell for each
element of c.
shading modifies an attribute determining the manner by which the face color of
each cell is interpolated from the values of c, and the visibility of the cells’ edges. By
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default the attribute is "faceted", which renders a single color for each cell’s face with
the edge visible.

h is the handle to the surface object.

See also: [caxis], page 222, [contour], page 213, [meshgrid], page 229, [imagesc],
page 488, [shading], page 231.

[Function File]area (x, y )
[Function File]area (x, y, lvl )
[Function File]area (. . . , prop, val, . . . )
[Function File]area (y, . . . )
[Function File]area (h, . . . )
[Function File]h = area (. . . )

Area plot of cumulative sum of the columns of y. This shows the contributions of a
value to a sum, and is functionally similar to plot (x, cumsum (y, 2)), except that
the area under the curve is shaded.

If the x argument is omitted it is assumed to be given by 1 : rows (y). A value lvl
can be defined that determines where the base level of the shading under the curve
should be defined.

Additional arguments to the area function are passed to the patch. The optional
return value h provides a handle to area series object representing the patches of the
areas.

See also: [plot], page 205, [patch], page 246.

[Function File]comet (y )
[Function File]comet (x, y )
[Function File]comet (x, y, p )
[Function File]comet (ax, . . . )

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y), where x will default to the indices of y.

The speed of the comet may be controlled by p, which represents the time which
passes as the animation passes from one point to the next. The default for p is 0.1
seconds.

If ax is specified the animation is produced in that axis rather than the gca.

The axis function may be used to change the axis limits of an existing plot and various
other axis properties, such as the aspect ratio and the appearance of tic marks.

[Function File]axis (limits )
Set axis limits for plots.

The argument limits should be a 2, 4, or 6 element vector. The first and second
elements specify the lower and upper limits for the x axis. The third and fourth
specify the limits for the y-axis, and the fifth and sixth specify the limits for the
z-axis.

Without any arguments, axis turns autoscaling on.

With one output argument, x = axis returns the current axes
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The vector argument specifying limits is optional, and additional string arguments
may be used to specify various axis properties. For example,

axis ([1, 2, 3, 4], "square");

forces a square aspect ratio, and

axis ("labely", "tic");

turns tic marks on for all axes and tic mark labels on for the y-axis only.

The following options control the aspect ratio of the axes.

"square" Force a square aspect ratio.

"equal" Force x distance to equal y-distance.

"normal" Restore the balance.

The following options control the way axis limits are interpreted.

"auto" Set the specified axes to have nice limits around the data or all if no axes
are specified.

"manual" Fix the current axes limits.

"tight" Fix axes to the limits of the data.

The option "image" is equivalent to "tight" and "equal".

The following options affect the appearance of tic marks.

"on" Turn tic marks and labels on for all axes.

"off" Turn tic marks off for all axes.

"tic[xyz]"
Turn tic marks on for all axes, or turn them on for the specified axes and
off for the remainder.

"label[xyz]"
Turn tic labels on for all axes, or turn them on for the specified axes and
off for the remainder.

"nolabel"
Turn tic labels off for all axes.

Note, if there are no tic marks for an axis, there can be no labels.

The following options affect the direction of increasing values on the axes.

"ij" Reverse y-axis, so lower values are nearer the top.

"xy" Restore y-axis, so higher values are nearer the top.

If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

Similarly the axis limits of the colormap can be changed with the caxis function.
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[Function File]caxis (limits )
[Function File]caxis (h, . . . )

Set color axis limits for plots.
The argument limits should be a 2 element vector specifying the lower and upper
limits to assign to the first and last value in the colormap. Values outside this range
are clamped to the first and last colormap entries.
If limits is ’auto’, then automatic colormap scaling is applied, whereas if limits is
’manual’ the colormap scaling is set to manual.
Called without any arguments to current color axis limits are returned.
If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

The xlim, ylim, and zlim functions may be used to get or set individual axis limits.
Each has the same form.

[Function File]xl = xlim ()
[Function File]xlim (xl )
[Function File]m = xlim (’mode’)
[Function File]xlim (m )
[Function File]xlim (h, . . . )

Get or set the limits of the x-axis of the current plot. Called without arguments xlim
returns the x-axis limits of the current plot. If passed a two element vector xl, the
limits of the x-axis are set to this value.
The current mode for calculation of the x-axis can be returned with a call xlim
(’mode’), and can be either ’auto’ or ’manual’. The current plotting mode can be
set by passing either ’auto’ or ’manual’ as the argument.
If passed an handle as the first argument, then operate on this handle rather than
the current axes handle.

See also: [ylim], page 223, [zlim], page 223, [set], page 245, [get], page 245, [gca],
page 244.

15.1.1.1 Two-dimensional Function Plotting

Octave can plot a function from a function handle inline function or string defining the
function without the user needing to explicitly create the data to be plotted. The function
fplot also generates two-dimensional plots with linear axes using a function name and
limits for the range of the x-coordinate instead of the x and y data. For example,

fplot (@sin, [-10, 10], 201);

produces a plot that is equivalent to the one above, but also includes a legend displaying
the name of the plotted function.

[Function File]fplot (fn, limits )
[Function File]fplot (fn, limits, tol )
[Function File]fplot (fn, limits, n )
[Function File]fplot (. . . , fmt )

Plot a function fn, within the defined limits. fn an be either a string, a function
handle or an inline function. The limits of the plot are given by limits of the form
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[xlo, xhi] or [xlo, xhi, ylo, yhi]. tol is the default tolerance to use for the plot,
and if tol is an integer it is assumed that it defines the number points to use in the
plot. The fmt argument is passed to the plot command.

fplot ("cos", [0, 2*pi])
fplot ("[cos(x), sin(x)]", [0, 2*pi])

See also: [plot], page 205.

Other functions that can create two-dimensional plots directly from a function include
ezplot, ezcontour, ezcontourf and ezpolar.

[Function File]ezplot (f )
[Function File]ezplot (fx, fy )
[Function File]ezplot (. . . , dom )
[Function File]ezplot (. . . , n )
[Function File]ezplot (h, . . . )
[Function File]h = ezplot (. . . )

Plots in two-dimensions the curve defined by f. The function f may be a string, inline
function or function handle and can have either one or two variables. If f has one
variable, then the function is plotted over the domain -2*pi < x < 2*pi with 500
points.

If f has two variables then f(x,y) = 0 is calculated over the meshed domain -2*pi
< x | y < 2*pi with 60 by 60 in the mesh. For example

ezplot (@(x, y) x .^ 2 - y .^ 2 - 1)

If two functions are passed as strings, inline functions or function handles, then the
parametric function

x = fx (t)
y = fy (t)

is plotted over the domain -2*pi < t < 2*pi with 500 points.

If dom is a two element vector, it represents the minimum and maximum value of x,
y and t. If it is a four element vector, then the minimum and maximum values of x
and t are determined by the first two elements and the minimum and maximum of y
by the second pair of elements.

n is a scalar defining the number of points to use in plotting the function.

The optional return value h provides a list of handles to the the line objects plotted.

See also: [plot], page 205, [ezplot3], page 232.

[Function File]ezcontour (f )
[Function File]ezcontour (. . . , dom )
[Function File]ezcontour (. . . , n )
[Function File]ezcontour (h, . . . )
[Function File]h = ezcontour (. . . )

Plots the contour lines of a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
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If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.
n is a scalar defining the number of points to use in each dimension.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontour (f, [-3, 3]);

See also: [ezplot], page 224, [ezcontourf], page 225, [ezsurfc], page 234, [ezmeshc],
page 233.

[Function File]ezcontourf (f )
[Function File]ezcontourf (. . . , dom )
[Function File]ezcontourf (. . . , n )
[Function File]ezcontourf (h, . . . )
[Function File]h = ezcontourf (. . . )

Plots the filled contour lines of a function. f is a string, inline function or function
handle with two arguments defining the function. By default the plot is over the
domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.
n is a scalar defining the number of points to use in each dimension.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezcontourf (f, [-3, 3]);

See also: [ezplot], page 224, [ezcontour], page 224, [ezsurfc], page 234, [ezmeshc],
page 233.

[Function File]ezpolar (f )
[Function File]ezpolar (. . . , dom )
[Function File]ezpolar (. . . , n )
[Function File]ezpolar (h, . . . )
[Function File]h = ezpolar (. . . )

Plots in polar plot defined by a function. The function f is either a string, inline
function or function handle with one arguments defining the function. By default the
plot is over the domain 0 < x < 2*pi with 60 points.
If dom is a two element vector, it represents the minimum and maximum value of
both t. n is a scalar defining the number of points to use.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

ezpolar (@(t) 1 + sin (t));

See also: [polar], page 218, [ezplot], page 224, [ezsurf], page 233, [ezmesh], page 232.
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15.1.2 Three-Dimensional Plotting

The function mesh produces mesh surface plots. For example,

tx = ty = linspace (-8, 8, 41)’;
[xx, yy] = meshgrid (tx, ty);
r = sqrt (xx .^ 2 + yy .^ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);

produces the familiar “sombrero” plot shown in Figure 15.5. Note the use of the function
meshgrid to create matrices of X and Y coordinates to use for plotting the Z data. The
ndgrid function is similar to meshgrid, but works for N-dimensional matrices.
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Figure 15.5: Mesh plot.

The meshc function is similar to mesh, but also produces a plot of contours for the
surface.

The plot3 function displays arbitrary three-dimensional data, without requiring it to
form a surface. For example

t = 0:0.1:10*pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));
plot3 (r.*sin(t), r.*cos(t), z);

displays the spiral in three dimensions shown in Figure 15.6.
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Figure 15.6: Three dimensional spiral.
Finally, the view function changes the viewpoint for three-dimensional plots.

[Function File]mesh (x, y, z )
Plot a mesh given matrices x, and y from meshgrid and a matrix z corresponding to
the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex is
(x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of z
correspond to different y values.

See also: [meshgrid], page 229, [contour], page 213.

[Function File]meshc (x, y, z )
Plot a mesh and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 229, [mesh], page 227, [contour], page 213.

[Function File]meshz (x, y, z )
Plot a curtain mesh given matrices x, and y from meshgrid and a matrix z corre-
sponding to the x and y coordinates of the mesh. If x and y are vectors, then a typical
vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and
rows of z correspond to different y values.

See also: [meshgrid], page 229, [mesh], page 227, [contour], page 213.

[Function File]hidden (mode )
[Function File]hidden ()

Manipulation the mesh hidden line removal. Called with no argument the hidden line
removal is toggled. The argument mode can be either ’on’ or ’off’ and the set of the
hidden line removal is set accordingly.

See also: [mesh], page 227, [meshc], page 227, [surf], page 228.
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[Function File]surf (x, y, z )
Plot a surface given matrices x, and y from meshgrid and a matrix z corresponding
to the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex
is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of
z correspond to different y values.

See also: [mesh], page 227, [surface], page 246.

[Function File]surfc (x, y, z )
Plot a surface and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 229, [surf], page 228, [contour], page 213.

[Function File]surfl (x, y, z )
[Function File]surfl (z )
[Function File]surfl (x, y, z, L )
[Function File]surfl (x, y, z, L, P )
[Function File]surfl (. . . ,"light")

Plot a lighted surface given matrices x, and y from meshgrid and a matrix z cor-
responding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

The light direction can be specified using L. It can be given as 2-element vector
[azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz]. The default value is
rotated 45 counter-clockwise from the current view.

The material properties of the surface can specified using a 4-element vector P = [AM
D SP exp] which defaults to p = [0.55 0.6 0.4 10].

"AM" strength of ambient light
"D" strength of diffuse reflection
"SP" strength of specular reflection
"EXP" specular exponent

The default lighting mode "cdata", changes the cdata property to give the impression
of a lighted surface. Please note: the alternative "light" mode, which creates a light
object to illuminate the surface is not implemented (yet).

Example:

colormap(bone);
surfl(peaks);
shading interp;

See also: [surf], page 228, [diffuse], page 229, [specular], page 229, [surface], page 246.

[Function File]surfnorm (x, y, z )
[Function File]surfnorm (z )
[Function File][nx, ny, nz] = surfnorm (. . . )
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[Function File]surfnorm (h, . . . )
Find the vectors normal to a meshgridded surface. The meshed gridded surface is
defined by x, y, and z. If x and y are not defined, then it is assumed that they are
given by

[x, y] = meshgrid (1:size(z, 1),
1:size(z, 2));

If no return arguments are requested, a surface plot with the normal vectors to the
surface is plotted. Otherwise the components of the normal vectors at the mesh
gridded points are returned in nx, ny, and nz.
The normal vectors are calculated by taking the cross product of the diagonals of
each of the quadrilaterals in the meshgrid to find the normal vectors of the centers
of these quadrilaterals. The four nearest normal vectors to the meshgrid points are
then averaged to obtain the normal to the surface at the meshgridded points.
An example of the use of surfnorm is

surfnorm (peaks (25));

See also: [surf], page 228, [quiver3], page 219.

[Function File]diffuse (sx, sy, sz, l )
Calculate diffuse reflection strength of a surface defined by the normal vector elements
sx, sy, sz. The light vector can be specified using parameter L. It can be given as
2-element vector [azimuth, elevation] in degrees or as 3-element vector [lx, ly, lz].

See also: [specular], page 229, [surfl], page 228.

[Function File]specular (sx, sy, sz, l, v )
[Function File]specular (sx, sy, sz, l, v, se )

Calculate specular reflection strength of a surface defined by the normal vector el-
ements sx, sy, sz using Phong’s approximation. The light and view vectors can be
specified using parameter L and V respectively. Both can be given as 2-element vec-
tors [azimuth, elevation] in degrees or as 3-element vector [x, y, z]. An optional 6th
argument describes the specular exponent (spread) se.

See also: [surfl], page 228, [diffuse], page 229.

[Function File][xx, yy, zz] = meshgrid (x, y, z )
[Function File][xx, yy] = meshgrid (x, y )
[Function File][xx, yy] = meshgrid (x )

Given vectors of x and y and z coordinates, and returning 3 arguments, return three-
dimensional arrays corresponding to the x, y, and z coordinates of a mesh. When
returning only 2 arguments, return matrices corresponding to the x and y coordinates
of a mesh. The rows of xx are copies of x, and the columns of yy are copies of y. If y
is omitted, then it is assumed to be the same as x, and z is assumed the same as y.

See also: [mesh], page 227, [contour], page 213.

[Function File][y1, y2, ..., yn] = ndgrid (x1, x2, . . . , xn)
[Function File][y1, y2, ..., yn] = ndgrid (x )

Given n vectors x1, . . . xn, ndgrid returns n arrays of dimension n. The elements
of the i-th output argument contains the elements of the vector xi repeated over all
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dimensions different from the i-th dimension. Calling ndgrid with only one input
argument x is equivalent of calling ndgrid with all n input arguments equal to x:

[y1, y2, . . . , yn] = ndgrid (x, . . . , x)

See also: [meshgrid], page 229.

[Function File]plot3 (args )
Produce three-dimensional plots. Many different combinations of arguments are pos-
sible. The simplest form is

plot3 (x, y, z)

in which the arguments are taken to be the vertices of the points to be plotted in three
dimensions. If all arguments are vectors of the same length, then a single continuous
line is drawn. If all arguments are matrices, then each column of the matrices is
treated as a separate line. No attempt is made to transpose the arguments to make
the number of rows match.

If only two arguments are given, as

plot3 (x, c)

the real and imaginary parts of the second argument are used as the y and z coordi-
nates, respectively.

If only one argument is given, as

plot3 (c)

the real and imaginary parts of the argument are used as the y and z values, and
they are plotted versus their index.

Arguments may also be given in groups of three as

plot3 (x1, y1, z1, x2, y2, z2, ...)

in which each set of three arguments is treated as a separate line or set of lines in
three dimensions.

To plot multiple one- or two-argument groups, separate each group with an empty
format string, as

plot3 (x1, c1, "", c2, "", ...)

An example of the use of plot3 is

z = [0:0.05:5];
plot3 (cos(2*pi*z), sin(2*pi*z), z, ";helix;");
plot3 (z, exp(2i*pi*z), ";complex sinusoid;");

See also: [plot], page 205, [xlabel], page 236, [ylabel], page 236, [zlabel], page 236,
[title], page 236, [print], page 239.

[Function File]view (azimuth, elevation )
[Function File]view (dims )
[Function File][azimuth, elevation] = view ()

Set or get the viewpoint for the current axes.
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[Function File]slice (x, y, z, v, sx, sy, sz )
[Function File]slice (x, y, z, v, xi, yi, zi )
[Function File]slice (v, sx, sy, sz )
[Function File]slice (v, xi, yi, zi )
[Function File]h = slice (. . . )
[Function File]h = slice (. . . , method )

Plot slices of 3D data/scalar fields. Each element of the 3-dimensional array v repre-
sents a scalar value at a location given by the parameters x, y, and z. The parameters
x, x, and z are either 3-dimensional arrays of the same size as the array v in the
"meshgrid" format or vectors. The parameters xi, etc. respect a similar format to x,
etc., and they represent the points at which the array vi is interpolated using interp3.
The vectors sx, sy, and sz contain points of orthogonal slices of the respective axes.
If x, y, z are omitted, they are assumed to be x = 1:size (v, 2), y = 1:size (v, 1)
and z = 1:size (v, 3).
Method is one of:

"nearest"
Return the nearest neighbor.

"linear" Linear interpolation from nearest neighbors.

"cubic" Cubic interpolation from four nearest neighbors (not implemented yet).

"spline" Cubic spline interpolation—smooth first and second derivatives through-
out the curve.

The default method is "linear". The optional return value h is a vector of handles
to the surface graphic objects.
Examples:

[x, y, z] = meshgrid (linspace (-8, 8, 32));
v = sin (sqrt (x.^2 + y.^2 + z.^2)) ./ (sqrt (x.^2 + y.^2 + z.^2));
slice (x, y, z, v, [], 0, []);
[xi, yi] = meshgrid (linspace (-7, 7));
zi = xi + yi;
slice (x, y, z, v, xi, yi, zi);

See also: [interp3], page 460, [surface], page 246, [pcolor], page 220.

[Function File]ribbon (x, y, width )
[Function File]ribbon (y )
[Function File]h = ribbon (. . . )

Plot a ribbon plot for the columns of y vs. x. The optional parameter width specifies
the width of a single ribbon (default is 0.75). If x is omitted, a vector containing the
row numbers is assumed (1:rows(Y)). If requested, return a vector h of the handles
to the surface objects.

See also: [gca], page 244, [colorbar], page 238.

[Function File]shading (type )
[Function File]shading (ax, . . . )

Set the shading of surface or patch graphic objects. Valid arguments for type are
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"flat" Single colored patches with invisible edges.

"faceted"
Single colored patches with visible edges.

"interp" Color between patch vertices are interpolated and the patch edges are
invisible.

If ax is given the shading is applied to axis ax instead of the current axis.

15.1.2.1 Three-dimensional Function Plotting

[Function File]ezplot3 (fx, fy, fz )
[Function File]ezplot3 (. . . , dom )
[Function File]ezplot3 (. . . , n )
[Function File]ezplot3 (h, . . . )
[Function File]h = ezplot3 (. . . )

Plots in three-dimensions the curve defined parametrically. fx, fy, and fz are strings,
inline functions or function handles with one arguments defining the function. By
default the plot is over the domain -2*pi < x < 2*pi with 60 points.
If dom is a two element vector, it represents the minimum and maximum value of t.
n is a scalar defining the number of points to use.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

fx = @(t) cos (t);
fy = @(t) sin (t);
fz = @(t) t;
ezplot3 (fx, fy, fz, [0, 10*pi], 100);

See also: [plot3], page 230, [ezplot], page 224, [ezsurf], page 233, [ezmesh], page 232.

[Function File]ezmesh (f )
[Function File]ezmesh (fx, fy, fz )
[Function File]ezmesh (. . . , dom )
[Function File]ezmesh (. . . , n )
[Function File]ezmesh (. . . , ’circ’)
[Function File]ezmesh (h, . . . )
[Function File]h = ezmesh (. . . )

Plots the mesh defined by a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.
n is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].
If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.
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The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmesh (f, [-3, 3]);

An example of a parametrically defined function is
fx = @(s,t) cos (s) .* cos(t);
fy = @(s,t) sin (s) .* cos(t);
fz = @(s,t) sin(t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [ezplot], page 224, [ezsurf], page 233, [ezsurfc], page 234, [ezmeshc], page 233.

[Function File]ezmeshc (f )
[Function File]ezmeshc (fx, fy, fz )
[Function File]ezmeshc (. . . , dom )
[Function File]ezmeshc (. . . , n )
[Function File]ezmeshc (. . . , ’circ’)
[Function File]ezmeshc (h, . . . )
[Function File]h = ezmeshc (. . . )

Plots the mesh and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.
If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.
n is a scalar defining the number of points to use in each dimension.
If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].
If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezmeshc (f, [-3, 3]);

See also: [ezplot], page 224, [ezsurfc], page 234, [ezsurf], page 233, [ezmesh], page 232.

[Function File]ezsurf (f )
[Function File]ezsurf (fx, fy, fz )
[Function File]ezsurf (. . . , dom )
[Function File]ezsurf (. . . , n )
[Function File]ezsurf (. . . , ’circ’)
[Function File]ezsurf (h, . . . )
[Function File]h = ezsurf (. . . )

Plots the surface defined by a function. f is a string, inline function or function
handle with two arguments defining the function. By default the plot is over the
domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
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If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurf (f, [-3, 3]);

An example of a parametrically defined function is

fx = @(s,t) cos (s) .* cos(t);
fy = @(s,t) sin (s) .* cos(t);
fz = @(s,t) sin(t);
ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [ezplot], page 224, [ezmesh], page 232, [ezsurfc], page 234, [ezmeshc],
page 233.

[Function File]ezsurfc (f )
[Function File]ezsurfc (fx, fy, fz )
[Function File]ezsurfc (. . . , dom )
[Function File]ezsurfc (. . . , n )
[Function File]ezsurfc (. . . , ’circ’)
[Function File]ezsurfc (h, . . . )
[Function File]h = ezsurfc (. . . )

Plots the surface and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = @(x,y) sqrt(abs(x .* y)) ./ (1 + x.^2 + y.^2);
ezsurfc (f, [-3, 3]);



Chapter 15: Plotting 235

See also: [ezplot], page 224, [ezmeshc], page 233, [ezsurf], page 233, [ezmesh],
page 232.

15.1.2.2 Three-dimensional Geometric Shapes

[Function File]cylinder
[Function File]cylinder (r )
[Function File]cylinder (r, n )
[Function File][x, y, z] = cylinder (. . . )
[Function File]cylinder (ax, . . . )

Generates three matrices in meshgrid format, such that surf (x, y, z) generates
a unit cylinder. The matrices are of size n+1-by-n+1. r is a vector containing the
radius along the z-axis. If n or r are omitted then default values of 20 or [1 1] are
assumed.
Called with no return arguments, cylinder calls directly surf (x, y, z). If an axes
handle ax is passed as the first argument, the surface is plotted to this set of axes.
Examples:

disp ("plotting a cone")
[x, y, z] = cylinder (10:-1:0,50);
surf (x, y, z);

See also: [sphere], page 235.

[Function File][x, y, z] = sphere (n )
[Function File]sphere (h, . . . )

Generates three matrices in meshgrid format, such that surf (x, y, z) generates a
unit sphere. The matrices of n+1-by-n+1. If n is omitted then a default value of 20
is assumed.
Called with no return arguments, sphere call directly surf (x, y, z). If an axes
handle is passed as the first argument, the surface is plotted to this set of axes.

See also: [peaks], page 243.

[Function File][x, y, z] = ellipsoid (xc,yc, zc, xr, yr, zr, n )
[Function File]ellipsoid (h, . . . )

Generate three matrices in meshgrid format that define an ellipsoid. Called with
no return arguments, ellipsoid calls directly surf (x, y, z). If an axes handle is
passed as the first argument, the surface is plotted to this set of axes.

See also: [sphere], page 235.

15.1.3 Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an existing plot. For example,
x = -10:0.1:10;
plot (x, sin (x));
title ("sin(x) for x = -10:0.1:10");
xlabel ("x");
ylabel ("sin (x)");
text (pi, 0.7, "arbitrary text");
legend ("sin (x)");
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The functions grid and box may also be used to add grid and border lines to the plot.
By default, the grid is off and the border lines are on.

[Function File]title (title )
[Function File]title (title, p1, v1, . . . )

Create a title object and return a handle to it.

[Function File]legend (st1, st2, . . . )
[Function File]legend (st1, st2, . . . , "location", pos )
[Function File]legend (matstr )
[Function File]legend (matstr, "location", pos )
[Function File]legend (cell )
[Function File]legend (cell, "location", pos )
[Function File]legend (’func ’)

Display a legend for the current axes using the specified strings as labels. Legend
entries may be specified as individual character string arguments, a character array,
or a cell array of character strings. Legend works on line graphs, bar graphs, etc. A
plot must exist before legend is called.
The optional parameter pos specifies the location of the legend as follows:

north center top
south center bottom
east right center
west left center
northeast right top (default)
northwest left top
southeast right bottom
southwest left bottom
outside can be appended to any location string

Some specific functions are directly available using func:

"show" Show legends from the plot

"hide"
"off" Hide legends from the plot

"boxon" Draw a box around legends

"boxoff" Withdraw the box around legends

"left" Text is to the left of the keys

"right" Text is to the right of the keys

[Function File]h = text (x, y, label )
[Function File]h = text (x, y, z, label )
[Function File]h = text (x, y, label, p1, v1, . . . )
[Function File]h = text (x, y, z, label, p1, v1, . . . )

Create a text object with text label at position x, y, z on the current axes. Property-
value pairs following label may be used to specify the appearance of the text.

See Section 15.2.2.5 [Text Properties], page 252 for the properties that you can set.
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[Function File]xlabel (string )
[Function File]ylabel (string )
[Function File]zlabel (string )
[Function File]xlabel (h, string )

Specify x, y, and z axis labels for the current figure. If h is specified then label the
axis defined by h.

See also: [plot], page 205, [semilogx], page 208, [semilogy], page 208, [loglog], page 208,
[polar], page 218, [mesh], page 227, [contour], page 213, [bar], page 208, [stairs],
page 210, [title], page 236.

[Function File]clabel (c, h )
[Function File]clabel (c, h, v )
[Function File]clabel (c, h, "manual")
[Function File]clabel (c )
[Function File]clabel (c, h )
[Function File]clabel (. . . , prop, val, . . . )
[Function File]h = clabel (. . . )

Adds labels to the contours of a contour plot. The contour plot is specified by the
contour matrix c and optionally the contourgroup object h that are returned by
contour, contourf and contour3. The contour labels are rotated and placed in the
contour itself.

By default, all contours are labelled. However, the contours to label can be specified
by the vector v. If the "manual" argument is given then the contours to label can be
selected with the mouse.

Additional property/value pairs that are valid properties of text objects can be given
and are passed to the underlying text objects. Additionally, the property "LabelSpac-
ing" is available allowing the spacing between labels on a contour (in points) to be
specified. The default is 144 points, or 2 inches.

The returned value h is the set of text object that represent the contour labels. The
"userdata" property of the text objects contains the numerical value of the contour
label.

An example of the use of clabel is

[c, h] = contour (peaks(), -4 : 6);
clabel (c, h, -4 : 2 : 6, ’fontsize’, 12);

See also: [contour], page 213, [contourf], page 214, [contour3], page 215, [meshc],
page 227, [surfc], page 228, [text], page 236.

[Function File]box (arg )
[Function File]box (h, . . . )

Control the display of a border around the plot. The argument may be either "on"
or "off". If it is omitted, the current box state is toggled.

See also: [grid], page 237.

[Function File]grid (arg )
[Function File]grid ("minor", arg2 )
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[Function File]grid (hax, . . . )
Force the display of a grid on the plot. The argument may be either "on", or "off".
If it is omitted, the current grid state is toggled.
If arg is "minor" then the minor grid is toggled. When using a minor grid a second
argument arg2 is allowed, which can be either "on" or "off" to explicitly set the
state of the minor grid.
If the first argument is an axis handle, hax, operate on the specified axis object.

See also: [plot], page 205.

[Function File]colorbar (s )
[Function File]colorbar ("peer", h, . . . )

Adds a colorbar to the current axes. Valid values for s are

"EastOutside"
Place the colorbar outside the plot to the right. This is the default.

"East" Place the colorbar inside the plot to the right.

"WestOutside"
Place the colorbar outside the plot to the left.

"West" Place the colorbar inside the plot to the left.

"NorthOutside"
Place the colorbar above the plot.

"North" Place the colorbar at the top of the plot.

"SouthOutside"
Place the colorbar under the plot.

"South" Place the colorbar at the bottom of the plot.

"Off", "None"
Remove any existing colorbar from the plot.

If the argument "peer" is given, then the following argument is treated as the axes
handle on which to add the colorbar.

15.1.4 Multiple Plots on One Page

Octave can display more than one plot in a single figure. The simplest way to do this is to
use the subplot function to divide the plot area into a series of subplot windows that are
indexed by an integer. For example,

subplot (2, 1, 1)
fplot (@sin, [-10, 10]);
subplot (2, 1, 2)
fplot (@cos, [-10, 10]);

creates a figure with two separate axes, one displaying a sine wave and the other a cosine
wave. The first call to subplot divides the figure into two plotting areas (two rows and one
column) and makes the first plot area active. The grid of plot areas created by subplot is
numbered in column-major order (top to bottom, left to right).
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[Function File]subplot (rows, cols, index )
[Function File]subplot (rcn )

Set up a plot grid with cols by rows subwindows and plot in location given by index.

If only one argument is supplied, then it must be a three digit value specifying the
location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.

The plot index runs row-wise. First all the columns in a row are filled and then the
next row is filled.

For example, a plot with 2 by 3 grid will have plot indices running as follows:

1 2 3

4 5 6

See also: [plot], page 205.

15.1.5 Multiple Plot Windows

You can open multiple plot windows using the figure function. For example

figure (1);
fplot (@sin, [-10, 10]);
figure (2);
fplot (@cos, [-10, 10]);

creates two figures, with the first displaying a sine wave and the second a cosine wave.
Figure numbers must be positive integers.

[Function File]figure (n )
[Function File]figure (n, property, value, . . . )

Set the current plot window to plot window n. If no arguments are specified, the next
available window number is chosen.

Multiple property-value pairs may be specified for the figure, but they must appear
in pairs.

15.1.6 Printing Plots

The print command allows you to save plots in a variety of formats. For example,

print -deps foo.eps

writes the current figure to an encapsulated PostScript file called ‘foo.eps’.

[Function File]print ()
[Function File]print (options )
[Function File]print (filename, options )
[Function File]print (h, filename, options )

Print a graph, or save it to a file

filename defines the file name of the output file. If no filename is specified, the output
is sent to the printer.
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h specifies the figure handle. If no handle is specified the handle for the current figure
is used.

options:

-Pprinter
Set the printer name to which the graph is sent if no filename is specified.

-Gghostscript_command
Specify the command for calling Ghostscript. For Unix and Windows,
the defaults are ’gs’ and ’gswin32c’, respectively.

-color
-mono Monochrome or color lines.

-solid
-dashed Solid or dashed lines.

-portrait
-landscape

Specify the orientation of the plot for printed output.

-ddevice Output device, where device is one of:

ps
ps2
psc
psc2 Postscript (level 1 and 2, mono and color)

eps
eps2
epsc
epsc2 Encapsulated postscript (level 1 and 2, mono and color)

tex
epslatex
epslatexstandalone
pstex
pslatex Generate a LATEX (or TEX) file for labels, and eps/ps for

graphics. The file produced by epslatexstandalone can be
processed directly by LATEX. The other formats are intended
to be included in a LATEX (or TEX) document. The tex device
is the same as the epslatex device.

ill
aifm Adobe Illustrator

cdr
corel CorelDraw

dxf AutoCAD

emf
meta Microsoft Enhanced Metafile
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fig XFig. If this format is selected the additional options -
textspecial or -textnormal can be used to control whether
the special flag should be set for the text in the figure (default
is -textnormal).

hpgl HP plotter language

mf Metafont

png Portable network graphics

jpg
jpeg JPEG image

gif GIF image

pbm PBMplus

svg Scalable vector graphics

pdf Portable document format

If the device is omitted, it is inferred from the file extension, or if there
is no filename it is sent to the printer as postscript.

-dgs_device
Additional devices are supported by Ghostscript. Some examples are;

ljet2p HP LaserJet IIP

ljet3 HP LaserJet III

deskjet HP DeskJet and DeskJet Plus

cdj550 HP DeskJet 550C

paintjet HP PointJet

pcx24b 24-bit color PCX file format

ppm Portable Pixel Map file format

For a complete list, type ‘system ("gs -h")’ to see what formats and
devices are available.
When the ghostscript is sent to a printer the size is determined by the
figure’s "papersize" property. When the ghostscript output is sent to a
file the size is determined by the figure’s "paperposition" property.

-rNUM Resolution of bitmaps in pixels per inch. For both metafiles and SVG the
default is the screen resolution, for other it is 150 dpi. To specify screen
resolution, use "-r0".

-tight Forces a tight bounding box for eps-files. Since the ghostscript devices
are conversion of an eps-file, this option works the those devices as well.

-Sxsize,ysize
Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG. If using
the command form of the print function, you must quote the xsize,ysize
option. For example, by writing "-S640,480". The size defaults to that
specified by the figure’s paperposition property.
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-Ffontname
-Ffontname:size
-F:size fontname set the postscript font (for use with postscript, aifm, corel and

fig). By default, ’Helvetica’ is set for PS/Aifm, and ’SwitzerlandLight’ for
Corel. It can also be ’Times-Roman’. size is given in points. fontname is
ignored for the fig device.

The filename and options can be given in any order.

[Function File]orient (orientation )
Set the default print orientation. Valid values for orientation include "landscape"
and "portrait". If called with no arguments, return the default print orientation.

15.1.7 Interacting with plots

The user can select points on a plot with the ginput function or selection the position at
which to place text on the plot with the gtext function using the mouse.

[Function File][x, y, buttons] = ginput (n )
Return which mouse buttons were pressed and keys were hit on the current figure. If
n is defined, then wait for n mouse clicks before returning. If n is not defined, then
ginput will loop until the return key is pressed.

[Function File]b = waitforbuttonpress ()
Wait for button or mouse press.over a figure window. The value of b returns 0 if a
mouse button was pressed or 1 is a key was pressed.

See also: [ginput], page 242.

[Function File]gtext (s )
[Function File]gtext ({s1 ; s2 ; . . .})
[Function File]gtext (. . . , prop, val )

Place text on the current figure using the mouse. The text is defined by the string
s. If s is a cell array, each element of the cell array is written to a separate line.
Additional arguments are passed to the underlying text object as properties.

See also: [ginput], page 242, [text], page 236.

15.1.8 Test Plotting Functions

The functions sombrero and peaks provide a way to check that plotting is working. Typing
either sombrero or peaks at the Octave prompt should display a three-dimensional plot.

[Function File]sombrero (n )
Produce the familiar three-dimensional sombrero plot using n grid lines. If n is omit-
ted, a value of 41 is assumed.

The function plotted is

z = sin (sqrt (x^2 + y^2)) / (sqrt (x^2 + y^2))

See also: [surf], page 228, [meshgrid], page 229, [mesh], page 227.
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[Function File]peaks ()
[Function File]peaks (n )
[Function File]peaks (x, y )
[Function File]z = peaks (. . . )
[Function File][x, y, z] = peaks (. . . )

Generate a function with lots of local maxima and minima. The function has the
form
f(x, y) = 3(1− x)2e(−x2−(y+1)2) − 10

(
x
5
− x3 − y5)

)
− 1

3
e(−(x+1)2−y2)

Called without a return argument, peaks plots the surface of the above function using
mesh. If n is a scalar, the peaks returns the values of the above function on a n-by-n
mesh over the range [-3,3]. The default value for n is 49.
If n is a vector, then it represents the x and y values of the grid on which to calculate
the above function. The x and y values can be specified separately.

See also: [surf], page 228, [mesh], page 227, [meshgrid], page 229.

15.2 Advanced Plotting

15.2.1 Graphics Objects

Plots in Octave are constructed from the following graphics objects. Each graphics object
has a set of properties that define its appearance and may also contain links to other graphics
objects. Graphics objects are only referenced by a numeric index, or handle.

root figure The parent of all figure objects. The index for the root figure is defined to be
0.

figure A figure window.

axes A set of axes. This object is a child of a figure object and may be a parent of
line, text, image, patch, or surface objects.

line A line in two or three dimensions.

text Text annotations.

image A bitmap image.

patch A filled polygon, currently limited to two dimensions.

surface A three-dimensional surface.

To determine whether a variable is a graphics object index or a figure index, use the
functions ishandle and isfigure.

[Built-in Function]ishandle (h )
Return true if h is a graphics handle and false otherwise.

[Function File]ishghandle (h )
Return true if h is a graphics handle and false otherwise.

[Function File]isfigure (h )
Return true if h is a graphics handle that contains a figure object and false otherwise.
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The function gcf returns an index to the current figure object, or creates one if none
exists. Similarly, gca returns the current axes object, or creates one (and its parent figure
object) if none exists.

[Function File]gcf ()
Return the current figure handle. If a figure does not exist, create one and return its
handle. The handle may then be used to examine or set properties of the figure. For
example,

fplot (@sin, [-10, 10]);
fig = gcf ();
set (fig, "visible", "off");

plots a sine wave, finds the handle of the current figure, and then makes that figure
invisible. Setting the visible property of the figure to "on" will cause it to be displayed
again.

See also: [get], page 245, [set], page 245.

[Function File]gca ()
Return a handle to the current axis object. If no axis object exists, create one and
return its handle. The handle may then be used to examine or set properties of the
axes. For example,

ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

creates an empty axes object, then changes its location and size in the figure window.

See also: [get], page 245, [set], page 245.

The get and set functions may be used to examine and set properties for graphics
objects. For example,

get (0)
⇒ ans =

{
type = root
currentfigure = [](0x0)
children = [](0x0)
visible = on

...
}

returns a structure containing all the properties of the root figure. As with all functions
in Octave, the structure is returned by value, so modifying it will not modify the internal
root figure plot object. To do that, you must use the set function. Also, note that in this
case, the currentfigure property is empty, which indicates that there is no current figure
window.

The get function may also be used to find the value of a single property. For example,
get (gca (), "xlim")

⇒ [ 0 1 ]

returns the range of the x-axis for the current axes object in the current figure.
To set graphics object properties, use the set function. For example,
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set (gca (), "xlim", [-10, 10]);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10,
10]’. Additionally, calling set with a graphics object index as the only argument returns a
structure containing the default values for all the properties for the given object type. For
example,

set (gca ())

returns a structure containing the default property values for axes objects.

[Built-in Function]get (h, p )
Return the named property p from the graphics handle h. If p is omitted, return the
complete property list for h. If h is a vector, return a cell array including the property
values or lists respectively.

[Built-in Function]set (h, p, v, . . . )
Set the named property value or vector p to the value v for the graphics handle h.

[Function File]parent = ancestor (h, type )
[Function File]parent = ancestor (h, type, ’toplevel’)

Return the first ancestor of handle object h whose type matches type, where type is
a character string. If type is a cell array of strings, return the first parent whose type
matches any of the given type strings.
If the handle object h is of type type, return h.
If "toplevel" is given as a 3rd argument, return the highest parent in the object
hierarchy that matches the condition, instead of the first (nearest) one.

See also: [get], page 245, [set], page 245.

[Function File]h = allchild (handles )
Find all children, including hidden children, of a graphics object.
This function is similar to get (h, "children"), but also returns includes hidden
objects. If handles is a scalar, h will be a vector. Otherwise, h will be a cell matrix
of the same size as handles and each cell will contain a vector of handles.

See also: [get], page 245, [set], page 245, [findall], page 257, [findobj], page 256.

You can create axes, line, and patch objects directly using the axes, line, and patch
functions. These objects become children of the current axes object.

[Function File]axes ()
[Function File]axes (property, value, . . . )
[Function File]axes (h )

Create an axes object and return a handle to it.

[Function File]line ()
[Function File]line (x, y )
[Function File]line (x, y, z )
[Function File]line (x, y, z, property, value, . . . )

Create line object from x and y and insert in current axes object. Return a handle
(or vector of handles) to the line objects created.
Multiple property-value pairs may be specified for the line, but they must appear in
pairs.
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[Function File]patch ()
[Function File]patch (x, y, c )
[Function File]patch (x, y, z, c )
[Function File]patch (fv )
[Function File]patch (’Faces’, f, ’Vertices’, v, . . . )
[Function File]patch (. . . , prop, val )
[Function File]patch (h, . . . )
[Function File]h = patch (. . . )

Create patch object from x and y with color c and insert in the current axes object.
Return handle to patch object.
For a uniform colored patch, c can be given as an RGB vector, scalar value referring
to the current colormap, or string value (for example, "r" or "red").
If passed a structure fv contain the fields "vertices", "faces" and optionally "facev-
ertexcdata", create the patch based on these properties.

[Function File]fill (x, y, c )
[Function File]fill (x1, y1, c1, x2, y2, c2 )
[Function File]fill (. . . , prop, val )
[Function File]fill (h, . . . )
[Function File]h = fill (. . . )

Create one or more filled patch objects, returning a patch object for each.

[Function File]surface (x, y, z, c )
[Function File]surface (x, y, z )
[Function File]surface (z, c )
[Function File]surface (z )
[Function File]surface (. . . , prop, val )
[Function File]surface (h, . . . )
[Function File]h = surface (. . . )

Plot a surface graphic object given matrices x, and y from meshgrid and a matrix
z corresponding to the x and y coordinates of the surface. If x and y are vectors,
then a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different
x values and rows of z correspond to different y values. If x and y are missing, they
are constructed from size of the matrix z.
Any additional properties passed are assigned to the surface.

See also: [surf], page 228, [mesh], page 227, [patch], page 246, [line], page 245.

By default, Octave refreshes the plot window when a prompt is printed, or when waiting
for input. To force an update at other times, call the drawnow function.

[Built-in Function]drawnow ()
[Built-in Function]drawnow ("expose")
[Built-in Function]drawnow (term, file, mono, debug_file )

Update figure windows and their children. The event queue is flushed and any call-
backs generated are executed. With the optional argument "expose", only graphic
objects are updated and no other events or callbacks are processed. The third calling
form of drawnow is for debugging and is undocumented.
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Only figures that are modified will be updated. The refresh function can also be used
to force an update of the current figure, even if it is not modified.

[Function File]refresh ()
[Function File]refresh (h )

Refresh a figure, forcing it to be redrawn. Called without an argument the current
figure is redrawn, otherwise the figure pointed to by h is redrawn.

See also: [drawnow], page 246.

Normally, high-level plot functions like plot or mesh call newplot to initialize the state
of the current axes so that the next plot is drawn in a blank window with default property
settings. To have two plots superimposed over one another, use the hold function. For
example,

hold on;
x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));
hold off;

displays sine and cosine waves on the same axes. If the hold state is off, consecutive plotting
commands like this will only display the last plot.

[Function File]newplot ()
Prepare graphics engine to produce a new plot. This function should be called at the
beginning of all high-level plotting functions.

[Function File]hold
[Function File]hold state
[Function File]hold (hax, . . . )

Toggle or set the ’hold’ state of the plotting engine which determines whether new
graphic objects are added to the plot or replace the existing objects.

hold on Retain plot data and settings so that subsequent plot commands are
displayed on a single graph.

hold off Clear plot and restore default graphics settings before each new plot com-
mand. (default).

hold Toggle the current ’hold’ state.

When given the additional argument hax, the hold state is modified only for the given
axis handle.

To query the current ’hold’ state use the ishold function.

See also: [ishold], page 247, [cla], page 248, [newplot], page 247, [clf], page 248.

[Function File]ishold
Return true if the next line will be added to the current plot, or false if the plot device
will be cleared before drawing the next line.
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To clear the current figure, call the clf function. To clear the current axis, call the cla
function. To bring the current figure to the top of the window stack, call the shg function.
To delete a graphics object, call delete on its index. To close the figure window, call the
close function.

[Function File]clf ()
[Function File]clf ("reset")
[Function File]clf (hfig )
[Function File]clf (hfig, "reset")

Clear the current figure window. clf operates by deleting child graphics objects with
visible handles (HandleVisibility = on). If hfig is specified operate on it instead of
the current figure. If the optional argument "reset" is specified, all objects including
those with hidden handles are deleted.

See also: [cla], page 248, [close], page 248, [delete], page 248.

[Function File]cla ()
[Function File]cla ("reset")
[Function File]cla (hax )
[Function File]cla (hax, "reset")

Delete the children of the current axes with visible handles. If hax is specified and
is an axes object handle, operate on it instead of the current axes. If the optional
argument "reset" is specified, also delete the children with hidden handles.

See also: [clf], page 248.

[Function File]shg
Show the graph window. Currently, this is the same as executing drawnow.

See also: [drawnow], page 246, [figure], page 239.

[Function File]delete (file )
[Function File]delete (handle )

Delete the named file or graphics handle.
Deleting graphics objects is the proper way to remove features from a plot without
clearing the entire figure.

See also: [clf], page 248, [cla], page 248.

[Command]close
[Command]close (n )
[Command]close all
[Command]close all hidden

Close figure window(s) by calling the function specified by the "closerequestfcn"
property for each figure. By default, the function closereq is used.

See also: [closereq], page 248.

[Function File]closereq ()
Close the current figure and delete all graphics objects associated with it.

See also: [close], page 248, [delete], page 248.
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15.2.2 Graphics Object Properties

15.2.2.1 Root Figure Properties

currentfigure
Index to graphics object for the current figure.

15.2.2.2 Figure Properties

nextplot May be one of

"new"

"add"

"replace"
"replacechildren"

closerequestfcn
Handle of function to call when a figure is closed.

currentaxes
Index to graphics object of current axes.

colormap An N-by-3 matrix containing the color map for the current axes.

visible Either "on" or "off" to toggle display of the figure.

paperorientation
Indicates the orientation for printing. Either "landscape" or "portrait".

15.2.2.3 Axes Properties

position A vector specifying the position of the plot, excluding titles, axes and legend.
The four elements of the vector are the coordinates of the lower left corner and
width and height of the plot, in units normalized to the width and height of the
plot window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of
the axes at (0.2, 0.3) and the width and height to be 0.4 and 0.5 respectively.
See also the outerposition property.

title Index of text object for the axes title.

box Either "on" or "off" to toggle display of the box around the axes.

key Either "on" or "off" to toggle display of the legend. Note that this property is
not compatible with matlab and may be removed in a future version of Octave.

keybox Either "on" or "off" to toggle display of a box around the legend. Note that
this property is not compatible with matlab and may be removed in a future
version of Octave.

keypos An integer from 1 to 4 specifying the position of the legend. 1 indicates upper
right corner, 2 indicates upper left, 3 indicates lower left, and 4 indicates lower
right. Note that this property is not compatible with matlab and may be
removed in a future version of Octave.
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dataaspectratio
A two-element vector specifying the relative height and width of the data dis-
played in the axes. Setting dataaspectratio to ‘1, 2]’ causes the length of
one unit as displayed on the y-axis to be the same as the length of 2 units
on the x-axis. Setting dataaspectratio also forces the dataaspectratiomode
property to be set to "manual".

dataaspectratiomode
Either "manual" or "auto".

xlim
ylim
zlim
clim Two-element vectors defining the limits for the x, y, and z axes and the Setting

one of these properties also forces the corresponding mode property to be set
to "manual".

xlimmode
ylimmode
zlimmode
climmode Either "manual" or "auto".

xlabel
ylabel
zlabel Indices to text objects for the axes labels.

xgrid
ygrid
zgrid Either "on" or "off" to toggle display of grid lines.

xminorgrid
yminorgrid
zminorgrid

Either "on" or "off" to toggle display of minor grid lines.

xtick
ytick
ztick Setting one of these properties also forces the corresponding mode property to

be set to "manual".

xtickmode
ytickmode
ztickmode

Either "manual" or "auto".

xticklabel
yticklabel
zticklabel

Setting one of these properties also forces the corresponding mode property to
be set to "manual".
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xticklabelmode
yticklabelmode
zticklabelmode

Either "manual" or "auto".

xscale
yscale
zscale Either "linear" or "log".

xdir
ydir
zdir Either "forward" or "reverse".

xaxislocation
yaxislocation

Either "top" or "bottom" for the x-axis and "left" or "right" for the y-axis.

view A three element vector specifying the view point for three-dimensional plots.

visible Either "on" or "off" to toggle display of the axes.

nextplot May be one of

"new"

"add"

"replace"
"replacechildren"

outerposition
A vector specifying the position of the plot, including titles, axes and legend.
The four elements of the vector are the coordinates of the lower left corner and
width and height of the plot, in units normalized to the width and height of the
plot window. For example, [0.2, 0.3, 0.4, 0.5] sets the lower left corner of
the axes at (0.2, 0.3) and the width and height to be 0.4 and 0.5 respectively.
See also the position property.

15.2.2.4 Line Properties

xdata
ydata
zdata
ldata
udata
xldata
xudata The data to be plotted. The ldata and udata elements are for errorbars in

the y direction, and the xldata and xudata elements are for errorbars in the x
direction.

color The RGB color of the line, or a color name. See Section 15.2.4 [Colors], page 258.

linestyle
linewidth

See Section 15.2.5 [Line Styles], page 258.
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marker

markeredgecolor
markerfacecolor
markersize

See Section 15.2.6 [Marker Styles], page 258.

keylabel The text of the legend entry corresponding to this line. Note that this property
is not compatible with matlab and may be removed in a future version of
Octave.

15.2.2.5 Text Properties

string The character string contained by the text object.

units May be "normalized" or "graph".

position The coordinates of the text object.

rotation The angle of rotation for the displayed text, measured in degrees.

horizontalalignment
May be "left", "center", or "right".

color The color of the text. See Section 15.2.4 [Colors], page 258.

fontname The font used for the text.

fontsize The size of the font, in points to use.

fontangle
Flag whether the font is italic or normal. Valid values are ’normal’, ’italic’ and
’oblique’.

fontweight
Flag whether the font is bold, etc. Valid values are ’normal’, ’bold’, ’demi’ or
’light’.

interpreter
Determines how the text is rendered. Valid values are ’none’, ’tex’ or ’latex’.

All text objects, including titles, labels, legends, and text, include the property ’inter-
preter’, this property determines the manner in which special control sequences in the text
are rendered. If the interpreter is set to ’none’, then no rendering occurs. At this point the
’latex’ option is not implemented and so the ’latex’ interpreter also does not interpret the
text.

The ’tex’ option implements a subset of TeX functionality in the rendering of the text.
This allows the insertion of special characters such as Greek or mathematical symbols within
the text. The special characters are also inserted with a code starting with the back-slash
(\) character, as in the table Table 15.1.

In addition, the formatting of the text can be changed within the string with the codes
\bf Bold font
\it Italic font
\sl Oblique Font
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\rm Normal font

These are be used in conjunction with the { and } characters to limit the change in the
font to part of the string. For example

xlabel (’{\bf H} = a {\bf V}’)

where the character ’a’ will not appear in a bold font. Note that to avoid having Octave
interpret the backslash characters in the strings, the strings should be in single quotes.

It is also possible to change the fontname and size within the text

\fontname{fontname} Specify the font to use
\fontsize{size} Specify the size of the font to use

Finally, the superscript and subscripting can be controlled with the ’^’ and ’ ’ characters.
If the ’^’ or ’ ’ is followed by a { character, then all of the block surrounded by the { } pair
is super- or sub-scripted. Without the { } pair, only the character immediately following
the ’^’ or ’ ’ is super- or sub-scripted.
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Code Sym Code Sym Code Sym
\forall ∀ \exists ∃ \ni 3
\cong ∼= \Delta ∆ \Phi Φ
\Gamma Γ \vartheta ϑ \Lambda Λ
\Pi Π \Theta Θ \Sigma Σ
\varsigma ς \Omega Ω \Xi Ξ
\Psi Ψ \perp ⊥ \alpha α

\beta β \chi χ \delta δ

\epsilon ε \phi φ \gamma γ

\eta η \iota ι \varphi ϕ

\kappa κ \lambda λ \mu µ

\nu ν \o ≤ \pi π

\theta θ \rho ρ \sigma σ

\tau τ \upsilon υ \varpi $

\omega ω \xi ξ \psi ψ

\zeta ζ \sim ∼ \Upsilon Υ
\prime ′ \leq ≤ \infty ∞
\clubsuit ♣ \diamondsuit ♦ \heartsuit ♥
\spadesuit ♠ \leftrightarrow ↔ \leftarrow ←
\uparrow ↑ \rightarrow → \downarrow ↓
\circ ◦ \pm ± \geq ≥
\times × \propto ∝ \partial ∂

\bullet • \div ÷ \neq 6=
\equiv ≡ \approx ≈ \ldots . . .

\mid | \aleph ℵ \Im =
\Re < \wp ℘ \otimes ⊗
\oplus ⊕ \oslash ® \cap ∩
\cup ∪ \supset ⊃ \supseteq ⊇
\subset ⊂ \subseteq ⊆ \in ∈
\notin /∈ \angle 6 \bigtriangledown 5
\langle 〈 \rangle 〉 \nabla ∇
\prod

∏
\surd

√
\cdot ·

\neg ¬ \wedge ∧ \vee ∨
\Leftrightarrow ⇔ \Leftarrow ⇐ \Uparrow ⇑
\Rightarrow ⇒ \Downarrow ⇓ \diamond ¦
\copyright c© \rfloor c \lceil d
\lfloor b \rceil e \int

∫
Table 15.1: Available special characters in TeX mode

A complete example showing the capabilities of the extended text is
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x = 0:0.01:3;
plot(x,erf(x));
hold on;
plot(x,x,"r");
axis([0, 3, 0, 1]);
text(0.65, 0.6175, strcat(’\leftarrow x = {2/\surd\pi’,
’ {\fontsize{16}\int_{\fontsize{8}0}^{\fontsize{8}x}}’,
’ e^{-t^2} dt} = 0.6175’))

The result of which can be seen in Figure 15.7

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

← x = 2/√π ∫
0

x
 e-t2 dt = 0.6175

Figure 15.7: Example of inclusion of text with the TeX interpreter

15.2.2.6 Image Properties

cdata The data for the image. Each pixel of the image corresponds to an element
of cdata. The value of an element of cdata specifies the row-index into the
colormap of the axes object containing the image. The color value found in the
color map for the given index determines the color of the pixel.

xdata
ydata Two-element vectors specifying the range of the x- and y- coordinates for the

image.

15.2.2.7 Patch Properties

cdata
xdata
ydata
zdata Data defining the patch object.

facecolor
The fill color of the patch. See Section 15.2.4 [Colors], page 258.
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facealpha
A number in the range [0, 1] indicating the transparency of the patch.

edgecolor
The color of the line defining the patch. See Section 15.2.4 [Colors], page 258.

linestyle
linewidth

See Section 15.2.5 [Line Styles], page 258.

marker
markeredgecolor
markerfacecolor
markersize

See Section 15.2.6 [Marker Styles], page 258.

15.2.2.8 Surface Properties

xdata
ydata
zdata The data determining the surface. The xdata and ydata elements are vectors

and zdata must be a matrix.

keylabel The text of the legend entry corresponding to this surface. Note that this
property is not compatible with matlab and may be removed in a future version
of Octave.

15.2.2.9 Searching Properties

[Function File]h = findobj ()
[Function File]h = findobj (prop_name, prop_value )
[Function File]h = findobj (’-property’, prop_name )
[Function File]h = findobj (’-regexp’, prop_name, pattern )
[Function File]h = findobj (’flat’, . . . )
[Function File]h = findobj (h, . . . )
[Function File]h = findobj (h, ’-depth’, d, . . . )

Find object with specified property values. The simplest form is

findobj (prop_name, prop_Value)

which returns all of the handles to the objects with the name prop name and the
name prop Value. The search can be limited to a particular object or set of objects
and their descendants by passing a handle or set of handles h as the first argument
to findobj.

The depth of hierarchy of objects to which to search to can be limited with the ’-depth’
argument. To limit the number depth of the hierarchy to search to d generations of
children, and example is

findobj (h, ’-depth’, d, prop_Name, prop_Value)

Specifying a depth d of 0, limits the search to the set of object passed in h. A depth
d of 0 is equivalent to the ’-flat’ argument.
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A specified logical operator may be applied to the pairs of prop Name and prop Value.
The supported logical operators are ’-and’, ’-or’, ’-xor’, ’-not’.
The objects may also be matched by comparing a regular expression to the property
values, where property values that match regexp (prop_Value, pattern) are re-
turned. Finally, objects may be matched by property name only, using the ’-property’
option.

See also: [get], page 245, [set], page 245.

[Function File]h = findall ()
[Function File]h = findall (prop_name, prop_value )
[Function File]h = findall (h, . . . )
[Function File]h = findall (h, "-depth", d, . . . )

Find object with specified property values including hidden handles.
This function performs the same function as findobj, but it includes hidden objects
in its search. For full documentation, see findobj.

See also: [get], page 245, [set], page 245, [findobj], page 256, [allchild], page 245.

15.2.3 Managing Default Properties

Object properties have two classes of default values, factory defaults (the initial values) and
user-defined defaults, which may override the factory defaults.

Although default values may be set for any object, they are set in parent objects and
apply to child objects. For example,

set (0, "defaultlinecolor", "green");

sets the default line color for all objects. The rule for constructing the property name to
set a default value is

default + object-type + property-name

This rule can lead to some strange looking names, for example defaultlinelinewidth"
specifies the default linewidth property for line objects.

The example above used the root figure object, 0, so the default property value will
apply to all line objects. However, default values are hierarchical, so defaults set in a figure
objects override those set in the root figure object. Likewise, defaults set in axes objects
override those set in figure or root figure objects. For example,

subplot (2, 1, 1);
set (0, "defaultlinecolor", "red");
set (1, "defaultlinecolor", "green");
set (gca (), "defaultlinecolor", "blue");
line (1:10, rand (1, 10));
subplot (2, 1, 2);
line (1:10, rand (1, 10));
figure (2)
line (1:10, rand (1, 10));

produces two figures. The line in first subplot window of the first figure is blue because it
inherits its color from its parent axes object. The line in the second subplot window of the
first figure is green because it inherits its color from its parent figure object. The line in the
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second figure window is red because it inherits its color from the global root figure parent
object.

To remove a user-defined default setting, set the default property to the value "remove".
For example,

set (gca (), "defaultlinecolor", "remove");

removes the user-defined default line color setting from the current axes object.

Getting the "default" property of an object returns a list of user-defined defaults set
for the object. For example,

get (gca (), "default");

returns a list of user-defined default values for the current axes object.

Factory default values are stored in the root figure object. The command

get (0, "factory");

returns a list of factory defaults.

15.2.4 Colors

Colors may be specified as RGB triplets with values ranging from zero to one, or by name.
Recognized color names include "blue", "black", "cyan", "green", "magenta", "red",
"white", and "yellow".

15.2.5 Line Styles

Line styles are specified by the following properties:

linestyle
May be one of

"-" Solid lines.

"--" Dashed lines.

":" Points.

"-." A dash-dot line.

linewidth
A number specifying the width of the line. The default is 1. A value of 2 is
twice as wide as the default, etc.

15.2.6 Marker Styles

Marker styles are specified by the following properties:
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marker A character indicating a plot marker to be place at each data point, or "none",
meaning no markers should be displayed.

markeredgecolor
The color of the edge around the marker, or "auto", meaning that the edge
color is the same as the face color. See Section 15.2.4 [Colors], page 258.

markerfacecolor
The color of the marker, or "none" to indicate that the marker should not be
filled. See Section 15.2.4 [Colors], page 258.

markersize
A number specifying the size of the marker. The default is 1. A value of 2 is
twice as large as the default, etc.

15.2.7 Callbacks

Callback functions can be associated with graphics objects and triggered after certain events
occur. The basic structure of all callback function is

function mycallback (src, data)
...
endfunction

where src gives a handle to the source of the callback, and code gives some event specific
data. This can then be associated with an object either at the objects creation or later with
the set function. For example

plot (x, "DeleteFcn", @(s, e) disp("Window Deleted"))

where at the moment that the plot is deleted, the message "Window Deleted" will be
displayed.

Additional user arguments can be passed to callback functions, and will be passed after
the 2 default arguments. For example

plot (x, "DeleteFcn", {@mycallback, "1"})
...
function mycallback (src, data, a1)
fprintf ("Closing plot %d\n", a1);

endfunction

The basic callback functions that are available for all graphics objects are

• CreateFcn This is the callback that is called at the moment of the objects creation. It
is not called if the object is altered in any way, and so it only makes sense to define
this callback in the function call that defines the object. Callbacks that are added to
CreateFcn later with the set function will never be executed.

• DeleteFcn This is the callback that is called at the moment an object is deleted.

• ButtonDownFcn This is the callback that is called if a mouse button is pressed while
the pointer is over this object. Note, that the gnuplot interface does not respect this
callback.

The object and figure that the event occurred in that resulted in the callback being
called can be found with the gcbo and gcbf functions.
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[Function File]h = gcbo ()
[Function File][h, fig] = gcbo ()

Return a handle to the object whose callback is currently executing. If no callback is
executing, this function returns the empty matrix. This handle is obtained from the
root object property "CallbackObject".
Additionally return the handle of the figure containing the object whose callback is
currently executing. If no callback is executing, the second output is also set to the
empty matrix.

See also: [gcf], page 244, [gca], page 244, [gcbf], page 260.

[Function File]fig = gcbf ()
Return a handle to the figure containing the object whose callback is currently ex-
ecuting. If no callback is executing, this function returns the empty matrix. The
handle returned by this function is the same as the second output argument of gcbo.

See also: [gcf], page 244, [gca], page 244, [gcbo], page 259.

Callbacks can equally be added to properties with the addlistener function described
below.

15.2.8 Object Groups

A number of Octave high level plot functions return groups of other graphics objects or they
return graphics objects that are have their properties linked in such a way that changes to
one of the properties results in changes in the others. A graphic object that groups other
objects is an hggroup

[Function File]hggroup ()
[Function File]hggroup (h )
[Function File]hggroup (. . . , property, value, . . . )

Create group object with parent h. If no parent is specified, the group is created in
the current axes. Return the handle of the group object created.
Multiple property-value pairs may be specified for the group, but they must appear
in pairs.

For example a simple use of a hggroup might be
x = 0:0.1:10;
hg = hggroup ();
plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
set (hg, "visible", "off");

which groups the two plots into a single object and controls their visibility directly. The
default properties of an hggroup are the same as the set of common properties for the other
graphics objects. Additional properties can be added with the addproperty function.

[Built-in Function]addproperty (name, h, type, [arg, . . . ])
Create a new property named name in graphics object h. type determines the type
of the property to create. args usually contains the default value of the property, but
additional arguments might be given, depending on the type of the property.
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The supported property types are:

string A string property. arg contains the default string value.

any An un-typed property. This kind of property can hold any octave value.
args contains the default value.

radio A string property with a limited set of accepted values. The first argu-
ment must be a string with all accepted values separated by a vertical
bar (’|’). The default value can be marked by enclosing it with a ’{’ ’}’
pair. The default value may also be given as an optional second string
argument.

boolean A boolean property. This property type is equivalent to a radio property
with "on|off" as accepted values. arg contains the default property value.

double A scalar double property. arg contains the default value.

handle A handle property. This kind of property holds the handle of a graphics
object. arg contains the default handle value. When no default value is
given, the property is initialized to the empty matrix.

data A data (matrix) property. arg contains the default data value. When no
default value is given, the data is initialized to the empty matrix.

color A color property. arg contains the default color value. When no default
color is given, the property is set to black. An optional second string
argument may be given to specify an additional set of accepted string
values (like a radio property).

type may also be the concatenation of a core object type and a valid property name
for that object type. The property created then has the same characteristics as the
referenced property (type, possible values, hidden state. . . ). This allows to clone an
existing property into the graphics object h.
Examples:

addproperty ("my_property", gcf, "string", "a string value");
addproperty ("my_radio", gcf, "radio", "val_1|val_2|{val_3}");
addproperty ("my_style", gcf, "linelinestyle", "--");

Once a property in added to an hggroup, it is not linked to any other property of either
the children of the group, or any other graphics object. Add so to control the way in which
this newly added property is used, the addlistener function is used to define a callback
function that is executed when the property is altered.

[Built-in Function]addlistener (h, prop, fcn )
Register fcn as listener for the property prop of the graphics object h. Property
listeners are executed (in order of registration) when the property is set. The new
value is already available when the listeners are executed.
prop must be a string naming a valid property in h.
fcn can be a function handle, a string or a cell array whose first element is a function
handle. If fcn is a function handle, the corresponding function should accept at least
2 arguments, that will be set to the object handle and the empty matrix respectively.
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If fcn is a string, it must be any valid octave expression. If fcn is a cell array, the first
element must be a function handle with the same signature as described above. The
next elements of the cell array are passed as additional arguments to the function.

Example:

function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);

endfunction

addlistener (gcf, "position", {@my_listener, "my string"})

[Built-in Function]dellistener (h, prop, fcn )
Remove the registration of fcn as a listener for the property prop of the graphics
object h. The function fcn must be the same variable (not just the same value), as
was passed to the original call to addlistener.

If fcn is not defined then all listener functions of prop are removed.

Example:

function my_listener (h, dummy, p1)
fprintf ("my_listener called with p1=%s\n", p1);

endfunction

c = {@my_listener, "my string"};
addlistener (gcf, "position", c);
dellistener (gcf, "position", c);

An example of the use of these two functions might be

x = 0:0.1:10;
hg = hggroup ();
h = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
addlistener (hg, "linestyle", @update_props);
hold on
plot (x, cos (x), "color", [0, 1, 0], "parent", hg);

function update_props (h, d)
set (get (h, "children"), "linestyle", get (h, "linestyle"));

endfunction

that adds a linestyle property to the hggroup and propagating any changes its value to
the children of the group. The linkprop function can be used to simplify the above to be

x = 0:0.1:10;
hg = hggroup ();
h1 = plot (x, sin (x), "color", [1, 0, 0], "parent", hg);
addproperty ("linestyle", hg, "linelinestyle", get (h, "linestyle"));
hold on
h2 = plot (x, cos (x), "color", [0, 1, 0], "parent", hg);
hlink = linkprop ([hg, h1, h2], "color");
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[Function File]hlink = linkprop (h, prop )
Links graphics object properties, such that a change in one is propagated to the
others. The properties to link are given as a string of cell string array by prop and
the objects containing these properties by the handle array h.

An example of the use of linkprops is

x = 0:0.1:10;
subplot (1, 2, 1);
h1 = plot (x, sin (x));
subplot (1, 2, 2);
h2 = plot (x, cos (x));
hlink = linkprop ([h1, h2], {"color","linestyle"});
set (h1, "color", "green");
set (h2, "linestyle", "--");

These capabilities are used in a number of basic graphics objects. The hggroup objects
created by the functions of Octave contain one or more graphics object and are used to:

• group together multiple graphics objects,

• create linked properties between different graphics objects, and

• to hide the nominal user data, from the actual data of the objects.

For example the stem function creates a stem series where each hggroup of the stem series
contains two line objects representing the body and head of the stem. The ydata property
of the hggroup of the stem series represents the head of the stem, whereas the body of the
stem is between the baseline and this value. For example

h = stem (1:4)
get (h, "xdata")
⇒ [ 1 2 3 4]’
get (get (h, "children")(1), "xdata")
⇒ [ 1 1 NaN 2 2 NaN 3 3 NaN 4 4 NaN]’

shows the difference between the xdata of the hggroup of a stem series object and the
underlying line.

The basic properties of such group objects is that they consist of one or more linked
hggroup, and that changes in certain properties of these groups are propagated to other
members of the group. Whereas, certain properties of the members of the group only apply
to the current member.

In addition the members of the group can also be linked to other graphics objects through
callback functions. For example the baseline of the bar or stem functions is a line object,
whose length and position are automatically adjusted, based on changes to the correspond-
ing hggroup elements.

15.2.8.1 Data sources in object groups

All of the group objects contain data source parameters. There are string parameters that
contain an expression that is evaluated to update the relevant data property of the group
when the refreshdata function is called.
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[Function File]refreshdata ()
[Function File]refreshdata (h )
[Function File]refreshdata (h, workspace )

Evaluate any ‘datasource’ properties of the current figure and update the plot if the
corresponding data has changed. If called with one or more arguments h is a scalar
or array of figure handles to refresh. The optional second argument workspace can
take the following values.

"base" Evaluate the datasource properties in the base workspace. (default).

"caller" Evaluate the datasource properties in the workspace of the function that
called refreshdata.

An example of the use of refreshdata is:
x = 0:0.1:10;
y = sin (x);
plot (x, y, "ydatasource", "y");
for i = 1 : 100

pause(0.1)
y = sin (x + 0.1 * i);
refreshdata();

endfor

15.2.8.2 Area series

Area series objects are created by the area function. Each of the hggroup elements contains
a single patch object. The properties of the area series are

basevalue
The value where the base of the area plot is drawn.

linewidth
linestyle

The line width and style of the edge of the patch objects making up the areas.
See Section 15.2.5 [Line Styles], page 258.

edgecolor
facecolor

The line and fill color of the patch objects making up the areas. See
Section 15.2.4 [Colors], page 258.

xdata
ydata The x and y coordinates of the original columns of the data passed to area

prior to the cumulative summation used in the area function.

xdatasource
ydatasource

Data source variables.

15.2.8.3 Bar series

Bar series objects are created by the bar or barh functions. Each hggroup element contains
a single patch object. The properties of the bar series are
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showbaseline
baseline
basevalue

The property showbaseline flags whether the baseline of the bar series is dis-
played (default is "on"). The handle of the graphics object representing the
baseline is given by the baseline property and the y-value of the baseline by
the basevalue property.
Changes to any of these property are propagated to the other members of the
bar series and to the baseline itself. Equally changes in the properties of the
base line itself are propagated to the members of the corresponding bar series.

barwidth
barlayout
horizontal

The property barwidth is the width of the bar corresponding to the width vari-
able passed to bar or barh. Whether the bar series is "grouped" or "stacked"
is determined by the barlayout property and whether the bars are horizontal
or vertical by the horizontal property.
Changes to any of these property are propagated to the other members of the
bar series.

linewidth
linestyle

The line width and style of the edge of the patch objects making up the bars.
See Section 15.2.5 [Line Styles], page 258.

edgecolor
facecolor

The line and fill color of the patch objects making up the bars. See Section 15.2.4
[Colors], page 258.

xdata The nominal x positions of the bars. Changes in this property and propagated
to the other members of the bar series.

ydata The y value of the bars in the hggroup.

xdatasource
ydatasource

Data source variables.

15.2.8.4 Contour groups

Contour group objects are created by the contour, contourf and contour3 functions. The
are equally one of the handles returned by the surfc and meshc functions. The properties
of the contour group are

contourmatrix
A read only property that contains the data return by contourc used to create
the contours of the plot.

fill A radio property that can have the values "on" or "off" that flags whether the
contours to plot are to be filled.
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zlevelmode
zlevel The radio property zlevelmode can have the values "none", "auto" or "man-

ual". When its value is "none" there is no z component to the plotted contours.
When its value is "auto" the z value of the plotted contours is at the same value
as the contour itself. If the value is "manual", then the z value at which to plot
the contour is determined by the zlevel property.

levellistmode
levellist
levelstepmode
levelstep

If levellistmode is "manual", then the levels at which to plot the contours
is determined by levellist. If levellistmode is set to "auto", then the
distance between contours is determined by levelstep. If both levellistmode
and levelstepmode are set to "auto", then there are assumed to be 10 equal
spaced contours.

textlistmode
textlist
textstepmode
textstep If textlistmode is "manual", then the labelled contours is determined by

textlist. If textlistmode is set to "auto", then the distance between labelled
contours is determined by textstep. If both textlistmode and textstepmode
are set to "auto", then there are assumed to be 10 equal spaced labelled con-
tours.

showtext Flag whether the contour labels are shown or not.

labelspacing
The distance between labels on a single contour in points.

linewidth
linestyle
linecolor

The properties of the contour lines. The properties linewidth and linestyle
are similar to the corresponding properties for lines. The property linecolor
is a color property (see Section 15.2.4 [Colors], page 258), that can also have
the values of "none" or "auto". If linecolor is "none", then no contour line
is drawn. If linecolor is "auto" then the line color is determined by the
colormap.

xdata
ydata
zdata The original x, y, and z data of the contour lines.

xdatasource
ydatasource
zdatasource

Data source variables.
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15.2.8.5 Error bar series

Error bar series are created by the errorbar function. Each hggroup element contains two
line objects representing the data and the errorbars separately. The properties of the error
bar series are

color The RGB color or color name of the line objects of the error bars. See
Section 15.2.4 [Colors], page 258.

linewidth
linestyle

The line width and style of the line objects of the error bars. See Section 15.2.5
[Line Styles], page 258.

marker
markeredgecolor
markerfacecolor
markersize

The line and fill color of the markers on the error bars. See Section 15.2.4
[Colors], page 258.

xdata
ydata
ldata
udata
xldata
xudata The original x, y, l, u, xl, xu data of the error bars.

xdatasource
ydatasource
ldatasource
udatasource
xldatasource
xudatasource

Data source variables.

15.2.8.6 Line series

Line series objects are created by the plot and plot3 functions and are of the type line.
The properties of the line series with the ability to add data sources.

color The RGB color or color name of the line objects. See Section 15.2.4 [Colors],
page 258.

linewidth
linestyle

The line width and style of the line objects. See Section 15.2.5 [Line Styles],
page 258.

marker
markeredgecolor
markerfacecolor
markersize

The line and fill color of the markers. See Section 15.2.4 [Colors], page 258.
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xdata
ydata
zdata The original x, y and z data.

xdatasource
ydatasource
zdatasource

Data source variables.

15.2.8.7 Quiver group

Quiver series objects are created by the quiver or quiver3 functions. Each hggroup element
of the series contains three line objects as children representing the body and head of the
arrow, together with a marker as the point of original of the arrows. The properties of the
quiver series are

autoscale
autoscalefactor

Flag whether the length of the arrows is scaled or defined directly from
the u, v and w data. If the arrow length is flagged as being scaled by the
autoscale property, then the length of the autoscaled arrow is controlled by
the autoscalefactor.

maxheadsize
This property controls the size of the head of the arrows in the quiver series.
The default value is 0.2.

showarrowhead
Flag whether the arrow heads are displayed in the quiver plot.

color The RGB color or color name of the line objects of the quiver. See Section 15.2.4
[Colors], page 258.

linewidth
linestyle

The line width and style of the line objects of the quiver. See Section 15.2.5
[Line Styles], page 258.

marker
markerfacecolor
markersize

The line and fill color of the marker objects at the original of the arrows. See
Section 15.2.4 [Colors], page 258.

xdata
ydata
zdata The origins of the values of the vector field.

udata
vdata
wdata The values of the vector field to plot.
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xdatasource
ydatasource
zdatasource
udatasource
vdatasource
wdatasource

Data source variables.

15.2.8.8 Scatter group

Scatter series objects are created by the scatter or scatter3 functions. A single hggroup
element contains as many children as there are points in the scatter plot, with each child
representing one of the points. The properties of the stem series are

linewidth
The line width of the line objects of the points. See Section 15.2.5 [Line Styles],
page 258.

marker
markeredgecolor
markerfacecolor

The line and fill color of the markers of the points. See Section 15.2.4 [Colors],
page 258.

xdata
ydata
zdata The original x, y and z data of the stems.

cdata The color data for the points of the plot. Each point can have a separate color,
or a unique color can be specified.

sizedata The size data for the points of the plot. Each point can its own size or a unique
size can be specified.

xdatasource
ydatasource
zdatasource
cdatasource
sizedatasource

Data source variables.

15.2.8.9 Stair group

Stair series objects are created by the stair function. Each hggroup element of the series
contains a single line object as a child representing the stair. The properties of the stair
series are

color The RGB color or color name of the line objects of the stairs. See Section 15.2.4
[Colors], page 258.

linewidth
linestyle

The line width and style of the line objects of the stairs. See Section 15.2.5
[Line Styles], page 258.
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marker
markeredgecolor
markerfacecolor
markersize

The line and fill color of the markers on the stairs. See Section 15.2.4 [Colors],
page 258.

xdata
ydata The original x and y data of the stairs.

xdatasource
ydatasource

Data source variables.

15.2.8.10 Stem Series

Stem series objects are created by the stem or stem3 functions. Each hggroup element
contains a single line object as a child representing the stems. The properties of the stem
series are

showbaseline
baseline
basevalue

The property showbaseline flags whether the baseline of the stem series is
displayed (default is "on"). The handle of the graphics object representing
the baseline is given by the baseline property and the y-value (or z-value for
stem3) of the baseline by the basevalue property.

Changes to any of these property are propagated to the other members of the
stem series and to the baseline itself. Equally changes in the properties of the
base line itself are propagated to the members of the corresponding stem series.

color The RGB color or color name of the line objects of the stems. See Section 15.2.4
[Colors], page 258.

linewidth
linestyle

The line width and style of the line objects of the stems. See Section 15.2.5
[Line Styles], page 258.

marker
markeredgecolor
markerfacecolor
markersize

The line and fill color of the markers on the stems. See Section 15.2.4 [Colors],
page 258.

xdata
ydata
zdata The original x, y and z data of the stems.
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xdatasource
ydatasource
zdatasource

Data source variables.

15.2.8.11 Surface group

Surface group objects are created by the surf or mesh functions, but are equally one of
the handles returned by the surfc or meshc functions. The surface group is of the type
surface.

The properties of the surface group are

edgecolor
facecolor

The RGB color or color name of the edges or faces of the surface. See
Section 15.2.4 [Colors], page 258.

linewidth
linestyle

The line width and style of the lines on the surface. See Section 15.2.5 [Line
Styles], page 258.

marker
markeredgecolor
markerfacecolor
markersize

The line and fill color of the markers on the surface. See Section 15.2.4 [Colors],
page 258.

xdata
ydata
zdata

cdata The original x, y, z and c data.

xdatasource
ydatasource
zdatasource
cdatasource

Data source variables.

15.2.9 Graphics backends

[Function File]backend (name )
[Function File]backend (hlist, name )

Change the default graphics backend to name. If the backend is not already loaded,
it is first initialized (initialization is done through the execution of __init_name__).

When called with a list of figure handles, hlist, the backend is changed only for the
listed figures.

See also: [available backends], page 272.



272 GNU Octave

[Built-in Function]available_backends ()
Return a cell array of registered graphics backends.

15.2.9.1 Interaction with gnuplot

[Loadable Function]val = gnuplot_binary ()
[Loadable Function]old_val = gnuplot_binary (new_val )

Query or set the name of the program invoked by the plot command. The default
value \"gnuplot\". See Appendix F [Installation], page 627.
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16 Matrix Manipulation

There are a number of functions available for checking to see if the elements of a matrix
meet some condition, and for rearranging the elements of a matrix. For example, Octave
can easily tell you if all the elements of a matrix are finite, or are less than some specified
value. Octave can also rotate the elements, extract the upper- or lower-triangular parts, or
sort the columns of a matrix.

16.1 Finding Elements and Checking Conditions

The functions any and all are useful for determining whether any or all of the elements
of a matrix satisfy some condition. The find function is also useful in determining which
elements of a matrix meet a specified condition.

[Built-in Function]any (x, dim )
For a vector argument, return 1 if any element of the vector is nonzero.

For a matrix argument, return a row vector of ones and zeros with each element
indicating whether any of the elements of the corresponding column of the matrix are
nonzero. For example,

any (eye (2, 4))
⇒ [ 1, 1, 0, 0 ]

If the optional argument dim is supplied, work along dimension dim. For example,

any (eye (2, 4), 2)
⇒ [ 1; 1 ]

[Built-in Function]all (x, dim )
The function all behaves like the function any, except that it returns true only if
all the elements of a vector, or all the elements along dimension dim of a matrix, are
nonzero.

Since the comparison operators (see Section 8.4 [Comparison Ops], page 113) return
matrices of ones and zeros, it is easy to test a matrix for many things, not just whether the
elements are nonzero. For example,

all (all (rand (5) < 0.9))
⇒ 0

tests a random 5 by 5 matrix to see if all of its elements are less than 0.9.

Note that in conditional contexts (like the test clause of if and while statements) Octave
treats the test as if you had typed all (all (condition)).

[Mapping Function]xor (x, y )
Return the ‘exclusive or’ of the entries of x and y. For boolean expressions x and y,
xor (x, y) is true if and only if x or y is true, but not if both x and y are true.

[Function File]is_duplicate_entry (x )
Return non-zero if any entries in x are duplicates of one another.
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[Function File]diff (x, k, dim )
If x is a vector of length n, diff (x) is the vector of first differences x2−x1, . . . , xn−
xn−1.
If x is a matrix, diff (x) is the matrix of column differences along the first non-
singleton dimension.
The second argument is optional. If supplied, diff (x, k), where k is a non-negative
integer, returns the k-th differences. It is possible that k is larger than then first non-
singleton dimension of the matrix. In this case, diff continues to take the differences
along the next non-singleton dimension.
The dimension along which to take the difference can be explicitly stated with the
optional variable dim. In this case the k-th order differences are calculated along
this dimension. In the case where k exceeds size (x, dim) then an empty matrix is
returned.

[Mapping Function]isinf (x )
Return 1 for elements of x that are infinite and zero otherwise. For example,

isinf ([13, Inf, NA, NaN])
⇒ [ 0, 1, 0, 0 ]

[Mapping Function]isnan (x )
Return 1 for elements of x that are NaN values and zero otherwise. NA values are
also considered NaN values. For example,

isnan ([13, Inf, NA, NaN])
⇒ [ 0, 0, 1, 1 ]

See also: [isna], page 35.

[Mapping Function]finite (x )
Return 1 for elements of x that are finite values and zero otherwise. For example,

finite ([13, Inf, NA, NaN])
⇒ [ 1, 0, 0, 0 ]

[Loadable Function]find (x )
[Loadable Function]find (x, n )
[Loadable Function]find (x, n, direction )

Return a vector of indices of nonzero elements of a matrix, as a row if x is a row
or as a column otherwise. To obtain a single index for each matrix element, Octave
pretends that the columns of a matrix form one long vector (like Fortran arrays are
stored). For example,

find (eye (2))
⇒ [ 1; 4 ]

If two outputs are requested, find returns the row and column indices of nonzero
elements of a matrix. For example,

[i, j] = find (2 * eye (2))
⇒ i = [ 1; 2 ]
⇒ j = [ 1; 2 ]

If three outputs are requested, find also returns a vector containing the nonzero
values. For example,
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[i, j, v] = find (3 * eye (2))
⇒ i = [ 1; 2 ]
⇒ j = [ 1; 2 ]
⇒ v = [ 3; 3 ]

If two inputs are given, n indicates the maximum number of elements to find from
the beginning of the matrix or vector.

If three inputs are given, direction should be one of "first" or "last", requesting only
the first or last n indices, respectively. However, the indices are always returned in
ascending order.

Note that this function is particularly useful for sparse matrices, as it extracts the
non-zero elements as vectors, which can then be used to create the original matrix.
For example,

sz = size(a);
[i, j, v] = find (a);
b = sparse(i, j, v, sz(1), sz(2));

See also: [sparse], page 348.

[Function File][err, y1, ...] = common_size (x1, . . . )
Determine if all input arguments are either scalar or of common size. If so, err is
zero, and yi is a matrix of the common size with all entries equal to xi if this is a
scalar or xi otherwise. If the inputs cannot be brought to a common size, errorcode
is 1, and yi is xi. For example,

[errorcode, a, b] = common_size ([1 2; 3 4], 5)
⇒ errorcode = 0
⇒ a = [ 1, 2; 3, 4 ]
⇒ b = [ 5, 5; 5, 5 ]

This is useful for implementing functions where arguments can either be scalars or of
common size.

16.2 Rearranging Matrices

[Function File]fliplr (x )
Return a copy of x with the order of the columns reversed. For example,

fliplr ([1, 2; 3, 4])
⇒ 2 1

4 3

Note that fliplr only work with 2-D arrays. To flip N-d arrays use flipdim instead.

See also: [flipud], page 275, [flipdim], page 276, [rot90], page 276, [rotdim], page 276.

[Function File]flipud (x )
Return a copy of x with the order of the rows reversed. For example,

flipud ([1, 2; 3, 4])
⇒ 3 4

1 2
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Due to the difficulty of defining which axis about which to flip the matrix flipud
only work with 2-d arrays. To flip N-d arrays use flipdim instead.

See also: [fliplr], page 275, [flipdim], page 276, [rot90], page 276, [rotdim], page 276.

[Function File]flipdim (x, dim )
Return a copy of x flipped about the dimension dim. For example

flipdim ([1, 2; 3, 4], 2)
⇒ 2 1

4 3

See also: [fliplr], page 275, [flipud], page 275, [rot90], page 276, [rotdim], page 276.

[Function File]rot90 (x, n )
Return a copy of x with the elements rotated counterclockwise in 90-degree incre-
ments. The second argument is optional, and specifies how many 90-degree rotations
are to be applied (the default value is 1). Negative values of n rotate the matrix in a
clockwise direction. For example,

rot90 ([1, 2; 3, 4], -1)
⇒ 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)

Due to the difficulty of defining an axis about which to rotate the matrix rot90 only
work with 2-D arrays. To rotate N-d arrays use rotdim instead.

See also: [rotdim], page 276, [flipud], page 275, [fliplr], page 275, [flipdim], page 276.

[Function File]rotdim (x, n, plane )
Return a copy of x with the elements rotated counterclockwise in 90-degree incre-
ments. The second argument is optional, and specifies how many 90-degree rotations
are to be applied (the default value is 1). The third argument is also optional and
defines the plane of the rotation. As such plane is a two element vector containing
two different valid dimensions of the matrix. If plane is not given Then the first two
non-singleton dimensions are used.
Negative values of n rotate the matrix in a clockwise direction. For example,

rotdim ([1, 2; 3, 4], -1, [1, 2])
⇒ 3 1

4 2

rotates the given matrix clockwise by 90 degrees. The following are all equivalent
statements:

rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])

See also: [rot90], page 276, [flipud], page 275, [fliplr], page 275, [flipdim], page 276.
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[Built-in Function]cat (dim, array1, array2, . . . , arrayN )
Return the concatenation of N-d array objects, array1, array2, . . . , arrayN along
dimension dim.

A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
⇒ ans =

1 1 0 0
1 1 0 0

Alternatively, we can concatenate A and B along the second dimension the following
way:

[A, B].

dim can be larger than the dimensions of the N-d array objects and the result will
thus have dim dimensions as the following example shows:

cat (4, ones(2, 2), zeros (2, 2))
⇒ ans =

ans(:,:,1,1) =

1 1
1 1

ans(:,:,1,2) =
0 0
0 0

See also: [horzcat], page 277, [vertcat], page 277.

[Built-in Function]horzcat (array1, array2, . . . , arrayN )
Return the horizontal concatenation of N-d array objects, array1, array2, . . . , arrayN
along dimension 2.

See also: [cat], page 277, [vertcat], page 277.

[Built-in Function]vertcat (array1, array2, . . . , arrayN )
Return the vertical concatenation of N-d array objects, array1, array2, . . . , arrayN
along dimension 1.

See also: [cat], page 277, [horzcat], page 277.

[Built-in Function]permute (a, perm )
Return the generalized transpose for an N-d array object a. The permutation vector
perm must contain the elements 1:ndims(a) (in any order, but each element must
appear just once).

See also: [ipermute], page 277.

[Built-in Function]ipermute (a, iperm )
The inverse of the permute function. The expression
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ipermute (permute (a, perm), perm)

returns the original array a.

See also: [permute], page 277.

[Built-in Function]reshape (a, m, n, . . . )
[Built-in Function]reshape (a, size )

Return a matrix with the given dimensions whose elements are taken from the matrix
a. The elements of the matrix are accessed in column-major order (like Fortran arrays
are stored).
For example,

reshape ([1, 2, 3, 4], 2, 2)
⇒ 1 3

2 4

Note that the total number of elements in the original matrix must match the total
number of elements in the new matrix.
A single dimension of the return matrix can be unknown and is flagged by an empty
argument.

[Built-in Function]resize (x, m )
[Built-in Function]resize (x, m, n )
[Built-in Function]resize (x, m, n, . . . )

Resize x cutting off elements as necessary.
In the result, element with certain indices is equal to the corresponding element of x
if the indices are within the bounds of x; otherwise, the element is set to zero.
In other words, the statement

y = resize (x, dv);

is equivalent to the following code:
y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz), idx{i} = 1:sz(i); endfor
y(idx{:}) = x(idx{:});

but is performed more efficiently.
If only m is supplied and it is a scalar, the dimension of the result is m-by-m. If m is
a vector, then the dimensions of the result are given by the elements of m. If both m
and n are scalars, then the dimensions of the result are m-by-n.
An object can be resized to more dimensions than it has; in such case the missing
dimensions are assumed to be 1. Resizing an object to fewer dimensions is not possible.

See also: [reshape], page 278, [postpad], page 281.

[Function File]y = circshift (x, n )
Circularly shifts the values of the array x. n must be a vector of integers no longer
than the number of dimensions in x. The values of n can be either positive or negative,
which determines the direction in which the values or x are shifted. If an element of
n is zero, then the corresponding dimension of x will not be shifted. For example
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x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
⇒ 7, 8, 9

1, 2, 3
4, 5, 6

circshift (x, -2)
⇒ 7, 8, 9

1, 2, 3
4, 5, 6

circshift (x, [0,1])
⇒ 3, 1, 2

6, 4, 5
9, 7, 8

See also: permute, ipermute, shiftdim.

[Function File]y = shiftdim (x, n )
[Function File][y, ns] = shiftdim (x )

Shifts the dimension of x by n, where n must be an integer scalar. When n is positive,
the dimensions of x are shifted to the left, with the leading dimensions circulated to
the end. If n is negative, then the dimensions of x are shifted to the right, with n
leading singleton dimensions added.
Called with a single argument, shiftdim, removes the leading singleton dimensions,
returning the number of dimensions removed in the second output argument ns.
For example

x = ones (1, 2, 3);
size (shiftdim (x, -1))

⇒ [1, 1, 2, 3]
size (shiftdim (x, 1))

⇒ [2, 3]
[b, ns] = shiftdim (x);

⇒ b = [1, 1, 1; 1, 1, 1]
⇒ ns = 1

See also: reshape, permute, ipermute, circshift, squeeze.

[Function File]shift (x, b )
[Function File]shift (x, b, dim )

If x is a vector, perform a circular shift of length b of the elements of x.
If x is a matrix, do the same for each column of x. If the optional dim argument is
given, operate along this dimension

[Loadable Function][s, i] = sort (x )
[Loadable Function][s, i] = sort (x, dim )
[Loadable Function][s, i] = sort (x, mode )
[Loadable Function][s, i] = sort (x, dim, mode )

Return a copy of x with the elements arranged in increasing order. For matrices,
sort orders the elements in each column.
For example,
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sort ([1, 2; 2, 3; 3, 1])
⇒ 1 1

2 2
3 3

The sort function may also be used to produce a matrix containing the original row
indices of the elements in the sorted matrix. For example,

[s, i] = sort ([1, 2; 2, 3; 3, 1])
⇒ s = 1 1

2 2
3 3

⇒ i = 1 3
2 1
3 2

If the optional argument dim is given, then the matrix is sorted along the dimension
defined by dim. The optional argument mode defines the order in which the values
will be sorted. Valid values of mode are ‘ascend’ or ‘descend’.

For equal elements, the indices are such that the equal elements are listed in the order
that appeared in the original list.

The sort function may also be used to sort strings and cell arrays of strings, in which
case the dictionary order of the strings is used.

The algorithm used in sort is optimized for the sorting of partially ordered lists.

[Function File]sortrows (a, c )
Sort the rows of the matrix a according to the order of the columns specified in c. If c
is omitted, a lexicographical sort is used. By default ascending order is used however
if elements of c are negative then the corresponding column is sorted in descending
order.

[Function File]issorted (a, rows )
Returns true if the array is sorted, ascending or descending. NaNs are treated as by
sort. If rows is supplied and has the value "rows", checks whether the array is sorted
by rows as if output by sortrows (with no options).

This function does not yet support sparse matrices.

See also: [sortrows], page 280, [sort], page 279.

Since the sort function does not allow sort keys to be specified, it can’t be used to order
the rows of a matrix according to the values of the elements in various columns1 in a single
call. Using the second output, however, it is possible to sort all rows based on the values
in a given column. Here’s an example that sorts the rows of a matrix based on the values
in the second column.

1 For example, to first sort based on the values in column 1, and then, for any values that are repeated in
column 1, sort based on the values found in column 2, etc.
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a = [1, 2; 2, 3; 3, 1];
[s, i] = sort (a (:, 2));
a (i, :)

⇒ 3 1
1 2
2 3

[Function File]tril (a, k )
[Function File]triu (a, k )

Return a new matrix formed by extracting the lower (tril) or upper (triu) triangular
part of the matrix a, and setting all other elements to zero. The second argument is
optional, and specifies how many diagonals above or below the main diagonal should
also be set to zero.
The default value of k is zero, so that triu and tril normally include the main
diagonal as part of the result matrix.
If the value of k is negative, additional elements above (for tril) or below (for triu)
the main diagonal are also selected.
The absolute value of k must not be greater than the number of sub- or super-
diagonals.
For example,

tril (ones (3), -1)
⇒ 0 0 0

1 0 0
1 1 0

and
tril (ones (3), 1)

⇒ 1 1 0
1 1 1
1 1 1

See also: [triu], page 281, [diag], page 282.

[Function File]vec (x )
Return the vector obtained by stacking the columns of the matrix x one above the
other.

[Function File]vech (x )
Return the vector obtained by eliminating all supradiagonal elements of the square
matrix x and stacking the result one column above the other.

[Function File]prepad (x, l, c )
[Function File]prepad (x, l, c, dim )

Prepend (append) the scalar value c to the vector x until it is of length l. If the third
argument is not supplied, a value of 0 is used.
If length (x) > l , elements from the beginning (end) of x are removed until a vector
of length l is obtained.
If x is a matrix, elements are prepended or removed from each row.
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If the optional dim argument is given, then operate along this dimension.

See also: [postpad], page 281.

[Built-in Function]diag (v, k )
Return a diagonal matrix with vector v on diagonal k. The second argument is
optional. If it is positive, the vector is placed on the k-th super-diagonal. If it is
negative, it is placed on the -k-th sub-diagonal. The default value of k is 0, and the
vector is placed on the main diagonal. For example,

diag ([1, 2, 3], 1)
⇒ 0 1 0 0

0 0 2 0
0 0 0 3
0 0 0 0

Given a matrix argument, instead of a vector, diag extracts the k-th diagonal of the
matrix.

[Function File]blkdiag (a, b, c, . . . )
Build a block diagonal matrix from a, b, c, . . . . All the arguments must be numeric
and are two-dimensional matrices or scalars.

See also: [diag], page 282, [horzcat], page 277, [vertcat], page 277.

16.3 Applying a Function to an Array

[Function File]arrayfun (func, a )
[Function File]x = arrayfun (func, a )
[Function File]x = arrayfun (func, a, b, . . . )
[Function File][x, y, ...] = arrayfun (func, a, . . . )
[Function File]arrayfun (. . . , "UniformOutput", val )
[Function File]arrayfun (. . . , "ErrorHandler", errfunc )

Execute a function on each element of an array. This is useful for functions that do
not accept array arguments. If the function does accept array arguments it is better
to call the function directly.
The first input argument func can be a string, a function handle, an inline function or
an anonymous function. The input argument a can be a logic array, a numeric array,
a string array, a structure array or a cell array. By a call of the function arrayfun
all elements of a are passed on to the named function func individually.
The named function can also take more than two input arguments, with the input
arguments given as third input argument b, fourth input argument c, . . . If given
more than one array input argument then all input arguments must have the same
sizes, for example

arrayfun (@atan2, [1, 0], [0, 1])
⇒ ans = [1.5708 0.0000]

If the parameter val after a further string input argument "UniformOutput" is set
true (the default), then the named function func must return a single element which
then will be concatenated into the return value and is of type matrix. Otherwise, if
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that parameter is set to false, then the outputs are concatenated in a cell array. For
example

arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
⇒ ans =
{

[1,1] = abcd
[1,2] = bcde
[1,3] = cdef

}

If more than one output arguments are given then the named function must return
the number of return values that also are expected, for example

[A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
⇒
A =
{

[1,1] = 1
[2,1] = [](0x0)

}
B =
{

[1,1] = 1
[2,1] = [](0x0)

}
C =
{

[1,1] = 10
[2,1] = [](0x0)

}

If the parameter errfunc after a further string input argument "ErrorHandler" is
another string, a function handle, an inline function or an anonymous function, then
errfunc defines a function to call in the case that func generates an error. The
definition of the function must be of the form

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by
s. This is a structure with the elements "identifier", "message" and "index", giving
respectively the error identifier, the error message and the index of the array elements
that caused the error. The size of the output argument of errfunc must have the same
size as the output argument of func, otherwise a real error is thrown. For example

function y = ferr (s, x), y = "MyString"; endfunction
arrayfun (@str2num, [1234], \

"UniformOutput", false, "ErrorHandler", @ferr)
⇒ ans =
{
[1,1] = MyString
}
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See also: [cellfun], page 91, [spfun], page 346, [structfun], page 84.

[Loadable Function]bsxfun (f, a, b )
Applies a binary function f element-wise to two matrix arguments a and b. The
function f must be capable of accepting two column vector arguments of equal length,
or one column vector argument and a scalar.
The dimensions of a and b must be equal or singleton. The singleton dimensions of
the matrices will be expanded to the same dimensionality as the other matrix.

See also: [arrayfun], page 282, [cellfun], page 91.

16.4 Special Utility Matrices

[Built-in Function]eye (x )
[Built-in Function]eye (n, m )
[Built-in Function]eye (. . . , class )

Return an identity matrix. If invoked with a single scalar argument, eye returns
a square matrix with the dimension specified. If you supply two scalar arguments,
eye takes them to be the number of rows and columns. If given a vector with two
elements, eye uses the values of the elements as the number of rows and columns,
respectively. For example,

eye (3)
⇒ 1 0 0

0 1 0
0 0 1

The following expressions all produce the same result:
eye (2)
≡
eye (2, 2)
≡
eye (size ([1, 2; 3, 4])

The optional argument class, allows eye to return an array of the specified type, like
val = zeros (n,m, "uint8")

Calling eye with no arguments is equivalent to calling it with an argument of 1. This
odd definition is for compatibility with matlab.

[Built-in Function]ones (x )
[Built-in Function]ones (n, m )
[Built-in Function]ones (n, m, k, . . . )
[Built-in Function]ones (. . . , class )

Return a matrix or N-dimensional array whose elements are all 1. The arguments are
handled the same as the arguments for eye.
If you need to create a matrix whose values are all the same, you should use an
expression like

val_matrix = val * ones (n, m)

The optional argument class, allows ones to return an array of the specified type, for
example
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val = ones (n,m, "uint8")

[Built-in Function]zeros (x )
[Built-in Function]zeros (n, m )
[Built-in Function]zeros (n, m, k, . . . )
[Built-in Function]zeros (. . . , class )

Return a matrix or N-dimensional array whose elements are all 0. The arguments are
handled the same as the arguments for eye.
The optional argument class, allows zeros to return an array of the specified type,
for example

val = zeros (n,m, "uint8")

[Function File]repmat (A, m, n )
[Function File]repmat (A, [m n ])
[Function File]repmat (A, [m n p . . . ])

Form a block matrix of size m by n, with a copy of matrix A as each element. If n is
not specified, form an m by m block matrix.

[Loadable Function]rand (x )
[Loadable Function]rand (n, m )
[Loadable Function]rand ("state", x )
[Loadable Function]rand ("seed", x )

Return a matrix with random elements uniformly distributed on the interval (0, 1).
The arguments are handled the same as the arguments for eye.
You can query the state of the random number generator using the form

v = rand ("state")

This returns a column vector v of length 625. Later, you can restore the random
number generator to the state v using the form

rand ("state", v)

You may also initialize the state vector from an arbitrary vector of length <= 625 for
v. This new state will be a hash based on the value of v, not v itself.
By default, the generator is initialized from /dev/urandom if it is available, otherwise
from cpu time, wall clock time and the current fraction of a second.
To compute the pseudo-random sequence, rand uses the Mersenne Twister with a
period of 219937 − 1 (See M. Matsumoto and T. Nishimura, Mersenne Twister: A
623-dimensionally equidistributed uniform pseudorandom number generator, ACM
Trans. on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998,
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html). Do not use for
cryptography without securely hashing several returned values together, otherwise
the generator state can be learned after reading 624 consecutive values.
Older versions of Octave used a different random number generator. The new genera-
tor is used by default as it is significantly faster than the old generator, and produces
random numbers with a significantly longer cycle time. However, in some circum-
stances it might be desirable to obtain the same random sequences as used by the old
generators. To do this the keyword "seed" is used to specify that the old generators
should be use, as in

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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rand ("seed", val)

which sets the seed of the generator to val. The seed of the generator can be queried
with

s = rand ("seed")

However, it should be noted that querying the seed will not cause rand to use the
old generators, only setting the seed will. To cause rand to once again use the new
generators, the keyword "state" should be used to reset the state of the rand.

See also: [randn], page 286, [rande], page 286, [randg], page 287, [randp], page 286.

[Loadable Function]randn (x )
[Loadable Function]randn (n, m )
[Loadable Function]randn ("state", x )
[Loadable Function]randn ("seed", x )

Return a matrix with normally distributed pseudo-random elements having zero mean
and variance one. The arguments are handled the same as the arguments for rand.

By default, randn uses the Marsaglia and Tsang “Ziggurat technique” to transform
from a uniform to a normal distribution. (G. Marsaglia and W.W. Tsang, Ziggu-
rat method for generating random variables, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: [rand], page 285, [rande], page 286, [randg], page 287, [randp], page 286.

[Loadable Function]rande (x )
[Loadable Function]rande (n, m )
[Loadable Function]rande ("state", x )
[Loadable Function]rande ("seed", x )

Return a matrix with exponentially distributed random elements. The arguments are
handled the same as the arguments for rand.

By default, randn uses the Marsaglia and Tsang “Ziggurat technique” to transform
from a uniform to a exponential distribution. (G. Marsaglia and W.W. Tsang, Zig-
gurat method for generating random variables, J. Statistical Software, vol 5, 2000,
http://www.jstatsoft.org/v05/i08/)

See also: [rand], page 285, [randn], page 286, [randg], page 287, [randp], page 286.

[Loadable Function]randp (l, x )
[Loadable Function]randp (l, n, m )
[Loadable Function]randp ("state", x )
[Loadable Function]randp ("seed", x )

Return a matrix with Poisson distributed random elements with mean value param-
eter given by the first argument, l. The arguments are handled the same as the
arguments for rand, except for the argument l.

Five different algorithms are used depending on the range of l and whether or not l
is a scalar or a matrix.

For scalar l <= 12, use direct method.
Press, et al., ’Numerical Recipes in C’, Cambridge University Press, 1992.

http://www.jstatsoft.org/v05/i08/
http://www.jstatsoft.org/v05/i08/
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For scalar l > 12, use rejection method.[1]
Press, et al., ’Numerical Recipes in C’, Cambridge University Press, 1992.

For matrix l <= 10, use inversion method.[2]
Stadlober E., et al., WinRand source code, available via FTP.

For matrix l > 10, use patchwork rejection method.
Stadlober E., et al., WinRand source code, available via FTP, or H. Zech-
ner, ’Efficient sampling from continuous and discrete unimodal distribu-
tions’, Doctoral Dissertation, 156pp., Technical University Graz, Austria,
1994.

For l > 1e8, use normal approximation.
L. Montanet, et al., ’Review of Particle Properties’, Physical Review D
50 p1284, 1994

See also: [rand], page 285, [randn], page 286, [rande], page 286, [randg], page 287.

[Loadable Function]randg (a, x )
[Loadable Function]randg (a, n, m )
[Loadable Function]randg ("state", x )
[Loadable Function]randg ("seed", x )

Return a matrix with gamma(a,1) distributed random elements. The arguments are
handled the same as the arguments for rand, except for the argument a.

This can be used to generate many distributions:

gamma (a, b) for a > -1, b > 0
r = b * randg (a)

beta (a, b) for a > -1, b > -1
r1 = randg (a, 1)
r = r1 / (r1 + randg (b, 1))

Erlang (a, n)
r = a * randg (n)

chisq (df) for df > 0
r = 2 * randg (df / 2)

t(df) for 0 < df < inf (use randn if df is infinite)
r = randn () / sqrt (2 * randg (df / 2) / df)

F (n1, n2) for 0 < n1, 0 < n2
## r1 equals 1 if n1 is infinite
r1 = 2 * randg (n1 / 2) / n1
## r2 equals 1 if n2 is infinite
r2 = 2 * randg (n2 / 2) / n2
r = r1 / r2

negative binomial (n, p) for n > 0, 0 < p <= 1
r = randp ((1 - p) / p * randg (n))
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non-central chisq (df, L), for df >= 0 and L > 0
(use chisq if L = 0)

r = randp (L / 2)
r(r > 0) = 2 * randg (r(r > 0))
r(df > 0) += 2 * randg (df(df > 0)/2)

Dirichlet (a1, ... ak)
r = (randg (a1), ..., randg (ak))
r = r / sum (r)

See also: [rand], page 285, [randn], page 286, [rande], page 286, [randp], page 286.

The generators operate in the new or old style together, it is not possible to mix the
two. Initializing any generator with "state" or "seed" causes the others to switch to the
same style for future calls.

The state of each generator is independent and calls to different generators can be
interleaved without affecting the final result. For example,

rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = rand (100, 1);
n = randn (100, 1);

and
rand ("state", [11, 22, 33]);
randn ("state", [44, 55, 66]);
u = zeros (100, 1);
n = zeros (100, 1);
for i = 1:100
u(i) = rand ();
n(i) = randn ();

end

produce equivalent results. When the generators are initialized in the old style with "seed"
only rand and randn are independent, because the old rande, randg and randp generators
make calls to rand and randn.

The generators are initialized with random states at start-up, so that the sequences of
random numbers are not the same each time you run Octave.2 If you really do need to
reproduce a sequence of numbers exactly, you can set the state or seed to a specific value.

If invoked without arguments, rand and randn return a single element of a random
sequence.

The original rand and randn functions use Fortran code from Ranlib, a library of
fortran routines for random number generation, compiled by Barry W. Brown and James
Lovato of the Department of Biomathematics at The University of Texas, M.D. Anderson
Cancer Center, Houston, TX 77030.

[Function File]randperm (n )
Return a row vector containing a random permutation of the integers from 1 to n.

2 The old versions of rand and randn obtain their initial seeds from the system clock.
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The functions linspace and logspace make it very easy to create vectors with evenly
or logarithmically spaced elements. See Section 4.2 [Ranges], page 43.

[Built-in Function]linspace (base, limit, n )
Return a row vector with n linearly spaced elements between base and limit. If the
number of elements is greater than one, then the base and limit are always included
in the range. If base is greater than limit, the elements are stored in decreasing order.
If the number of points is not specified, a value of 100 is used.
The linspace function always returns a row vector.
For compatibility with matlab, return the second argument if fewer than two values
are requested.

[Function File]logspace (base, limit, n )
Similar to linspace except that the values are logarithmically spaced from 10base to
10limit.
If limit is equal to π, the points are between 10base and π, not 10base and 10π, in order
to be compatible with the corresponding matlab function.
Also for compatibility, return the second argument if fewer than two values are re-
quested.

See also: [linspace], page 289.

16.5 Famous Matrices

The following functions return famous matrix forms.

[Function File]hadamard (n )
Construct a Hadamard matrix Hn of size n-by-n. The size n must be of the form
2 ^ k * p in which p is one of 1, 12, 20 or 28. The returned matrix is normalized,
meaning Hn(:,1) == 1 and H(1,:) == 1.
Some of the properties of Hadamard matrices are:
• kron (Hm, Hn) is a Hadamard matrix of size m-by-n.
• Hn * Hn’ == n * eye (n).
• The rows of Hn are orthogonal.
• det (A) <= abs(det (Hn)) for all A with abs (A (i, j)) <= 1.
• Multiply any row or column by -1 and still have a Hadamard matrix.

[Function File]hankel (c, r )
Return the Hankel matrix constructed given the first column c, and (optionally) the
last row r. If the last element of c is not the same as the first element of r, the last
element of c is used. If the second argument is omitted, it is assumed to be a vector
of zeros with the same size as c.
A Hankel matrix formed from an m-vector c, and an n-vector r, has the elements

H(i, j) =
{
ci+j−1, i+ j − 1 ≤ m;
ri+j−m, otherwise.

See also: [vander], page 291, [sylvester matrix], page 291, [hilb], page 290, [invhilb],
page 290, [toeplitz], page 291.
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[Function File]hilb (n )
Return the Hilbert matrix of order n. The i, j element of a Hilbert matrix is defined
as

H(i, j) =
1

(i+ j − 1)

See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [invhilb],
page 290, [toeplitz], page 291.

[Function File]invhilb (n )
Return the inverse of a Hilbert matrix of order n. This can be computed exactly
using

Aij = −1i+j(i+ j − 1)
(
n+ i− 1
n− j

)(
n+ j − 1
n− i

)(
i+ j − 2
i− 2

)2

=
p(i)p(j)

(i+ j − 1)

where
p(k) = −1k

(
k + n− 1
k − 1

)(
n
k

)
The validity of this formula can easily be checked by expanding the binomial coeffi-
cients in both formulas as factorials. It can be derived more directly via the theory
of Cauchy matrices: see J. W. Demmel, Applied Numerical Linear Algebra, page 92.
Compare this with the numerical calculation of inverse (hilb (n)), which suffers
from the ill-conditioning of the Hilbert matrix, and the finite precision of your com-
puter’s floating point arithmetic.

See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [hilb],
page 290, [toeplitz], page 291.

[Function File]magic (n )
Create an n-by-n magic square. Note that magic (2) is undefined since there is no
2-by-2 magic square.

[Function File]pascal (n, t )
Return the Pascal matrix of order n if t = 0. t defaults to 0. Return lower triangular
Cholesky factor of the Pascal matrix if t = 1. This matrix is its own inverse, that
is pascal (n, 1) ^ 2 == eye (n). If t = -1, return its absolute value. This is the
standard pascal triangle as a lower-triangular matrix. If t = 2, return a transposed
and permuted version of pascal (n, 1), which is the cube-root of the identity matrix.
That is pascal (n, 2) ^ 3 == eye (n).

See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [hilb],
page 290, [invhilb], page 290, [toeplitz], page 291, [hadamard], page 289, [wilkinson],
page 291, [compan], page 446, [rosser], page 290.

[Function File]rosser ()
Returns the Rosser matrix. This is a difficult test case used to test eigenvalue algo-
rithms.



Chapter 16: Matrix Manipulation 291

See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [hilb],
page 290, [invhilb], page 290, [toeplitz], page 291, [hadamard], page 289, [wilkinson],
page 291, [compan], page 446, [pascal], page 290.

[Function File]sylvester_matrix (k )
Return the Sylvester matrix of order n = 2k.

See also: [hankel], page 289, [vander], page 291, [hilb], page 290, [invhilb], page 290,
[toeplitz], page 291.

[Function File]toeplitz (c, r )
Return the Toeplitz matrix constructed given the first column c, and (optionally) the
first row r. If the first element of c is not the same as the first element of r, the first
element of c is used. If the second argument is omitted, the first row is taken to be
the same as the first column.
A square Toeplitz matrix has the form:

c0 r1 r2 · · · rn

c1 c0 r1 · · · rn−1

c2 c1 c0 · · · rn−2

...
...

...
. . .

...
cn cn−1 cn−2 . . . c0


See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [hilb],
page 290, [invhilb], page 290.

[Function File]vander (c, n )
Return the Vandermonde matrix whose next to last column is c. If n is specified, it
determines the number of columns; otherwise, n is taken to be equal to the length of
c.
A Vandermonde matrix has the form:

cn−1
1 · · · c21 c1 1
cn−1
2 · · · c22 c2 1
...

. . .
...

...
...

cn−1
n · · · c2n cn 1


See also: [hankel], page 289, [sylvester matrix], page 291, [hilb], page 290, [invhilb],
page 290, [toeplitz], page 291.

[Function File]wilkinson (n )
Return the Wilkinson matrix of order n.

See also: [hankel], page 289, [vander], page 291, [sylvester matrix], page 291, [hilb],
page 290, [invhilb], page 290, [toeplitz], page 291, [hadamard], page 289, [rosser],
page 290, [compan], page 446, [pascal], page 290.
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17 Arithmetic

Unless otherwise noted, all of the functions described in this chapter will work for real and
complex scalar, vector, or matrix arguments. Functions described as mapping functions
apply the given operation individually to each element when given a matrix argument. For
example,

sin ([1, 2; 3, 4])
⇒ 0.84147 0.90930

0.14112 -0.75680

17.1 Exponents and Logarithms

[Mapping Function]exp (x )
Compute ex for each element of x. To compute the matrix exponential, see Chapter 18
[Linear Algebra], page 315.

See also: [log], page 293.

[Mapping Function]expm1 (x )
Compute ex − 1 accurately in the neighborhood of zero.

See also: [exp], page 293.

[Mapping Function]log (x )
Compute the natural logarithm, ln (x), for each element of x. To compute the matrix
logarithm, see Chapter 18 [Linear Algebra], page 315.

See also: [exp], page 293, [log1p], page 293, [log2], page 293, [log10], page 293,
[logspace], page 289.

[Mapping Function]log1p (x )
Compute ln (1 + x) accurately in the neighborhood of zero.

See also: [log], page 293, [exp], page 293, [expm1], page 293.

[Mapping Function]log10 (x )
Compute the base-10 logarithm of each element of x.

See also: [log], page 293, [log2], page 293, [logspace], page 289, [exp], page 293.

[Mapping Function]log2 (x )
[Mapping Function][f, e] = log2 (x )

Compute the base-2 logarithm of each element of x.
If called with two output arguments, split x into binary mantissa and exponent so
that 1

2
≤ |f | < 1 and e is an integer. If x = 0, f = e = 0.

See also: [pow2], page 294, [log], page 293, [log10], page 293, [exp], page 293.

[Function File]nextpow2 (x )
If x is a scalar, return the first integer n such that 2n ≥ |x|.
If x is a vector, return nextpow2 (length (x)).

See also: [pow2], page 294, [log2], page 293.
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[Function File]nthroot (x, n )
Compute the n-th root of x, returning real results for real components of x. For
example

nthroot (-1, 3)
⇒ -1
(-1) ^ (1 / 3)
⇒ 0.50000 - 0.86603i

[Mapping Function]pow2 (x )
[Mapping Function]pow2 (f, e )

With one argument, computes 2x for each element of x.

With two arguments, returns f · 2e.

See also: [log2], page 293, [nextpow2], page 293.

[Function File]reallog (x )
Return the real-valued natural logarithm of each element of x. Report an error if any
element results in a complex return value.

See also: [log], page 293, [realpow], page 294, [realsqrt], page 294.

[Function File]realpow (x, y )
Compute the real-valued, element-by-element power operator. This is equivalent to
x .^ y , except that realpow reports an error if any return value is complex.

See also: [reallog], page 294, [realsqrt], page 294.

[Function File]realsqrt (x )
Return the real-valued square root of each element of x. Report an error if any
element results in a complex return value.

See also: [sqrt], page 294, [realpow], page 294, [reallog], page 294.

[Mapping Function]sqrt (x )
Compute the square root of each element of x. If x is negative, a complex result
is returned. To compute the matrix square root, see Chapter 18 [Linear Algebra],
page 315.

See also: [realsqrt], page 294.

17.2 Complex Arithmetic

In the descriptions of the following functions, z is the complex number x + iy, where i is
defined as

√
−1.

[Mapping Function]abs (z )
Compute the magnitude of z, defined as |z| =

√
x2 + y2.

For example,

abs (3 + 4i)
⇒ 5



Chapter 17: Arithmetic 295

[Mapping Function]arg (z )
[Mapping Function]angle (z )

Compute the argument of z, defined as, θ = atan2(y, x), in radians.

For example,

arg (3 + 4i)
⇒ 0.92730

[Mapping Function]conj (z )
Return the complex conjugate of z, defined as z̄ = x− iy.

See also: [real], page 295, [imag], page 295.

[Function File]cplxpair (z )
[Function File]cplxpair (z, tol )
[Function File]cplxpair (z, tol, dim )

Sort the numbers z into complex conjugate pairs ordered by increasing real part.
Place the negative imaginary complex number first within each pair. Place all the
real numbers (those with abs (imag (z) / z) < tol)) after the complex pairs.

If tol is unspecified the default value is 100*eps.

By default the complex pairs are sorted along the first non-singleton dimension of z.
If dim is specified, then the complex pairs are sorted along this dimension.

Signal an error if some complex numbers could not be paired. Signal an error if all
complex numbers are not exact conjugates (to within tol). Note that there is no
defined order for pairs with identical real parts but differing imaginary parts.

cplxpair (exp(2i*pi*[0:4]’/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5)

[Mapping Function]imag (z )
Return the imaginary part of z as a real number.

See also: [real], page 295, [conj], page 295.

[Mapping Function]real (z )
Return the real part of z.

See also: [imag], page 295, [conj], page 295.

17.3 Trigonometry

Octave provides the following trigonometric functions where angles are specified in radians.
To convert from degrees to radians multiply by π/180 (e.g., sin (30 * pi/180) returns the
sine of 30 degrees). As an alternative, Octave provides a number of trigonometric functions
which work directly on an argument specified in degrees. These functions are named after
the base trigonometric function with a ‘d’ suffix. For example, sin expects an angle in
radians while sind expects an angle in degrees.

[Mapping Function]sin (x )
Compute the sine for each element of x in radians.

See also: [asin], page 296, [sind], page 298, [sinh], page 296.
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[Mapping Function]cos (x )
Compute the cosine for each element of x in radians.

See also: [acos], page 296, [cosd], page 298, [cosh], page 297.

[Mapping Function]tan (z )
Compute the tangent for each element of x in radians.

See also: [atan], page 296, [tand], page 298, [tanh], page 297.

[Mapping Function]sec (x )
Compute the secant for each element of x in radians.

See also: [asec], page 296, [secd], page 298, [sech], page 297.

[Mapping Function]csc (x )
Compute the cosecant for each element of x in radians.

See also: [acsc], page 296, [cscd], page 298, [csch], page 297.

[Mapping Function]cot (x )
Compute the cotangent for each element of x in radians.

See also: [acot], page 296, [cotd], page 298, [coth], page 297.

[Mapping Function]asin (x )
Compute the inverse sine in radians for each element of x.

See also: [sin], page 295, [asind], page 298.

[Mapping Function]acos (x )
Compute the inverse cosine in radians for each element of x.

See also: [cos], page 296, [acosd], page 298.

[Mapping Function]atan (x )
Compute the inverse tangent in radians for each element of x.

See also: [tan], page 296, [atand], page 298.

[Mapping Function]asec (x )
Compute the inverse secant in radians for each element of x.

See also: [sec], page 296, [asecd], page 299.

[Mapping Function]acsc (x )
Compute the inverse cosecant in radians for each element of x.

See also: [csc], page 296, [acscd], page 299.

[Mapping Function]acot (x )
Compute the inverse cotangent in radians for each element of x.

See also: [cot], page 296, [acotd], page 299.

[Mapping Function]sinh (x )
Compute the hyperbolic sine for each element of x.

See also: [asinh], page 297, [cosh], page 297, [tanh], page 297.
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[Mapping Function]cosh (x )
Compute the hyperbolic cosine for each element of x.

See also: [acosh], page 297, [sinh], page 296, [tanh], page 297.

[Mapping Function]tanh (x )
Compute hyperbolic tangent for each element of x.

See also: [atanh], page 297, [sinh], page 296, [cosh], page 297.

[Mapping Function]sech (x )
Compute the hyperbolic secant of each element of x.

See also: [asech], page 297.

[Mapping Function]csch (x )
Compute the hyperbolic cosecant of each element of x.

See also: [acsch], page 297.

[Mapping Function]coth (x )
Compute the hyperbolic cotangent of each element of x.

See also: [acoth], page 297.

[Mapping Function]asinh (x )
Compute the inverse hyperbolic sine for each element of x.

See also: [sinh], page 296.

[Mapping Function]acosh (x )
Compute the inverse hyperbolic cosine for each element of x.

See also: [cosh], page 297.

[Mapping Function]atanh (x )
Compute the inverse hyperbolic tangent for each element of x.

See also: [tanh], page 297.

[Mapping Function]asech (x )
Compute the inverse hyperbolic secant of each element of x.

See also: [sech], page 297.

[Mapping Function]acsch (x )
Compute the inverse hyperbolic cosecant of each element of x.

See also: [csch], page 297.

[Mapping Function]acoth (x )
Compute the inverse hyperbolic cotangent of each element of x.

See also: [coth], page 297.

[Mapping Function]atan2 (y, x )
Compute atan (y / x) for corresponding elements of y and x. Signal an error if y
and x do not match in size and orientation.
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Octave provides the following trigonometric functions where angles are specified in de-
grees. These functions produce true zeros at the appropriate intervals rather than the small
roundoff error that occurs when using radians. For example:

cosd (90)
⇒ 0

cos (pi/2)
⇒ 6.1230e-17

[Function File]sind (x )
Compute the sine for each element of x in degrees. Returns zero for elements where
x/180 is an integer.

See also: [asind], page 298, [sin], page 295.

[Function File]cosd (x )
Compute the cosine for each element of x in degrees. Returns zero for elements where
(x-90)/180 is an integer.

See also: [acosd], page 298, [cos], page 296.

[Function File]tand (x )
Compute the tangent for each element of x in degrees. Returns zero for elements
where x/180 is an integer and Inf for elements where (x-90)/180 is an integer.

See also: [atand], page 298, [tan], page 296.

[Function File]secd (x )
Compute the secant for each element of x in degrees.

See also: [asecd], page 299, [sec], page 296.

[Function File]cscd (x )
Compute the cosecant for each element of x in degrees.

See also: [acscd], page 299, [csc], page 296.

[Function File]cotd (x )
Compute the cotangent for each element of x in degrees.

See also: [acotd], page 299, [cot], page 296.

[Function File]asind (x )
Compute the inverse sine in degrees for each element of x.

See also: [sind], page 298, [asin], page 296.

[Function File]acosd (x )
Compute the inverse cosine in degrees for each element of x.

See also: [cosd], page 298, [acos], page 296.

[Function File]atand (x )
Compute the inverse tangent in degrees for each element of x.

See also: [tand], page 298, [atan], page 296.
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[Function File]asecd (x )
Compute the inverse secant in degrees for each element of x.

See also: [secd], page 298, [asec], page 296.

[Function File]acscd (x )
Compute the inverse cosecant in degrees for each element of x.

See also: [cscd], page 298, [acsc], page 296.

[Function File]acotd (x )
Compute the inverse cotangent in degrees for each element of x.

See also: [cotd], page 298, [acot], page 296.

17.4 Sums and Products

[Built-in Function]sum (x )
[Built-in Function]sum (x, dim )
[Built-in Function]sum (. . . , ’native’)

Sum of elements along dimension dim. If dim is omitted, it defaults to 1 (column-wise
sum).
As a special case, if x is a vector and dim is omitted, return the sum of the elements.
If the optional argument ’native’ is given, then the sum is performed in the same type
as the original argument, rather than in the default double type. For example

sum ([true, true])
⇒ 2

sum ([true, true], ’native’)
⇒ true

See also: [cumsum], page 299, [sumsq], page 300, [prod], page 299.

[Built-in Function]prod (x )
[Built-in Function]prod (x, dim )

Product of elements along dimension dim. If dim is omitted, it defaults to 1 (column-
wise products).
As a special case, if x is a vector and dim is omitted, return the product of the
elements.

See also: [cumprod], page 300, [sum], page 299.

[Built-in Function]cumsum (x )
[Built-in Function]cumsum (x, dim )
[Built-in Function]cumsum (. . . , ’native’)

Cumulative sum of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise cumulative sums).
As a special case, if x is a vector and dim is omitted, return the cumulative sum of
the elements as a vector with the same orientation as x.
The "native" argument implies the summation is performed in native type. See sum
for a complete description and example of the use of "native".

See also: [sum], page 299, [cumprod], page 300.
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[Built-in Function]cumprod (x )
[Built-in Function]cumprod (x, dim )

Cumulative product of elements along dimension dim. If dim is omitted, it defaults
to 1 (column-wise cumulative products).

As a special case, if x is a vector and dim is omitted, return the cumulative product
of the elements as a vector with the same orientation as x.

See also: [prod], page 299, [cumsum], page 299.

[Built-in Function]sumsq (x )
[Built-in Function]sumsq (x, dim )

Sum of squares of elements along dimension dim. If dim is omitted, it defaults to 1
(column-wise sum of squares).

As a special case, if x is a vector and dim is omitted, return the sum of squares of
the elements.

This function is conceptually equivalent to computing

sum (x .* conj (x), dim)

but it uses less memory and avoids calling conj if x is real.

See also: [sum], page 299.

[Function File]accumarray (subs, vals, sz, func, fillval, issparse )
[Function File]accumarray (csubs, vals, . . . )

Create an array by accumulating the elements of a vector into the positions defined
by their subscripts. The subscripts are defined by the rows of the matrix subs and
the values by vals. Each row of subs corresponds to one of the values in vals.

The size of the matrix will be determined by the subscripts themselves. However, if
sz is defined it determines the matrix size. The length of sz must correspond to the
number of columns in subs.

The default action of accumarray is to sum the elements with the same subscripts.
This behavior can be modified by defining the func function. This should be a function
or function handle that accepts a column vector and returns a scalar. The result of
the function should not depend on the order of the subscripts.

The elements of the returned array that have no subscripts associated with them are
set to zero. Defining fillval to some other value allows these values to be defined.

By default accumarray returns a full matrix. If issparse is logically true, then a sparse
matrix is returned instead.

An example of the use of accumarray is:

accumarray ([1,1,1;2,1,2;2,3,2;2,1,2;2,3,2], 101:105)
⇒ ans(:,:,1) = [101, 0, 0; 0, 0, 0]

ans(:,:,2) = [0, 0, 0; 206, 0, 208]
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17.5 Utility Functions

[Mapping Function]ceil (x )
Return the smallest integer not less than x. This is equivalent to rounding towards
positive infinity. If x is complex, return ceil (real (x)) + ceil (imag (x)) * I.

ceil ([-2.7, 2.7])
⇒ -2 3

See also: [floor], page 302, [round], page 306, [fix], page 302.

[Function File]cross (x, y )
[Function File]cross (x, y, dim )

Compute the vector cross product of two 3-dimensional vectors x and y.
cross ([1,1,0], [0,1,1])

⇒ [ 1; -1; 1 ]

If x and y are matrices, the cross product is applied along the first dimension with 3
elements. The optional argument dim forces the cross product to be calculated along
the specified dimension.

See also: [dot], page 316.

[Function File]d = del2 (m )
[Function File]d = del2 (m, h )
[Function File]d = del2 (m, dx, dy, . . . )

Calculate the discrete Laplace operator (∇2). For a 2-dimensional matrix m this is
defined as

d =
1
4

(
d2

dx2
M(x, y) +

d2

dy2
M(x, y)

)
For N-dimensional arrays the sum in parentheses is expanded to include second deriva-
tives over the additional higher dimensions.
The spacing between evaluation points may be defined by h, which is a scalar defining
the equidistant spacing in all dimensions. Alternatively, the spacing in each dimen-
sion may be defined separately by dx, dy, etc. A scalar spacing argument defines
equidistant spacing, whereas a vector argument can be used to specify variable spac-
ing. The length of the spacing vectors must match the respective dimension of m.
The default spacing value is 1.
At least 3 data points are needed for each dimension. Boundary points are calculated
from the linear extrapolation of interior points.

See also: [gradient], page 303, [diff], page 274.

[Function File]p = factor (q )
[Function File][p, n] = factor (q )

Return prime factorization of q. That is, prod (p) == q and every element of p is a
prime number. If q == 1, returns 1.
With two output arguments, return the unique primes p and their multiplicities. That
is, prod (p .^ n) == q .

See also: [gcd], page 302, [lcm], page 303.
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[Function File]factorial (n )
Return the factorial of n where n is a positive integer. If n is a scalar, this is equivalent
to prod (1:n). For vector or matrix arguments, return the factorial of each element
in the array. For non-integers see the generalized factorial function gamma.

See also: [prod], page 299, [gamma], page 309.

[Mapping Function]fix (x )
Truncate fractional portion of x and return the integer portion. This is equivalent to
rounding towards zero. If x is complex, return fix (real (x)) + fix (imag (x)) *
I.

fix ([-2.7, 2.7])
⇒ -2 2

See also: [ceil], page 301, [floor], page 302, [round], page 306.

[Mapping Function]floor (x )
Return the largest integer not greater than x. This is equivalent to rounding towards
negative infinity. If x is complex, return floor (real (x)) + floor (imag (x)) *
I.

floor ([-2.7, 2.7])
⇒ -3 2

See also: [ceil], page 301, [round], page 306, [fix], page 302.

[Mapping Function]fmod (x, y )
Compute the floating point remainder of dividing x by y using the C library function
fmod. The result has the same sign as x. If y is zero, the result is implementation-
dependent.

See also: [mod], page 306, [rem], page 306.

[Loadable Function]g = gcd (a )
[Loadable Function]g = gcd (a1, a2, . . . )
[Loadable Function][g, v1, ...] = gcd (a1, a2, . . . )

Compute the greatest common divisor of the elements of a. If more than one argument
is given all arguments must be the same size or scalar. In this case the greatest
common divisor is calculated for each element individually. All elements must be
integers. For example,

gcd ([15, 20])
⇒ 5

and
gcd ([15, 9], [20, 18])

⇒ 5 9

Optional return arguments v1, etc., contain integer vectors such that,
g = v1a1 + v2a2 + · · ·
For backward compatibility with previous versions of this function, when all argu-
ments are scalar, a single return argument v1 containing all of the values of v1, . . .
is acceptable.

See also: [lcm], page 303, [factor], page 301.
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[Function File]dx = gradient (m )
[Function File][dx, dy, dz, ...] = gradient (m )
[Function File][...] = gradient (m, s )
[Function File][...] = gradient (m, x, y, z, . . . )
[Function File][...] = gradient (f, x0 )
[Function File][...] = gradient (f, x0, s )
[Function File][...] = gradient (f, x0, x, y, . . . )

Calculate the gradient of sampled data or a function. If m is a vector, calculate the
one-dimensional gradient of m. If m is a matrix the gradient is calculated for each
dimension.
[dx, dy] = gradient (m) calculates the one dimensional gradient for x and y direc-
tion if m is a matrix. Additional return arguments can be use for multi-dimensional
matrices.
A constant spacing between two points can be provided by the s parameter. If s is a
scalar, it is assumed to be the spacing for all dimensions. Otherwise, separate values
of the spacing can be supplied by the x, . . . arguments. Scalar values specify an
equidistant spacing. Vector values for the x, . . . arguments specify the coordinate for
that dimension. The length must match their respective dimension of m.
At boundary points a linear extrapolation is applied. Interior points are calculated
with the first approximation of the numerical gradient

y’(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).

If the first argument f is a function handle, the gradient of the function at the points
in x0 is approximated using central difference. For example, gradient (@cos, 0)
approximates the gradient of the cosine function in the point x0 = 0. As with sampled
data, the spacing values between the points from which the gradient is estimated can
be set via the s or dx, dy, . . . arguments. By default a spacing of 1 is used.

See also: [diff], page 274, [del2], page 301.

[Built-in Function]hypot (x, y )
Compute the element-by-element square root of the sum of the squares of x and y.
This is equivalent to sqrt (x.^2 + y.^2), but calculated in a manner that avoids
overflows for large values of x or y.

[Mapping Function]lcm (x )
[Mapping Function]lcm (x, . . . )

Compute the least common multiple of the elements of x, or of the list of all arguments.
For example,

lcm (a1, ..., ak)

is the same as
lcm ([a1, ..., ak]).

All elements must be the same size or scalar.

See also: [factor], page 301, [gcd], page 302.

[Function File]list_primes (n )
List the first n primes. If n is unspecified, the first 25 primes are listed.
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The algorithm used is from page 218 of the TEXbook.

See also: [primes], page 306, [isprime], page 53.

[Loadable Function]max (x )
[Loadable Function]max (x, y )
[Loadable Function]max (x, y, dim )
[Loadable Function][w, iw] = max (x )

For a vector argument, return the maximum value. For a matrix argument, return
the maximum value from each column, as a row vector, or over the dimension dim if
defined. For two matrices (or a matrix and scalar), return the pair-wise maximum.
Thus,

max (max (x))

returns the largest element of the matrix x, and

max (2:5, pi)
⇒ 3.1416 3.1416 4.0000 5.0000

compares each element of the range 2:5 with pi, and returns a row vector of the
maximum values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, max also returns the first index
of the maximum value(s). Thus,

[x, ix] = max ([1, 3, 5, 2, 5])
⇒ x = 5

ix = 3

See also: [min], page 304, [cummax], page 305, [cummin], page 305.

[Loadable Function]min (x )
[Loadable Function]min (x, y )
[Loadable Function]min (x, y, dim )
[Loadable Function][w, iw] = min (x )

For a vector argument, return the minimum value. For a matrix argument, return
the minimum value from each column, as a row vector, or over the dimension dim if
defined. For two matrices (or a matrix and scalar), return the pair-wise minimum.
Thus,

min (min (x))

returns the smallest element of x, and

min (2:5, pi)
⇒ 2.0000 3.0000 3.1416 3.1416

compares each element of the range 2:5 with pi, and returns a row vector of the
minimum values.

For complex arguments, the magnitude of the elements are used for comparison.

If called with one input and two output arguments, min also returns the first index
of the minimum value(s). Thus,
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[x, ix] = min ([1, 3, 0, 2, 0])
⇒ x = 0

ix = 3

See also: [max], page 304, [cummin], page 305, [cummax], page 305.

[Loadable Function]cummax (x )
[Loadable Function]cummax (x, dim )
[Loadable Function][w, iw] = cummax (x )

Return the cumulative maximum values along dimension dim. If dim is unspecified
it defaults to column-wise operation. For example,

cummax ([1 3 2 6 4 5])
⇒ 1 3 3 6 6 6

The call

[w, iw] = cummax (x, dim)

is equivalent to the following code:

w = iw = zeros (size (x));
idxw = idxx = repmat ({’:’}, 1, ndims (x));
for i = 1:size (x, dim)

idxw{dim} = i; idxx{dim} = 1:i;
[w(idxw{:}), iw(idxw{:})] = max(x(idxx{:}), [], dim);

endfor

but computed in a much faster manner.

See also: [cummin], page 305, [max], page 304, [min], page 304.

[Loadable Function]cummin (x )
[Loadable Function]cummin (x, dim )
[Loadable Function][w, iw] = cummin (x )

Return the cumulative minimum values along dimension dim. If dim is unspecified it
defaults to column-wise operation. For example,

cummin ([5 4 6 2 3 1])
⇒ 5 4 4 2 2 1

The call

[w, iw] = cummin (x, dim)

is equivalent to the following code:

w = iw = zeros (size (x));
idxw = idxx = repmat ({’:’}, 1, ndims (x));
for i = 1:size (x, dim)

idxw{dim} = i; idxx{dim} = 1:i;
[w(idxw{:}), iw(idxw{:})] = min(x(idxx{:}), [], dim);

endfor

but computed in a much faster manner.

See also: [cummax], page 305, [min], page 304, [max], page 304.
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[Mapping Function]mod (x, y )
Compute the modulo of x and y. Conceptually this is given by

x - y .* floor (x ./ y)

and is written such that the correct modulus is returned for integer types. This
function handles negative values correctly. That is, mod (-1, 3) is 2, not -1, as rem
(-1, 3) returns. mod (x, 0) returns x.
An error results if the dimensions of the arguments do not agree, or if either of the
arguments is complex.

See also: [rem], page 306, [fmod], page 302.

[Function File]primes (n )
Return all primes up to n.
The algorithm used is the Sieve of Erastothenes.
Note that if you need a specific number of primes you can use the fact the distance
from one prime to the next is, on average, proportional to the logarithm of the prime.
Integrating, one finds that there are about k primes less than k log(5k).

See also: [list primes], page 303, [isprime], page 53.

[Mapping Function]rem (x, y )
Return the remainder of the division x / y , computed using the expression

x - y .* fix (x ./ y)

An error message is printed if the dimensions of the arguments do not agree, or if
either of the arguments is complex.

See also: [mod], page 306, [fmod], page 302.

[Mapping Function]round (x )
Return the integer nearest to x. If x is complex, return round (real (x)) + round
(imag (x)) * I.

round ([-2.7, 2.7])
⇒ -3 3

See also: [ceil], page 301, [floor], page 302, [fix], page 302.

[Mapping Function]roundb (x )
Return the integer nearest to x. If there are two nearest integers, return the even
one (banker’s rounding). If x is complex, return roundb (real (x)) + roundb (imag
(x)) * I.

See also: [round], page 306.

[Mapping Function]sign (x )
Compute the signum function, which is defined as

sign(x) =


1, x > 0;
0, x = 0;
−1, x < 0.

For complex arguments, sign returns x ./ abs (x).
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17.6 Special Functions

[Loadable Function][a, ierr] = airy (k, z, opt )
Compute Airy functions of the first and second kind, and their derivatives.

K Function Scale factor (if ’opt’ is supplied)
--- -------- ---------------------------------------
0 Ai (Z) exp ((2/3) * Z * sqrt (Z))
1 dAi(Z)/dZ exp ((2/3) * Z * sqrt (Z))
2 Bi (Z) exp (-abs (real ((2/3) * Z *sqrt (Z))))
3 dBi(Z)/dZ exp (-abs (real ((2/3) * Z *sqrt (Z))))

The function call airy (z) is equivalent to airy (0, z).
The result is the same size as z.
If requested, ierr contains the following status information and is the same size as the
result.
0. Normal return.
1. Input error, return NaN.
2. Overflow, return Inf.
3. Loss of significance by argument reduction results in less than half of machine

accuracy.
4. Complete loss of significance by argument reduction, return NaN.
5. Error—no computation, algorithm termination condition not met, return NaN.

[Loadable Function][j, ierr] = besselj (alpha, x, opt )
[Loadable Function][y, ierr] = bessely (alpha, x, opt )
[Loadable Function][i, ierr] = besseli (alpha, x, opt )
[Loadable Function][k, ierr] = besselk (alpha, x, opt )
[Loadable Function][h, ierr] = besselh (alpha, k, x, opt )

Compute Bessel or Hankel functions of various kinds:

besselj Bessel functions of the first kind. If the argument opt is supplied, the
result is multiplied by exp(-abs(imag(x))).

bessely Bessel functions of the second kind. If the argument opt is supplied, the
result is multiplied by exp(-abs(imag(x))).

besseli Modified Bessel functions of the first kind. If the argument opt is supplied,
the result is multiplied by exp(-abs(real(x))).

besselk Modified Bessel functions of the second kind. If the argument opt is
supplied, the result is multiplied by exp(x).

besselh Compute Hankel functions of the first (k = 1) or second (k = 2) kind. If
the argument opt is supplied, the result is multiplied by exp (-I*x) for
k = 1 or exp (I*x) for k = 2.

If alpha is a scalar, the result is the same size as x. If x is a scalar, the result is the
same size as alpha. If alpha is a row vector and x is a column vector, the result is a
matrix with length (x) rows and length (alpha) columns. Otherwise, alpha and
x must conform and the result will be the same size.
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The value of alpha must be real. The value of x may be complex.
If requested, ierr contains the following status information and is the same size as the
result.
0. Normal return.
1. Input error, return NaN.
2. Overflow, return Inf.
3. Loss of significance by argument reduction results in less than half of machine

accuracy.
4. Complete loss of significance by argument reduction, return NaN.
5. Error—no computation, algorithm termination condition not met, return NaN.

[Mapping Function]beta (a, b )
For real inputs, return the Beta function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

[Mapping Function]betainc (x, a, b )
Return the incomplete Beta function,

β(x, a, b) = B(a, b)−1

∫ x

0

t(a−z)(1− t)(b−1)dt.

If x has more than one component, both a and b must be scalars. If x is a scalar, a
and b must be of compatible dimensions.

[Mapping Function]betaln (a, b )
Return the log of the Beta function,

B(a, b) = log
Γ(a)Γ(b)
Γ(a+ b)

.

See also: [beta], page 308, [betainc], page 308, [gammaln], page 311.

[Mapping Function]bincoeff (n, k )
Return the binomial coefficient of n and k, defined as(

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!

For example,
bincoeff (5, 2)

⇒ 10

In most cases, the nchoosek function is faster for small scalar integer arguments. It
also warns about loss of precision for big arguments.

See also: [nchoosek], page 418.
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[Function File]commutation_matrix (m, n )
Return the commutation matrix Km,n which is the unique mn×mn matrix such that
Km,n · vec(A) = vec(AT ) for all m× n matrices A.
If only one argument m is given, Km,m is returned.
See Magnus and Neudecker (1988), Matrix differential calculus with applications in
statistics and econometrics.

[Function File]duplication_matrix (n )
Return the duplication matrix Dn which is the unique n2 × n(n + 1)/2 matrix such
that Dn ∗ vech(A) = vec(A) for all symmetric n× n matrices A.
See Magnus and Neudecker (1988), Matrix differential calculus with applications in
statistics and econometrics.

[Mapping Function]erf (z )
Computes the error function,

erf(z) =
2√
π

∫ z

0

e−t2dt

See also: [erfc], page 309, [erfinv], page 309.

[Mapping Function]erfc (z )
Computes the complementary error function, 1− erf(z).

See also: [erf], page 309, [erfinv], page 309.

[Mapping Function]erfinv (z )
Computes the inverse of the error function.

See also: [erf], page 309, [erfc], page 309.

[Mapping Function]gamma (z )
Computes the Gamma function,

Γ(z) =
∫ ∞

0

tz−1e−tdt.

See also: [gammainc], page 309, [lgamma], page 311.

[Mapping Function]gammainc (x, a )
Compute the normalized incomplete gamma function,

γ(x, a) =

∫ x

0

e−tta−1dt

Γ(a)

with the limiting value of 1 as x approaches infinity. The standard notation is P (a, x),
e.g., Abramowitz and Stegun (6.5.1).
If a is scalar, then gammainc (x, a) is returned for each element of x and vice versa.
If neither x nor a is scalar, the sizes of x and a must agree, and gammainc is applied
element-by-element.

See also: [gamma], page 309, [lgamma], page 311.
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[Function File]l = legendre (n, x )
[Function File]l = legendre (n, x, normalization )

Compute the Legendre function of degree n and order m = 0 . . . N. The optional
argument, normalization, may be one of "unnorm", "sch", or "norm". The default is
"unnorm". The value of n must be a non-negative scalar integer.

If the optional argument normalization is missing or is "unnorm", compute the Leg-
endre function of degree n and order m and return all values for m = 0 . . . n. The
return value has one dimension more than x.

The Legendre Function of degree n and order m:

m m 2 m/2 d^m
P(x) = (-1) * (1-x ) * ---- P (x)
n dx^m n

with Legendre polynomial of degree n:

1 d^n 2 n
P (x) = ------ [----(x - 1) ]
n 2^n n! dx^n

legendre (3, [-1.0, -0.9, -0.8]) returns the matrix:

x | -1.0 | -0.9 | -0.8
------------------------------------
m=0 | -1.00000 | -0.47250 | -0.08000
m=1 | 0.00000 | -1.99420 | -1.98000
m=2 | 0.00000 | -2.56500 | -4.32000
m=3 | 0.00000 | -1.24229 | -3.24000

If the optional argument normalization is "sch", compute the Schmidt
semi-normalized associated Legendre function. The Schmidt semi-normalized
associated Legendre function is related to the unnormalized Legendre functions by
the following:

For Legendre functions of degree n and order 0:

0 0
SP (x) = P (x)
n n

For Legendre functions of degree n and order m:

m m m 2(n-m)! 0.5
SP (x) = P (x) * (-1) * [-------]
n n (n+m)!

If the optional argument normalization is "norm", compute the fully normalized as-
sociated Legendre function. The fully normalized associated Legendre function is
related to the unnormalized Legendre functions by the following:

For Legendre functions of degree n and order m

m m m (n+0.5)(n-m)! 0.5
NP (x) = P (x) * (-1) * [-------------]
n n (n+m)!
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[Mapping Function]lgamma (x )
[Mapping Function]gammaln (x )

Return the natural logarithm of the gamma function of x.

See also: [gamma], page 309, [gammainc], page 309.

17.7 Coordinate Transformations

[Function File][theta, r] = cart2pol (x, y )
[Function File][theta, r, z] = cart2pol (x, y, z )

Transform Cartesian to polar or cylindrical coordinates. x, y (and z) must be the
same shape, or scalar. theta describes the angle relative to the positive x-axis. r is
the distance to the z-axis (0, 0, z).

See also: [pol2cart], page 311, [cart2sph], page 311, [sph2cart], page 311.

[Function File][x, y] = pol2cart (theta, r )
[Function File][x, y, z] = pol2cart (theta, r, z )

Transform polar or cylindrical to Cartesian coordinates. theta, r (and z) must be the
same shape, or scalar. theta describes the angle relative to the positive x-axis. r is
the distance to the z-axis (0, 0, z).

See also: [cart2pol], page 311, [cart2sph], page 311, [sph2cart], page 311.

[Function File][theta, phi, r] = cart2sph (x, y, z )
Transform Cartesian to spherical coordinates. x, y and z must be the same shape,
or scalar. theta describes the angle relative to the positive x-axis. phi is the angle
relative to the xy-plane. r is the distance to the origin (0, 0, 0).

See also: [pol2cart], page 311, [cart2pol], page 311, [sph2cart], page 311.

[Function File][x, y, z] = sph2cart (theta, phi, r )
Transform spherical to Cartesian coordinates. x, y and z must be the same shape,
or scalar. theta describes the angle relative to the positive x-axis. phi is the angle
relative to the xy-plane. r is the distance to the origin (0, 0, 0).

See also: [pol2cart], page 311, [cart2pol], page 311, [cart2sph], page 311.

17.8 Mathematical Constants

[Built-in Function]e
[Built-in Function]e (n )
[Built-in Function]e (n, m )
[Built-in Function]e (n, m, k, . . . )
[Built-in Function]e (. . . , class )

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
base of natural logarithms. The constant e satisfies the equation log(e) = 1.
When called with no arguments, return a scalar with the value e. When called with
a single argument, return a square matrix with the dimension specified. When called
with more than one scalar argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
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The optional argument class specifies the return type and may be either "double" or
"single".

[Built-in Function]pi
[Built-in Function]pi (n )
[Built-in Function]pi (n, m )
[Built-in Function]pi (n, m, k, . . . )
[Built-in Function]pi (. . . , class )

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
ratio of the circumference of a circle to its diameter(π). Internally, pi is computed as
‘4.0 * atan (1.0)’.

When called with no arguments, return a scalar with the value of π. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

[Built-in Function]I
[Built-in Function]I (n )
[Built-in Function]I (n, m )
[Built-in Function]I (n, m, k, . . . )
[Built-in Function]I (. . . , class )

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
pure imaginary unit, defined as

√
−1. I, and its equivalents i, J, and j, are functions so

any of the names may be reused for other purposes (such as i for a counter variable).

When called with no arguments, return a scalar with the value i. When called with
a single argument, return a square matrix with the dimension specified. When called
with more than one scalar argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".

[Built-in Function]Inf
[Built-in Function]Inf (n )
[Built-in Function]Inf (n, m )
[Built-in Function]Inf (n, m, k, . . . )
[Built-in Function]Inf (. . . , class )

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
IEEE representation for positive infinity.

Infinity is produced when results are too large to be represented using the the IEEE
floating point format for numbers. Two common examples which produce infinity are
division by zero and overflow.

[1/0 e^800]
⇒
Inf Inf
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When called with no arguments, return a scalar with the value ‘Inf’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isinf], page 274.

[Built-in Function]NaN
[Built-in Function]NaN (n )
[Built-in Function]NaN (n, m )
[Built-in Function]NaN (n, m, k, . . . )
[Built-in Function]NaN (. . . , class )

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
IEEE symbol NaN (Not a Number). NaN is the result of operations which do not
produce a well defined numerical result. Common operations which produce a NaN
are arithmetic with infinity (∞−∞), zero divided by zero (0/0), and any operation
involving another NaN value (5 + NaN).

Note that NaN always compares not equal to NaN (NaN != NaN). This behavior is
specified by the IEEE standard for floating point arithmetic. To find NaN values, use
the isnan function.

When called with no arguments, return a scalar with the value ‘NaN’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isnan], page 274.

[Built-in Function]eps
[Built-in Function]eps (x )
[Built-in Function]eps (n, m )
[Built-in Function]eps (n, m, k, . . . )
[Built-in Function]eps (. . . , class )

Return a scalar, matrix or N-dimensional array whose elements are all eps, the ma-
chine precision. More precisely, eps is the relative spacing between any two adjacent
numbers in the machine’s floating point system. This number is obviously system
dependent. On machines that support IEEE floating point arithmetic, eps is approx-
imately 2.2204× 10−16 for double precision and 1.1921× 10−7 for single precision.

When called with no arguments, return a scalar with the value eps(1.0). Given a
single argument x, return the distance between x and the next largest value. When
called with more than one argument the first two arguments are taken as the number
of rows and columns and any further arguments specify additional matrix dimensions.
The optional argument class specifies the return type and may be either "double" or
"single".
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[Built-in Function]realmax
[Built-in Function]realmax (n )
[Built-in Function]realmax (n, m )
[Built-in Function]realmax (n, m, k, . . . )
[Built-in Function]realmax (. . . , class )

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
largest floating point number that is representable. The actual value is system de-
pendent. On machines that support IEEE floating point arithmetic, realmax is ap-
proximately 1.7977× 10308 for double precision and 3.4028× 1038 for single precision.
When called with no arguments, return a scalar with the value realmax("double").
When called with a single argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments
are taken as the number of rows and columns and any further arguments specify
additional matrix dimensions. The optional argument class specifies the return type
and may be either "double" or "single".

See also: [realmin], page 314, [intmax], page 45, [bitmax], page 48.

[Built-in Function]realmin
[Built-in Function]realmin (n )
[Built-in Function]realmin (n, m )
[Built-in Function]realmin (n, m, k, . . . )
[Built-in Function]realmin (. . . , class )

Return a scalar, matrix or N-dimensional array whose elements are all equal to the
smallest normalized floating point number that is representable. The actual value
is system dependent. On machines that support IEEE floating point arithmetic,
realmin is approximately 2.2251× 10−308 for double precision and 1.1755× 10−38 for
single precision.
When called with no arguments, return a scalar with the value realmin("double").
When called with a single argument, return a square matrix with the dimension
specified. When called with more than one scalar argument the first two arguments
are taken as the number of rows and columns and any further arguments specify
additional matrix dimensions. The optional argument class specifies the return type
and may be either "double" or "single".

See also: [realmax], page 314, [intmin], page 46.
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18 Linear Algebra

This chapter documents the linear algebra functions of Octave. Reference material for many
of these functions may be found in Golub and Van Loan, Matrix Computations, 2nd Ed.,
Johns Hopkins, 1989, and in the lapack Users’ Guide, SIAM, 1992.

18.1 Techniques used for Linear Algebra

Octave includes a polymorphic solver, that selects an appropriate matrix factorization de-
pending on the properties of the matrix itself. Generally, the cost of determining the matrix
type is small relative to the cost of factorizing the matrix itself, but in any case the matrix
type is cached once it is calculated, so that it is not re-determined each time it is used in a
linear equation.

The selection tree for how the linear equation is solve or a matrix inverse is form is given
by
1. If the matrix is upper or lower triangular sparse a forward or backward substitution

using the lapack xTRTRS function, and goto 4.
2. If the matrix is square, hermitian with a real positive diagonal, attempt Cholesky

factorization using the lapack xPOTRF function.
3. If the Cholesky factorization failed or the matrix is not hermitian with a real positive

diagonal, and the matrix is square, factorize using the lapack xGETRF function.
4. If the matrix is not square, or any of the previous solvers flags a singular or near

singular matrix, find a least squares solution using the lapack xGELSD function.

The user can force the type of the matrix with the matrix_type function. This overcomes
the cost of discovering the type of the matrix. However, it should be noted that identifying
the type of the matrix incorrectly will lead to unpredictable results, and so matrix_type
should be used with care.

It should be noted that the test for whether a matrix is a candidate for Cholesky factor-
ization, performed above and by the matrix_type function, does not give a certainty that
the matrix is Hermitian. However, the attempt to factorize the matrix will quickly flag a
non-Hermitian matrix.

18.2 Basic Matrix Functions

[Loadable Function]aa = balance (a, opt )
[Loadable Function][dd, aa] = balance (a, opt )
[Loadable Function][d, p, aa] = balance (a, opt )
[Loadable Function][cc, dd, aa, bb] = balance (a, b, opt )

Compute aa = dd \ a * dd in which aa is a matrix whose row and column norms are
roughly equal in magnitude, and dd = p * d, in which p is a permutation matrix
and d is a diagonal matrix of powers of two. This allows the equilibration to be
computed without roundoff. Results of eigenvalue calculation are typically improved
by balancing first.
If two output values are requested, balance returns the diagonal d and the permuta-
tion p separately as vectors. In this case, dd = eye(n)(p,:) * diag (d), where n is
the matrix size.
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If four output values are requested, compute aa = cc*a*dd and bb = cc*b*dd), in
which aa and bb have non-zero elements of approximately the same magnitude and cc
and dd are permuted diagonal matrices as in dd for the algebraic eigenvalue problem.
The eigenvalue balancing option opt may be one of:

"noperm", "S"
Scale only; do not permute.

"noscal", "P"
Permute only; do not scale.

Algebraic eigenvalue balancing uses standard lapack routines.
Generalized eigenvalue problem balancing uses Ward’s algorithm (SIAM Journal on
Scientific and Statistical Computing, 1981).

[Function File]cond (a,p )
Compute the p-norm condition number of a matrix. cond (a) is defined as norm (a,
p) * norm (inv (a), p). By default p=2 is used which implies a (relatively slow)
singular value decomposition. Other possible selections are p= 1, Inf, inf, ’Inf’,
’fro’ which are generally faster.

See also: [condest], page 365, [rcond], page 319, [norm], page 318, [svd], page 326.

[Loadable Function][d, rcond] = det (a )
Compute the determinant of a using lapack for full and UMFPACK for sparse
matrices. Return an estimate of the reciprocal condition number if requested.

[Function File]dmult (a, b )
This function has been deprecated. Use the direct syntax diag(A)*B which is more
readable and now also more efficient.

[Function File]dot (x, y, dim )
Computes the dot product of two vectors. If x and y are matrices, calculate the
dot-product along the first non-singleton dimension. If the optional argument dim is
given, calculate the dot-product along this dimension.

[Loadable Function]lambda = eig (a )
[Loadable Function]lambda = eig (a, b )
[Loadable Function][v, lambda] = eig (a )
[Loadable Function][v, lambda] = eig (a, b )

The eigenvalues (and eigenvectors) of a matrix are computed in a several step process
which begins with a Hessenberg decomposition, followed by a Schur decomposition,
from which the eigenvalues are apparent. The eigenvectors, when desired, are com-
puted by further manipulations of the Schur decomposition.
The eigenvalues returned by eig are not ordered.

See also: [eigs], page 368.

[Loadable Function]g = givens (x, y )
[Loadable Function][c, s] = givens (x, y )

Return a 2× 2 orthogonal matrix

G =
[
c s
−s′ c

]
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such that
G

[
x
y

]
=
[
∗
0

]
with x and y scalars.
For example,

givens (1, 1)
⇒ 0.70711 0.70711

-0.70711 0.70711

[Function File][g, y] = planerot (x )
Given a two-element column vector, returns the 2× 2 orthogonal matrix G such that
y = g * x and y(2) = 0.

See also: [givens], page 316.

[Loadable Function][x, rcond] = inv (a )
[Loadable Function][x, rcond] = inverse (a )

Compute the inverse of the square matrix a. Return an estimate of the reciprocal
condition number if requested, otherwise warn of an ill-conditioned matrix if the
reciprocal condition number is small.
If called with a sparse matrix, then in general x will be a full matrix, and so if
possible forming the inverse of a sparse matrix should be avoided. It is significantly
more accurate and faster to do y = a \ b , rather than y = inv (a) * b .

[Loadable Function]type = matrix_type (a )
[Loadable Function]a = matrix_type (a, type )
[Loadable Function]a = matrix_type (a, ’upper’, perm )
[Loadable Function]a = matrix_type (a, ’lower’, perm )
[Loadable Function]a = matrix_type (a, ’banded’, nl, nu )

Identify the matrix type or mark a matrix as a particular type. This allows rapid
for solutions of linear equations involving a to be performed. Called with a single
argument, matrix_type returns the type of the matrix and caches it for future use.
Called with more than one argument, matrix_type allows the type of the matrix to
be defined.
The possible matrix types depend on whether the matrix is full or sparse, and can be
one of the following

’unknown’ Remove any previously cached matrix type, and mark type as unknown

’full’ Mark the matrix as full.

’positive definite’
Probable full positive definite matrix.

’diagonal’ Diagonal Matrix. (Sparse matrices only)

’permuted diagonal’
Permuted Diagonal matrix. The permutation does not need to be specifi-
cally indicated, as the structure of the matrix explicitly gives this. (Sparse
matrices only)
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’upper’ Upper triangular. If the optional third argument perm is given, the ma-
trix is assumed to be a permuted upper triangular with the permutations
defined by the vector perm.

’lower’ Lower triangular. If the optional third argument perm is given, the matrix
is assumed to be a permuted lower triangular with the permutations
defined by the vector perm.

’banded’
’banded positive definite’

Banded matrix with the band size of nl below the diagonal and nu above
it. If nl and nu are 1, then the matrix is tridiagonal and treated with
specialized code. In addition the matrix can be marked as probably a
positive definite (Sparse matrices only)

’singular’ The matrix is assumed to be singular and will be treated with a minimum
norm solution

Note that the matrix type will be discovered automatically on the first attempt to
solve a linear equation involving a. Therefore matrix_type is only useful to give
Octave hints of the matrix type. Incorrectly defining the matrix type will result in in-
correct results from solutions of linear equations, and so it is entirely the responsibility
of the user to correctly identify the matrix type.
Also the test for positive definiteness is a low-cost test for a hermitian matrix with a
real positive diagonal. This does not guarantee that the matrix is positive definite,
but only that it is a probable candidate. When such a matrix is factorized, a Cholesky
factorization is first attempted, and if that fails the matrix is then treated with an
LU factorization. Once the matrix has been factorized, matrix_type will return the
correct classification of the matrix.

[Function File]norm (a, p, opt )
Compute the p-norm of the matrix a. If the second argument is missing, p = 2 is
assumed.
If a is a matrix (or sparse matrix):

p = 1 1-norm, the largest column sum of the absolute values of a.

p = 2 Largest singular value of a.

p = Inf or "inf"
Infinity norm, the largest row sum of the absolute values of a.

p = "fro"
Frobenius norm of a, sqrt (sum (diag (a’ * a))).

other p, p > 1
maximum norm (A*x, p) such that norm (x, p) == 1

If a is a vector or a scalar:

p = Inf or "inf"
max (abs (a)).

p = -Inf min (abs (a)).



Chapter 18: Linear Algebra 319

p = "fro"
Frobenius norm of a, sqrt (sumsq (abs (a))).

p = 0 Hamming norm - the number of nonzero elements.

other p, p > 1
p-norm of a, (sum (abs (a) .^ p)) ^ (1/p).

other p p < 1
the p-pseudonorm defined as above.

If "rows" is given as opt, the norms of all rows of the matrix a are returned as a column
vector. Similarly, if "columns" or "cols" is passed column norms are computed.

See also: [cond], page 316, [svd], page 326.

[Function File]null (a, tol )
Return an orthonormal basis of the null space of a.
The dimension of the null space is taken as the number of singular values of a not
greater than tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

[Function File]orth (a, tol )
Return an orthonormal basis of the range space of a.
The dimension of the range space is taken as the number of singular values of a greater
than tol. If the argument tol is missing, it is computed as

max (size (a)) * max (svd (a)) * eps

[Loadable Function]pinv (x, tol )
Return the pseudoinverse of x. Singular values less than tol are ignored.
If the second argument is omitted, it is assumed that

tol = max (size (x)) * sigma_max (x) * eps,

where sigma_max (x) is the maximal singular value of x.

[Function File]rank (a, tol )
Compute the rank of a, using the singular value decomposition. The rank is taken
to be the number of singular values of a that are greater than the specified tolerance
tol. If the second argument is omitted, it is taken to be

tol = max (size (a)) * sigma(1) * eps;

where eps is machine precision and sigma(1) is the largest singular value of a.

[Loadable Function]c = rcond (a )
Compute the 1-norm estimate of the reciprocal condition as returned by lapack.
If the matrix is well-conditioned then c will be near 1 and if the matrix is poorly
conditioned it will be close to zero.
The matrix a must not be sparse. If the matrix is sparse then condest (a) or rcond
(full (a)) should be used instead.

See also: [inv], page 317.
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[Function File]trace (a )
Compute the trace of a, sum (diag (a)).

[Function File][r, k] = rref (a, tol )
Returns the reduced row echelon form of a. tol defaults to eps * max (size (a)) *
norm (a, inf).
Called with two return arguments, k returns the vector of "bound variables", which
are those columns on which elimination has been performed.

18.3 Matrix Factorizations

[Loadable Function]r = chol (a )
[Loadable Function][r, p] = chol (a )
[Loadable Function][r, p, q] = chol (s )
[Loadable Function][r, p, q] = chol (s, ’vector’)
[Loadable Function][l, ...] = chol (. . . , ’lower’)

Compute the Cholesky factor, r, of the symmetric positive definite matrix a, where
RTR = A.
Called with one output argument chol fails if a or s is not positive definite. With
two or more output arguments p flags whether the matrix was positive definite and
chol does not fail. A zero value indicated that the matrix was positive definite and
the r gives the factorization, and p will have a positive value otherwise.
If called with 3 outputs then a sparsity preserving row/column permutation is applied
to a prior to the factorization. That is r is the factorization of a(q,q) such that
RTR = QTAQ.
The sparsity preserving permutation is generally returned as a matrix. However,
given the flag ’vector’, q will be returned as a vector such that RTR = A(Q,Q).
Called with either a sparse or full matrix and using the ’lower’ flag, chol returns the
lower triangular factorization such that LLT = A.
In general the lower triangular factorization is significantly faster for sparse matrices.

See also: [cholinv], page 320, [chol2inv], page 320.

[Loadable Function]cholinv (a )
Use the Cholesky factorization to compute the inverse of the symmetric positive
definite matrix a.

See also: [chol], page 320, [chol2inv], page 320.

[Loadable Function]chol2inv (u )
Invert a symmetric, positive definite square matrix from its Cholesky decomposition,
u. Note that u should be an upper-triangular matrix with positive diagonal elements.
chol2inv (u) provides inv (u’*u) but it is much faster than using inv.

See also: [chol], page 320, [cholinv], page 320.

[Loadable Function][R1, info] = cholupdate (R, u, op )
Update or downdate a Cholesky factorization. Given an upper triangular matrix R
and a column vector u, attempt to determine another upper triangular matrix R1
such that
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• R1’*R1 = R’*R + u*u’ if op is "+"
• R1’*R1 = R’*R - u*u’ if op is "-"

If op is "-", info is set to
• 0 if the downdate was successful,
• 1 if R’*R - u*u’ is not positive definite,
• 2 if R is singular.

If info is not present, an error message is printed in cases 1 and 2.

See also: [chol], page 320, [qrupdate], page 324.

[Loadable Function][R1, info] = cholinsert (R, j, u )
Given a Cholesky factorization of a real symmetric or complex hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A1, where A1(p,p) = A, A1(:,j) = A1(j,:)’ = u and p = [1:j-1,j+1:n+1]. u(j) should
be positive. On return, info is set to
• 0 if the insertion was successful,
• 1 if A1 is not positive definite,
• 2 if R is singular.

If info is not present, an error message is printed in cases 1 and 2.

See also: [chol], page 320, [cholupdate], page 320, [choldelete], page 321.

[Loadable Function]R1 = choldelete (R, j )
Given a Cholesky factorization of a real symmetric or complex hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A(p,p), where p = [1:j-1,j+1:n+1].

See also: [chol], page 320, [cholupdate], page 320, [cholinsert], page 321.

[Loadable Function]R1 = cholshift (R, i, j )
Given a Cholesky factorization of a real symmetric or complex hermitian positive
definite matrix A = R’*R, R upper triangular, return the Cholesky factorization of
A(p,p), where p is the permutation
p = [1:i-1, shift(i:j, 1), j+1:n] if i < j
or
p = [1:j-1, shift(j:i,-1), i+1:n] if j < i.

See also: [chol], page 320, [cholinsert], page 321, [choldelete], page 321.

[Loadable Function]h = hess (a )
[Loadable Function][p, h] = hess (a )

Compute the Hessenberg decomposition of the matrix a.
The Hessenberg decomposition is usually used as the first step in an eigenvalue com-
putation, but has other applications as well (see Golub, Nash, and Van Loan, IEEE
Transactions on Automatic Control, 1979). The Hessenberg decomposition is

A = PHP T

where P is a square unitary matrix (PHP = I), and H is upper Hessenberg (Hi,j =
0, ∀i ≥ j + 1).
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[Loadable Function][l, u, p] = lu (a )
[Loadable Function][l, u, p, q] = lu (s )
[Loadable Function][l, u, p, q, r] = lu (s )
[Loadable Function][...] = lu (s, thres )
[Loadable Function]y = lu (. . . )
[Loadable Function][...] = lu (. . . , ’vector’)

Compute the LU decomposition of a. If a is full subroutines from lapack are used
and if a is sparse then UMFPACK is used. The result is returned in a permuted form,
according to the optional return value p. For example, given the matrix a = [1, 2;
3, 4],

[l, u, p] = lu (a)

returns
l =

1.00000 0.00000
0.33333 1.00000

u =

3.00000 4.00000
0.00000 0.66667

p =

0 1
1 0

The matrix is not required to be square.
Called with two or three output arguments and a spare input matrix, then lu does not
attempt to perform sparsity preserving column permutations. Called with a fourth
output argument, the sparsity preserving column transformation Q is returned, such
that p * a * q = l * u .
Called with a fifth output argument and a sparse input matrix, then lu attempts to
use a scaling factor r on the input matrix such that p * (r \ a) * q = l * u . This
typically leads to a sparser and more stable factorization.
An additional input argument thres, that defines the pivoting threshold can be given.
thres can be a scalar, in which case it defines UMFPACK pivoting tolerance for
both symmetric and unsymmetric cases. If thres is a two element vector, then the
first element defines the pivoting tolerance for the unsymmetric UMFPACK pivoting
strategy and the second the symmetric strategy. By default, the values defined by
spparms are used and are by default [0.1, 0.001].
Given the string argument ’vector’, lu returns the values of p q as vector values, such
that for full matrix, a (p,:) = l * u , and r(p,:) * a (:, q) = l * u .
With two output arguments, returns the permuted forms of the upper and lower
triangular matrices, such that a = l * u . With one output argument y, then the
matrix returned by the lapack routines is returned. If the input matrix is sparse
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then the matrix l is embedded into u to give a return value similar to the full case.
For both full and sparse matrices, lu looses the permutation information.

[Loadable Function][q, r, p] = qr (a )
[Loadable Function][q, r, p] = qr (a, ’0’)

Compute the QR factorization of a, using standard lapack subroutines. For example,
given the matrix a = [1, 2; 3, 4],

[q, r] = qr (a)

returns

q =

-0.31623 -0.94868
-0.94868 0.31623

r =

-3.16228 -4.42719
0.00000 -0.63246

The qr factorization has applications in the solution of least squares problems

min
x
‖Ax− b‖2

for overdetermined systems of equations (i.e., A is a tall, thin matrix). The QR
factorization is QR = A where Q is an orthogonal matrix and R is upper triangular.

If given a second argument of ’0’, qr returns an economy-sized QR factorization,
omitting zero rows of R and the corresponding columns of Q.

If the matrix a is full, the permuted QR factorization [q, r, p] = qr (a) forms the
QR factorization such that the diagonal entries of r are decreasing in magnitude
order. For example,given the matrix a = [1, 2; 3, 4],

[q, r, p] = qr(a)

returns

q =

-0.44721 -0.89443
-0.89443 0.44721

r =

-4.47214 -3.13050
0.00000 0.44721

p =

0 1
1 0
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The permuted qr factorization [q, r, p] = qr (a) factorization allows the construc-
tion of an orthogonal basis of span (a).
If the matrix a is sparse, then compute the sparse QR factorization of a, using
CSparse. As the matrix Q is in general a full matrix, this function returns the
Q-less factorization r of a, such that r = chol (a’ * a).
If the final argument is the scalar 0 and the number of rows is larger than the number
of columns, then an economy factorization is returned. That is r will have only size
(a,1) rows.
If an additional matrix b is supplied, then qr returns c, where c = q’ * b . This
allows the least squares approximation of a \ b to be calculated as

[c,r] = spqr (a,b)
x = r \ c

[Loadable Function][Q1, R1] = qrupdate (Q, R, u, v )
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization of A + u*v ’, where u and v are
column vectors (rank-1 update) or matrices with equal number of columns (rank-k
update). Notice that the latter case is done as a sequence of rank-1 updates; thus, for
k large enough, it will be both faster and more accurate to recompute the factorization
from scratch.
The QR factorization supplied may be either full (Q is square) or economized (R is
square).

See also: [qr], page 323, [qrinsert], page 324, [qrdelete], page 324.

[Loadable Function][Q1, R1] = qrinsert (Q, R, j, x, orient )
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization of [A(:,1:j-1) x A(:,j:n)], where u is
a column vector to be inserted into A (if orient is "col"), or the QR factorization
of [A(1:j-1,:);x;A(:,j:n)], where x is a row vector to be inserted into A (if orient is
"row").
The default value of orient is "col". If orient is "col", u may be a matrix and j an
index vector resulting in the QR factorization of a matrix B such that B(:,j) gives u
and B(:,j) = [] gives A. Notice that the latter case is done as a sequence of k insertions;
thus, for k large enough, it will be both faster and more accurate to recompute the
factorization from scratch.
If orient is "col", the QR factorization supplied may be either full (Q is square) or
economized (R is square).
If orient is "row", full factorization is needed.

See also: [qr], page 323, [qrupdate], page 324, [qrdelete], page 324.

[Loadable Function][Q1, R1] = qrdelete (Q, R, j, orient )
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and R up-
per trapezoidal, return the QR factorization of [A(:,1:j-1) A(:,j+1:n)], i.e., A with one
column deleted (if orient is "col"), or the QR factorization of [A(1:j-1,:);A(:,j+1:n)],
i.e., A with one row deleted (if orient is "row").
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The default value of orient is "col".
If orient is "col", j may be an index vector resulting in the QR factorization of a
matrix B such that A(:,j) = [] gives B. Notice that the latter case is done as a sequence
of k deletions; thus, for k large enough, it will be both faster and more accurate to
recompute the factorization from scratch.
If orient is "col", the QR factorization supplied may be either full (Q is square) or
economized (R is square).
If orient is "row", full factorization is needed.

See also: [qr], page 323, [qrinsert], page 324, [qrupdate], page 324.

[Loadable Function][Q1, R1] = qrshift (Q, R, i, j )
Given a QR factorization of a real or complex matrix A = Q*R, Q unitary and
R upper trapezoidal, return the QR factorization of A(:,p), where p is the permutation
p = [1:i-1, shift(i:j, 1), j+1:n] if i < j
or
p = [1:j-1, shift(j:i,-1), i+1:n] if j < i.

See also: [qr], page 323, [qrinsert], page 324, [qrdelete], page 324.

[Loadable Function]lambda = qz (a, b )
Generalized eigenvalue problem Ax = sBx, QZ decomposition. There are three ways
to call this function:
1. lambda = qz(A,B)

Computes the generalized eigenvalues λ of (A− sB).
2. [AA, BB, Q, Z, V, W, lambda] = qz (A, B)

Computes qz decomposition, generalized eigenvectors, and generalized eigenval-
ues of (A− sB)

AV = BV diag(λ)

W TA = diag(λ)W TB

AA = QTAZ,BB = QTBZ

with Q and Z orthogonal (unitary)= I

3. [AA,BB,Z{, lambda}] = qz(A,B,opt)

As in form [2], but allows ordering of generalized eigenpairs for (e.g.) solution
of discrete time algebraic Riccati equations. Form 3 is not available for com-
plex matrices, and does not compute the generalized eigenvectors V, W, nor the
orthogonal matrix Q.

opt for ordering eigenvalues of the GEP pencil. The leading block of the
revised pencil contains all eigenvalues that satisfy:

"N" = unordered (default)

"S" = small: leading block has all |lambda| <=1

"B" = big: leading block has all |lambda| >= 1
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"-" = negative real part: leading block has all eigenvalues in
the open left half-plane

"+" = non-negative real part: leading block has all eigenval-
ues in the closed right half-plane

Note: qz performs permutation balancing, but not scaling (see balance). Order of
output arguments was selected for compatibility with matlab

See also: [balance], page 315, [eig], page 316, [schur], page 326.

[Function File][aa, bb, q, z] = qzhess (a, b )
Compute the Hessenberg-triangular decomposition of the matrix pencil (a, b), re-
turning aa = q * a * z , bb = q * b * z , with q and z orthogonal. For example,

[aa, bb, q, z] = qzhess ([1, 2; 3, 4], [5, 6; 7, 8])
⇒ aa = [ -3.02244, -4.41741; 0.92998, 0.69749 ]
⇒ bb = [ -8.60233, -9.99730; 0.00000, -0.23250 ]
⇒ q = [ -0.58124, -0.81373; -0.81373, 0.58124 ]
⇒ z = [ 1, 0; 0, 1 ]

The Hessenberg-triangular decomposition is the first step in Moler and Stewart’s QZ
decomposition algorithm.
Algorithm taken from Golub and Van Loan, Matrix Computations, 2nd edition.

[Loadable Function]s = schur (a )
[Loadable Function][u, s] = schur (a, opt )

The Schur decomposition is used to compute eigenvalues of a square matrix, and
has applications in the solution of algebraic Riccati equations in control (see are
and dare). schur always returns S = UTAU where U is a unitary matrix (UTU is
identity) and S is upper triangular. The eigenvalues of A (and S) are the diagonal
elements of S. If the matrix A is real, then the real Schur decomposition is computed,
in which the matrix U is orthogonal and S is block upper triangular with blocks of
size at most 2× 2 along the diagonal. The diagonal elements of S (or the eigenvalues
of the 2× 2 blocks, when appropriate) are the eigenvalues of A and S.
The eigenvalues are optionally ordered along the diagonal according to the value of
opt. opt = "a" indicates that all eigenvalues with negative real parts should be moved
to the leading block of S (used in are), opt = "d" indicates that all eigenvalues with
magnitude less than one should be moved to the leading block of S (used in dare),
and opt = "u", the default, indicates that no ordering of eigenvalues should occur.
The leading k columns of U always span the A-invariant subspace corresponding to
the k leading eigenvalues of S.

[Function File]angle = subspace (a, B )
Determine the largest principal angle between two subspaces spanned by columns of
matrices a and b.

[Loadable Function]s = svd (a )
[Loadable Function][u, s, v] = svd (a )

Compute the singular value decomposition of a

A = USV H
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The function svd normally returns the vector of singular values. If asked for three
return values, it computes U , S, and V . For example,

svd (hilb (3))

returns
ans =

1.4083189
0.1223271
0.0026873

and
[u, s, v] = svd (hilb (3))

returns
u =

-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867

s =

1.40832 0.00000 0.00000
0.00000 0.12233 0.00000
0.00000 0.00000 0.00269

v =

-0.82704 0.54745 0.12766
-0.45986 -0.52829 -0.71375
-0.32330 -0.64901 0.68867

If given a second argument, svd returns an economy-sized decomposition, eliminating
the unnecessary rows or columns of u or v.

[Function File][housv, beta, zer] = housh (x, j, z )
Compute Householder reflection vector housv to reflect x to be the j-th column of
identity, i.e.,

(I - beta*housv*housv’)x = norm(x)*e(j) if x(1) < 0,
(I - beta*housv*housv’)x = -norm(x)*e(j) if x(1) >= 0

Inputs

x vector

j index into vector

z threshold for zero (usually should be the number 0)

Outputs (see Golub and Van Loan):

beta If beta = 0, then no reflection need be applied (zer set to 0)
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housv householder vector

[Function File][u, h, nu] = krylov (a, v, k, eps1, pflg )
Construct an orthogonal basis u of block Krylov subspace

[v a*v a^2*v ... a^(k+1)*v]

Using Householder reflections to guard against loss of orthogonality.
If v is a vector, then h contains the Hessenberg matrix such that a*u == u*h+rk*ek’,
in which rk = a*u(:,k)-u*h(:,k), and ek’ is the vector [0, 0, ..., 1] of length
k. Otherwise, h is meaningless.
If v is a vector and k is greater than length(A)-1, then h contains the Hessenberg
matrix such that a*u == u*h.
The value of nu is the dimension of the span of the krylov subspace (based on eps1).
If b is a vector and k is greater than m-1, then h contains the Hessenberg decompo-
sition of a.
The optional parameter eps1 is the threshold for zero. The default value is 1e-12.
If the optional parameter pflg is nonzero, row pivoting is used to improve numerical
behavior. The default value is 0.
Reference: Hodel and Misra, "Partial Pivoting in the Computation of Krylov Sub-
spaces", to be submitted to Linear Algebra and its Applications

18.4 Functions of a Matrix

[Function File]expm (a )
Return the exponential of a matrix, defined as the infinite Taylor series

exp(A) = I +A+
A2

2!
+
A3

3!
+ · · ·

The Taylor series is not the way to compute the matrix exponential; see Moler and
Van Loan, Nineteen Dubious Ways to Compute the Exponential of a Matrix, SIAM
Review, 1978. This routine uses Ward’s diagonal Padé approximation method with
three step preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal
Padé approximations are rational polynomials of matricesDq(a)−1Nq(a) whose Taylor
series matches the first 2q + 1 terms of the Taylor series above; direct evaluation of
the Taylor series (with the same preconditioning steps) may be desirable in lieu of
the Padé approximation when Dq(a) is ill-conditioned.

[Function File]logm (a )
Compute the matrix logarithm of the square matrix a. Note that this is currently
implemented in terms of an eigenvalue expansion and needs to be improved to be
more robust.

[Loadable Function][result, error_estimate] = sqrtm (a )
Compute the matrix square root of the square matrix a.
Ref: Nicholas J. Higham. A new sqrtm for matlab. Numerical Analysis Report
No. 336, Manchester Centre for Computational Mathematics, Manchester, England,
January 1999.

See also: [expm], page 328, [logm], page 328.
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[Loadable Function]kron (a, b )
Form the kronecker product of two matrices, defined block by block as

x = [a(i, j) b]

For example,
kron (1:4, ones (3, 1))

⇒ 1 2 3 4
1 2 3 4
1 2 3 4

[Loadable Function]x = syl (a, b, c )
Solve the Sylvester equation

AX +XB + C = 0

using standard lapack subroutines. For example,
syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])

⇒ [ -0.50000, -0.66667; -0.66667, -0.50000 ]

18.5 Specialized Solvers

[Function File]bicgstab (A, b )
[Function File]bicgstab (A, b, tol, maxit, M1, M2, x0 )

This procedure attempts to solve a system of linear equations A*x = b for x. The A
must be square, symmetric and positive definite real matrix N*N. The b must be a
one column vector with a length of N. The tol specifies the tolerance of the method,
the default value is 1e-6. The maxit specifies the maximum number of iterations, the
default value is min(20,N). The M1 specifies a preconditioner, can also be a function
handler which returns M\X. The M2 combined with M1 defines preconditioner as
preconditioner=M1*M2. The x0 is the initial guess, the default value is zeros(N,1).
The value x is a computed result of this procedure. The value flag can be 0 when we
reach tolerance in maxit iterations, 1 when we don’t reach tolerance in maxit iterations
and 3 when the procedure stagnates. The value relres is a relative residual - norm(b-
A*x)/norm(b). The value iter is an iteration number in which x was computed. The
value resvec is a vector of relres for each iteration.

[Function File]cgs (A, b )
[Function File]cgs (A, b, tol, maxit, M1, M2, x0 )

This procedure attempts to solve a system of linear equations A*x = b for x. The
A must be square, symmetric and positive definite real matrix N*N. The b must
be a one column vector with a length of N. The tol specifies the tolerance of the
method, default value is 1e-6. The maxit specifies the maximum number of iteration,
default value is MIN(20,N). The M1 specifies a preconditioner, can also be a function
handler which returns M\X. The M2 combined with M1 defines preconditioner as
preconditioner=M1*M2. The x0 is initial guess, default value is zeros(N,1).
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19 Nonlinear Equations

Octave can solve sets of nonlinear equations of the form

f(x) = 0

using the function fsolve, which is based on the Minpack subroutine hybrd. This is
an iterative technique so a starting point will have to be provided. This also has the
consequence that convergence is not guaranteed even if a solution exists.

[Function File]fsolve (fcn, x0, options )
[Function File][x, fvec, info, output, fjac] = fsolve (fcn, . . . )

Solve a system of nonlinear equations defined by the function fcn. fcn should accepts
a vector (array) defining the unknown variables, and return a vector of left-hand
sides of the equations. Right-hand sides are defined to be zeros. In other words, this
function attempts to determine a vector x such that fcn (x) gives (approximately)
all zeros. x0 determines a starting guess. The shape of x0 is preserved in all calls to
fcn, but otherwise it is treated as a column vector. options is a structure specifying
additional options. Currently, fsolve recognizes these options: "FunValCheck",
"OutputFcn", "TolX", "TolFun", "MaxIter", "MaxFunEvals", "Jacobian",
"Updating" and "ComplexEqn".

If "Jacobian" is "on", it specifies that fcn, called with 2 output arguments, also re-
turns the Jacobian matrix of right-hand sides at the requested point. "TolX" specifies
the termination tolerance in the unknown variables, while "TolFun" is a tolerance for
equations. Default is 1e-7 for both "TolX" and "TolFun". If "Updating" is "on",
the function will attempt to use Broyden updates to update the Jacobian, in order to
reduce the amount of jacobian calculations. If your user function always calculates
the Jacobian (regardless of number of output arguments), this option provides no
advantage and should be set to false.

"ComplexEqn" is "on", fsolve will attempt to solve complex equations in complex
variables, assuming that the equations possess a complex derivative (i.e., are holo-
morphic). If this is not what you want, should unpack the real and imaginary parts
of the system to get a real system.

For description of the other options, see optimset.

On return, fval contains the value of the function fcn evaluated at x, and info may
be one of the following values:

1 Converged to a solution point. Relative residual error is less than specified
by TolFun.

2 Last relative step size was less that TolX.

3 Last relative decrease in residual was less than TolF.

0 Iteration limit exceeded.

-3 The trust region radius became excessively small.
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Note: If you only have a single nonlinear equation of one variable, using fzero is
usually a much better idea.

See also: [fzero], page 333, [optimset], page 411.

Note about user-supplied jacobians: As an inherent property of the algorithm, jaco-
bian is always requested for a solution vector whose residual vector is already known,
and it is the last accepted successful step. Often this will be one of the last two calls,
but not always. If the savings by reusing intermediate results from residual calcula-
tion in jacobian calculation are significant, the best strategy is to employ OutputFcn:
After a vector is evaluated for residuals, if OutputFcn is called with that vector, then
the intermediate results should be saved for future jacobian evaluation, and should
be kept until a jacobian evaluation is requested or until outputfcn is called with a
different vector, in which case they should be dropped in favor of this most recent
vector. A short example how this can be achieved follows:

function [fvec, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
## evaluation call
if (nargout == 1)

sav0.x = x; # mark saved vector
## calculate fvec, save results to sav0.

elseif (nargout == 2)
## calculate fjac using sav.

endif
else
## outputfcn call.
if (all (x == sav0.x))

sav = sav0;
endif
## maybe output iteration status, etc.

endif
endfunction

....

fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, ...))

Here is a complete example. To solve the set of equations

−2x2 + 3xy + 4 sin(y)− 6 = 0
3x2 − 2xy2 + 3 cos(x) + 4 = 0

you first need to write a function to compute the value of the given function. For example:

function y = f (x)
y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;
y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;

endfunction
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Then, call fsolve with a specified initial condition to find the roots of the system of
equations. For example, given the function f defined above,

[x, fval, info] = fsolve (@f, [1; 2])

results in the solution
x =

0.57983
2.54621

fval =

-5.7184e-10
5.5460e-10

info = 1

A value of info = 1 indicates that the solution has converged.
The function perror may be used to print English messages corresponding to the numeric

error codes. For example,
perror ("fsolve", 1)

a solution converged to requested tolerance

When no Jacobian is supplied (as in the example above) it is approximated numerically.
This requires more function evaluations, and hence is less efficient. In the example above
we could compute the Jacobian analytically as[ ∂f1

∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=
[

3x2 − 4x1 4 cos(x2) + 3x1

−2x2
2 − 3 sin(x1) + 6x1 −4x1x2

]
and compute it with the following Octave function

function J = jacobian(x)
J(1,1) = 3*x(2) - 4*x(1);
J(1,2) = 4*cos(x(2)) + 3*x(1);
J(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
J(2,2) = -4*x(1)*x(2);

endfunction

The Jacobian can then be used with the following call to fsolve:
[x, fval, info] = fsolve ({@f, @jacobian}, [1; 2]);

which gives the same solution as before.

[Function File][x, fval, info, output] = fzero (fun, x0, options )
Find a zero point of a univariate function. fun should be a function handle or
name. x0 specifies a starting point. options is a structure specifying additional
options. Currently, fzero recognizes these options: "FunValCheck", "OutputFcn",
"TolX", "MaxIter", "MaxFunEvals". For description of these options, see [optimset],
page 411.
On exit, the function returns x, the approximate zero point and fval, the function
value thereof. info is an exit flag that can have these values:
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• 1 The algorithm converged to a solution.
• 0 Maximum number of iterations or function evaluations has been exhausted.
• -1 The algorithm has been terminated from user output function.
• -2 A general unexpected error.
• -3 A non-real value encountered.
• -4 A NaN value encountered.

See also: [optimset], page 411, [fsolve], page 331.
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20 Diagonal and Permutation Matrices

20.1 Creating and Manipulating Diagonal and Permutation
Matrices

A diagonal matrix is defined as a matrix that has zero entries outside the main diagonal;
that is, Dij = 0 if i 6= j Most often, square diagonal matrices are considered; however, the
definition can equally be applied to nonsquare matrices, in which case we usually speak of
a rectangular diagonal matrix.

A permutation matrix is defined as a square matrix that has a single element equal to
unity in each row and each column; all other elements are zero. That is, there exists a
permutation (vector) p such that Pij = 1 if j = pi and Pij = 0 otherwise.

Octave provides special treatment of real and complex rectangular diagonal matrices,
as well as permutation matrices. They are stored as special objects, using efficient storage
and algorithms, facilitating writing both readable and efficient matrix algebra expressions
in the Octave language.

20.1.1 Creating Diagonal Matrices

The most common and easiest way to create a diagonal matrix is using the built-in function
diag. The expression diag (v), with v a vector, will create a square diagonal matrix with
elements on the main diagonal given by the elements of v, and size equal to the length of v.
diag (v, m, n) can be used to construct a rectangular diagonal matrix. The result of these
expressions will be a special diagonal matrix object, rather than a general matrix object.

Diagonal matrix with unit elements can be created using eye. Some other built-in func-
tions can also return diagonal matrices. Examples include balance or inv.

Example:
diag (1:4)

⇒
Diagonal Matrix

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

diag(1:3,5,3)

⇒
Diagonal Matrix

1 0 0
0 2 0
0 0 3
0 0 0
0 0 0
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20.1.2 Creating Permutation Matrices

For creating permutation matrices, Octave does not introduce a new function, but rather
overrides an existing syntax: permutation matrices can be conveniently created by indexing
an identity matrix by permutation vectors. That is, if q is a permutation vector of length
n, the expression

P = eye (n) (:, q);

will create a permutation matrix - a special matrix object.

eye (n) (q, :)

will also work (and create a row permutation matrix), as well as

eye (n) (q1, q2).

For example:

eye (4) ([1,3,2,4],:)
⇒
Permutation Matrix

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

eye (4) (:,[1,3,2,4])
⇒
Permutation Matrix

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Mathematically, an identity matrix is both diagonal and permutation matrix. In Oc-
tave, eye (n) returns a diagonal matrix, because a matrix can only have one class. You
can convert this diagonal matrix to a permutation matrix by indexing it by an identity
permutation, as shown below. This is a special property of the identity matrix; indexing
other diagonal matrices generally produces a full matrix.
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eye (3)
⇒
Diagonal Matrix

1 0 0
0 1 0
0 0 1

eye(3)(1:3,:)
⇒
Permutation Matrix

1 0 0
0 1 0
0 0 1

Some other built-in functions can also return permutation matrices. Examples include
inv or lu.

20.1.3 Explicit and Implicit Conversions

The diagonal and permutation matrices are special objects in their own right. A number of
operations and built-in functions are defined for these matrices to use special, more efficient
code than would be used for a full matrix in the same place. Examples are given in further
sections.

To facilitate smooth mixing with full matrices, backward compatibility, and compatibility
with matlab, the diagonal and permutation matrices should allow any operation that works
on full matrices, and will either treat it specially, or implicitly convert themselves to full
matrices.

Instances include matrix indexing, except for extracting a single element or a leading
submatrix, indexed assignment, or applying most mapper functions, such as exp.

An explicit conversion to a full matrix can be requested using the built-in function full.
It should also be noted that the diagonal and permutation matrix objects will cache the
result of the conversion after it is first requested (explicitly or implicitly), so that subsequent
conversions will be very cheap.

20.2 Linear Algebra with Diagonal and Permutation
Matrices

As has been already said, diagonal and permutation matrices make it possible to use efficient
algorithms while preserving natural linear algebra syntax. This section describes in detail
the operations that are treated specially when performed on these special matrix objects.

20.2.1 Expressions Involving Diagonal Matrices

Assume D is a diagonal matrix. If M is a full matrix, then D*M will scale the rows of M.
That means, if S = D*M, then for each pair of indices i,j it holds

Sij = DiiMij



338 GNU Octave

Similarly, M*D will do a column scaling.

The matrix D may also be rectangular, m-by-n where m != n. If m < n, then the expres-
sion D*M is equivalent to

D(:,1:m) * M(1:m,:),

i.e., trailing n-m rows of M are ignored. If m > n, then D*M is equivalent to

[D(1:n,n) * M; zeros(m-n, columns (M))],

i.e., null rows are appended to the result. The situation for right-multiplication M*D is
analogous.

The expressions D \ M and M / D perform inverse scaling. They are equivalent to solv-
ing a diagonal (or rectangular diagonal) in a least-squares minimum-norm sense. In exact
arithmetics, this is equivalent to multiplying by a pseudoinverse. The pseudoinverse of a
rectangular diagonal matrix is again a rectangular diagonal matrix with swapped dimen-
sions, where each nonzero diagonal element is replaced by its reciprocal. The matrix division
algorithms do, in fact, use division rather than multiplication by reciprocals for better nu-
merical accuracy; otherwise, they honor the above definition. Note that a diagonal matrix
is never truncated due to ill-conditioning; otherwise, it would not be much useful for scaling.
This is typically consistent with linear algebra needs. A full matrix that only happens to
be diagonal (an is thus not a special object) is of course treated normally.

Multiplication and division by diagonal matrices works efficiently also when combined
with sparse matrices, i.e., D*S, where D is a diagonal matrix and S is a sparse matrix scales
the rows of the sparse matrix and returns a sparse matrix. The expressions S*D, D\S, S/D
work analogically.

If D1 and D2 are both diagonal matrices, then the expressions

D1 + D2
D1 - D2
D1 * D2
D1 / D2
D1 \ D2

again produce diagonal matrices, provided that normal dimension matching rules are
obeyed. The relations used are same as described above.

Also, a diagonal matrix D can be multiplied or divided by a scalar, or raised to a scalar
power if it is square, producing diagonal matrix result in all cases.

A diagonal matrix can also be transposed or conjugate-transposed, giving the expected
result. Extracting a leading submatrix of a diagonal matrix, i.e., D(1:m,1:n), will produce
a diagonal matrix, other indexing expressions will implicitly convert to full matrix.

Adding a diagonal matrix to a full matrix only operates on the diagonal elements. Thus,

A = A + eps * eye (n)

is an efficient method of augmenting the diagonal of a matrix. Subtraction works ana-
logically.

When involved in expressions with other element-by-element operators, .*, ./, .\ or .^,
an implicit conversion to full matrix will take place. This is not always strictly necessary
but chosen to facilitate better consistency with matlab.
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20.2.2 Expressions Involving Permutation Matrices

If P is a permutation matrix and M a matrix, the expression P*M will permute the rows
of M. Similarly, M*P will yield a column permutation. Matrix division P\M and M/P can be
used to do inverse permutation.

The previously described syntax for creating permutation matrices can actually help an
user to understand the connection between a permutation matrix and a permuting vector.
Namely, the following holds, where I = eye (n) is an identity matrix:

I(p,:) * M = (I*M) (p,:) = M(p,:)

Similarly,
M * I(:,p) = (M*I) (:,p) = M(:,p)

The expressions I(p,:) and I(:,p) are permutation matrices.
A permutation matrix can be transposed (or conjugate-transposed, which is the same,

because a permutation matrix is never complex), inverting the permutation, or equivalently,
turning a row-permutation matrix into a column-permutation one. For permutation ma-
trices, transpose is equivalent to inversion, thus P\M is equivalent to P’*M. Transpose of a
permutation matrix (or inverse) is a constant-time operation, flipping only a flag internally,
and thus the choice between the two above equivalent expressions for inverse permuting is
completely up to the user’s taste.

Multiplication and division by permutation matrices works efficiently also when com-
bined with sparse matrices, i.e., P*S, where P is a permutation matrix and S is a sparse
matrix permutes the rows of the sparse matrix and returns a sparse matrix. The expressions
S*P, P\S, S/P work analogically.

Two permutation matrices can be multiplied or divided (if their sizes match), performing
a composition of permutations. Also a permutation matrix can be indexed by a permutation
vector (or two vectors), giving again a permutation matrix. Any other operations do not
generally yield a permutation matrix and will thus trigger the implicit conversion.

20.3 Functions That Are Aware of These Matrices

This section lists the built-in functions that are aware of diagonal and permutation matrices
on input, or can return them as output. Passed to other functions, these matrices will in
general trigger an implicit conversion. (Of course, user-defined dynamically linked functions
may also work with diagonal or permutation matrices).

20.3.1 Diagonal Matrix Functions

inv and pinv can be applied to a diagonal matrix, yielding again a diagonal matrix. det will
use an efficient straightforward calculation when given a diagonal matrix, as well as cond.
The following mapper functions can be applied to a diagonal matrix without converting it
to a full one: abs, real, imag, conj, sqrt. A diagonal matrix can also be returned from the
balance and svd functions. The sparse function will convert a diagonal matrix efficiently
to a sparse matrix.

20.3.2 Permutation Matrix Functions

inv and pinv will invert a permutation matrix, preserving its specialness. det can be applied
to a permutation matrix, efficiently calculating the sign of the permutation (which is equal
to the determinant).
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A permutation matrix can also be returned from the built-in functions lu and qr, if a
pivoted factorization is requested.

The sparse function will convert a permutation matrix efficiently to a sparse matrix.
The find function will also work efficiently with a permutation matrix, making it possible
to conveniently obtain the permutation indices.

20.4 Some Examples of Usage

The following can be used to solve a linear system A*x = b using the pivoted LU factoriza-
tion:

[L, U, P] = lu (A); ## now L*U = P*A
x = U \ L \ P*b;

This is how you normalize columns of a matrix X to unit norm:

s = norm (X, "columns");
X = diag (s) \ X;

The following expression is a way to efficiently calculate the sign of a permutation, given
by a permutation vector p. It will also work in earlier versions of Octave, but slowly.

det (eye (length (p))(p, :))

Finally, here’s how you solve a linear system A*x = b with Tikhonov regularization (ridge
regression) using SVD (a skeleton only):

m = rows (A); n = columns (A);
[U, S, V] = svd (A);
## determine the regularization factor alpha
## alpha = ...
## transform to orthogonal basis
b = U’*b;
## Use the standard formula, replacing A with S.
## S is diagonal, so the following will be very fast and accurate.
x = (S’*S + alpha^2 * eye (n)) \ (S’ * b);
## transform to solution basis
x = V*x;

20.5 The Differences in Treatment of Zero Elements

Making diagonal and permutation matrices special matrix objects in their own right and the
consequent usage of smarter algorithms for certain operations implies, as a side effect, small
differences in treating zeros. The contents of this section applies also to sparse matrices,
discussed in the following chapter.

The IEEE standard defines the result of the expressions 0*Inf and 0*NaN as NaN, as
it has been generally agreed that this is the best compromise. Numerical software dealing
with structured and sparse matrices (including Octave) however, almost always makes a
distinction between a "numerical zero" and an "assumed zero". A "numerical zero" is a
zero value occurring in a place where any floating-point value could occur. It is normally
stored somewhere in memory as an explicit value. An "assumed zero", on the contrary, is
a zero matrix element implied by the matrix structure (diagonal, triangular) or a sparsity
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pattern; its value is usually not stored explicitly anywhere, but is implied by the underlying
data structure.

The primary distinction is that an assumed zero, when multiplied by any number, or
divided by any nonzero number, yields *always* a zero, even when, e.g., multiplied by Inf
or divided by NaN. The reason for this behavior is that the numerical multiplication is not
actually performed anywhere by the underlying algorithm; the result is just assumed to be
zero. Equivalently, one can say that the part of the computation involving assumed zeros
is performed symbolically, not numerically.

This behavior not only facilitates the most straightforward and efficient implementation
of algorithms, but also preserves certain useful invariants, like:

• scalar * diagonal matrix is a diagonal matrix

• sparse matrix / scalar preserves the sparsity pattern

• permutation matrix * matrix is equivalent to permuting rows

all of these natural mathematical truths would be invalidated by treating assumed zeros
as numerical ones.

Note that certain competing software does not strictly follow this principle and converts
assumed zeros to numerical zeros in certain cases, while not doing so in other cases. As of
today, there are no intentions to mimic such behavior in Octave.

Examples of effects of assumed zeros vs. numerical zeros:

Inf * eye (3)
⇒

Inf 0 0
0 Inf 0
0 0 Inf

Inf * speye (3)
⇒
Compressed Column Sparse (rows = 3, cols = 3, nnz = 3 [33%])

(1, 1) -> Inf
(2, 2) -> Inf
(3, 3) -> Inf

Inf * full (eye (3))
⇒

Inf NaN NaN
NaN Inf NaN
NaN NaN Inf
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diag(1:3) * [NaN; 1; 1]
⇒

NaN
2
3

sparse(1:3,1:3,1:3) * [NaN; 1; 1]
⇒

NaN
2
3

[1,0,0;0,2,0;0,0,3] * [NaN; 1; 1]
⇒

NaN
NaN
NaN
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21 Sparse Matrices

21.1 The Creation and Manipulation of Sparse Matrices

The size of mathematical problems that can be treated at any particular time is generally
limited by the available computing resources. Both, the speed of the computer and its
available memory place limitation on the problem size.

There are many classes of mathematical problems which give rise to matrices, where a
large number of the elements are zero. In this case it makes sense to have a special matrix
type to handle this class of problems where only the non-zero elements of the matrix are
stored. Not only does this reduce the amount of memory to store the matrix, but it also
means that operations on this type of matrix can take advantage of the a-priori knowledge
of the positions of the non-zero elements to accelerate their calculations.

A matrix type that stores only the non-zero elements is generally called sparse. It is the
purpose of this document to discuss the basics of the storage and creation of sparse matrices
and the fundamental operations on them.

21.1.1 Storage of Sparse Matrices

It is not strictly speaking necessary for the user to understand how sparse matrices are
stored. However, such an understanding will help to get an understanding of the size of
sparse matrices. Understanding the storage technique is also necessary for those users
wishing to create their own oct-files.

There are many different means of storing sparse matrix data. What all of the methods
have in common is that they attempt to reduce the complexity and storage given a-priori
knowledge of the particular class of problems that will be solved. A good summary of
the available techniques for storing sparse matrix is given by Saad1. With full matrices,
knowledge of the point of an element of the matrix within the matrix is implied by its
position in the computers memory. However, this is not the case for sparse matrices, and
so the positions of the non-zero elements of the matrix must equally be stored.

An obvious way to do this is by storing the elements of the matrix as triplets, with two
elements being their position in the array (rows and column) and the third being the data
itself. This is conceptually easy to grasp, but requires more storage than is strictly needed.

The storage technique used within Octave is the compressed column format. In this
format the position of each element in a row and the data are stored as previously. However,
if we assume that all elements in the same column are stored adjacent in the computers
memory, then we only need to store information on the number of non-zero elements in
each column, rather than their positions. Thus assuming that the matrix has more non-
zero elements than there are columns in the matrix, we win in terms of the amount of
memory used.

In fact, the column index contains one more element than the number of columns, with
the first element always being zero. The advantage of this is a simplification in the code, in
that there is no special case for the first or last columns. A short example, demonstrating
this in C is.

1 Youcef Saad "SPARSKIT: A basic toolkit for sparse matrix computation", 1994,
http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps

http://www-users.cs.umn.edu/~saad/software/SPARSKIT/paper.ps
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for (j = 0; j < nc; j++)
for (i = cidx (j); i < cidx(j+1); i++)

printf ("non-zero element (%i,%i) is %d\n",
ridx(i), j, data(i));

A clear understanding might be had by considering an example of how the above applies
to an example matrix. Consider the matrix

1 2 0 0
0 0 0 3
0 0 0 4

The non-zero elements of this matrix are

(1, 1) ⇒ 1
(1, 2) ⇒ 2
(2, 4) ⇒ 3
(3, 4) ⇒ 4

This will be stored as three vectors cidx, ridx and data, representing the column indexing,
row indexing and data respectively. The contents of these three vectors for the above matrix
will be

cidx = [0, 1, 2, 2, 4]
ridx = [0, 0, 1, 2]
data = [1, 2, 3, 4]

Note that this is the representation of these elements with the first row and column
assumed to start at zero, while in Octave itself the row and column indexing starts at one.
Thus the number of elements in the i-th column is given by cidx (i + 1) - cidx (i).

Although Octave uses a compressed column format, it should be noted that compressed
row formats are equally possible. However, in the context of mixed operations between
mixed sparse and dense matrices, it makes sense that the elements of the sparse matrices
are in the same order as the dense matrices. Octave stores dense matrices in column major
ordering, and so sparse matrices are equally stored in this manner.

A further constraint on the sparse matrix storage used by Octave is that all elements in
the rows are stored in increasing order of their row index, which makes certain operations
faster. However, it imposes the need to sort the elements on the creation of sparse matrices.
Having disordered elements is potentially an advantage in that it makes operations such as
concatenating two sparse matrices together easier and faster, however it adds complexity
and speed problems elsewhere.

21.1.2 Creating Sparse Matrices

There are several means to create sparse matrix.

Returned from a function
There are many functions that directly return sparse matrices. These include
speye, sprand, diag, etc.

Constructed from matrices or vectors
The function sparse allows a sparse matrix to be constructed from three vectors
representing the row, column and data. Alternatively, the function spconvert
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uses a three column matrix format to allow easy importation of data from
elsewhere.

Created and then filled
The function sparse or spalloc can be used to create an empty matrix that is
then filled by the user

From a user binary program
The user can directly create the sparse matrix within an oct-file.

There are several basic functions to return specific sparse matrices. For example the
sparse identity matrix, is a matrix that is often needed. It therefore has its own function to
create it as speye (n) or speye (r, c), which creates an n-by-n or r-by-c sparse identity
matrix.

Another typical sparse matrix that is often needed is a random distribution of random
elements. The functions sprand and sprandn perform this for uniform and normal random
distributions of elements. They have exactly the same calling convention, where sprand
(r, c, d), creates an r-by-c sparse matrix with a density of filled elements of d.

Other functions of interest that directly create sparse matrices, are diag or its general-
ization spdiags, that can take the definition of the diagonals of the matrix and create the
sparse matrix that corresponds to this. For example

s = diag (sparse(randn(1,n)), -1);

creates a sparse (n+1)-by-(n+1) sparse matrix with a single diagonal defined.

[Function File][b, c] = spdiags (a )
[Function File]b = spdiags (a, c )
[Function File]b = spdiags (v, c, a )
[Function File]b = spdiags (v, c, m, n )

A generalization of the function diag. Called with a single input argument, the non-
zero diagonals c of A are extracted. With two arguments the diagonals to extract are
given by the vector c.
The other two forms of spdiags modify the input matrix by replacing the diagonals.
They use the columns of v to replace the columns represented by the vector c. If the
sparse matrix a is defined then the diagonals of this matrix are replaced. Otherwise
a matrix of m by n is created with the diagonals given by v.
Negative values of c represent diagonals below the main diagonal, and positive values
of c diagonals above the main diagonal.
For example

spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
⇒ 5 10 0 0

1 6 11 0
0 2 7 12
0 0 3 8
0 0 0 4

[Function File]y = speye (m )
[Function File]y = speye (m, n )
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[Function File]y = speye (sz )
Returns a sparse identity matrix. This is significantly more efficient than sparse
(eye (m)) as the full matrix is not constructed.

Called with a single argument a square matrix of size m by m is created. Otherwise
a matrix of m by n is created. If called with a single vector argument, this argument
is taken to be the size of the matrix to create.

[Function File]y = spfun (f,x )
Compute f(x) for the non-zero values of x. This results in a sparse matrix with the
same structure as x. The function f can be passed as a string, a function handle or
an inline function.

[Mapping Function]spmax (x, y, dim )
[Mapping Function][w, iw] = spmax (x )

This function has been deprecated. Use max instead.

[Mapping Function]spmin (x, y, dim )
[Mapping Function][w, iw] = spmin (x )

This function has been deprecated. Use min instead.

[Function File]y = spones (x )
Replace the non-zero entries of x with ones. This creates a sparse matrix with the
same structure as x.

[Function File]sprand (m, n, d )
[Function File]sprand (s )

Generate a random sparse matrix. The size of the matrix will be m by n, with a
density of values given by d. d should be between 0 and 1. Values will be uniformly
distributed between 0 and 1.

Note: sometimes the actual density may be a bit smaller than d. This is unlikely to
happen for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero.

See also: [sprandn], page 346.

[Function File]sprandn (m, n, d )
[Function File]sprandn (s )

Generate a random sparse matrix. The size of the matrix will be m by n, with a
density of values given by d. d should be between 0 and 1. Values will be normally
distributed with mean of zero and variance 1.

Note: sometimes the actual density may be a bit smaller than d. This is unlikely to
happen for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero.

See also: [sprand], page 346.
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[Function File]sprandsym (n, d )
[Function File]sprandsym (s )

Generate a symmetric random sparse matrix. The size of the matrix will be n by n,
with a density of values given by d. d should be between 0 and 1. Values will be
normally distributed with mean of zero and variance 1.

Note: sometimes the actual density may be a bit smaller than d. This is unlikely to
happen for large really sparse matrices.

If called with a single matrix argument, a random sparse matrix is generated wherever
the matrix S is non-zero in its lower triangular part.

See also: [sprand], page 346, [sprandn], page 346.

The recommended way for the user to create a sparse matrix, is to create two vectors
containing the row and column index of the data and a third vector of the same size
containing the data to be stored. For example

ri = ci = d = [];
for j = 1:c
ri = [ri; randperm(r)(1:n)’];
ci = [ci; j*ones(n,1)];
d = [d; rand(n,1)];

endfor
s = sparse (ri, ci, d, r, c);

creates an r-by-c sparse matrix with a random distribution of n (<r) elements per column.
The elements of the vectors do not need to be sorted in any particular order as Octave will
sort them prior to storing the data. However, pre-sorting the data will make the creation
of the sparse matrix faster.

The function spconvert takes a three or four column real matrix. The first two columns
represent the row and column index respectively and the third and four columns, the real
and imaginary parts of the sparse matrix. The matrix can contain zero elements and the
elements can be sorted in any order. Adding zero elements is a convenient way to define
the size of the sparse matrix. For example

s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]’)
⇒ Compressed Column Sparse (rows=4, cols=4, nnz=3)

(1 , 1) -> 1
(2 , 3) -> 2
(3 , 4) -> 3

An example of creating and filling a matrix might be

k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
idx = randperm (r);
s (:, j) = [zeros(r - k, 1); ...

rand(k, 1)] (idx);
endfor
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It should be noted, that due to the way that the Octave assignment functions are written
that the assignment will reallocate the memory used by the sparse matrix at each iteration
of the above loop. Therefore the spalloc function ignores the nz argument and does not
preassign the memory for the matrix. Therefore, it is vitally important that code using
to above structure should be vectorized as much as possible to minimize the number of
assignments and reduce the number of memory allocations.

[Loadable Function]FM = full (SM )
returns a full storage matrix from a sparse, diagonal, permutation matrix or a range.

See also: [sparse], page 348.

[Function File]s = spalloc (r, c, nz )
Returns an empty sparse matrix of size r-by-c. As Octave resizes sparse matrices
at the first opportunity, so that no additional space is needed, the argument nz is
ignored. This function is provided only for compatibility reasons.
It should be noted that this means that code like

k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c

idx = randperm (r);
s (:, j) = [zeros(r - k, 1); rand(k, 1)] (idx);

endfor

will reallocate memory at each step. It is therefore vitally important that code like
this is vectorized as much as possible.

See also: [sparse], page 348, [nzmax], page 349.

[Loadable Function]s = sparse (a )
[Loadable Function]s = sparse (i, j, sv, m, n, nzmax )
[Loadable Function]s = sparse (i, j, sv )
[Loadable Function]s = sparse (i, j, s, m, n, "unique")
[Loadable Function]s = sparse (m, n )

Create a sparse matrix from the full matrix or row, column, value triplets. If a is a
full matrix, convert it to a sparse matrix representation, removing all zero values in
the process.
Given the integer index vectors i and j, a 1-by-nnz vector of real of complex values
sv, overall dimensions m and n of the sparse matrix. The argument nzmax is ignored
but accepted for compatibility with matlab. If m or n are not specified their values
are derived from the maximum index in the vectors i and j as given by m = max (i),
n = max (j).
Note: if multiple values are specified with the same i, j indices, the corresponding
values in s will be added.
The following are all equivalent:

s = sparse (i, j, s, m, n)
s = sparse (i, j, s, m, n, "summation")
s = sparse (i, j, s, m, n, "sum")



Chapter 21: Sparse Matrices 349

Given the option "unique". if more than two values are specified for the same i, j
indices, the last specified value will be used.

sparse(m, n) is equivalent to sparse ([], [], [], m, n, 0)

If any of sv, i or j are scalars, they are expanded to have a common size.

See also: [full], page 348.

[Function File]x = spconvert (m )
This function converts for a simple sparse matrix format easily produced by other
programs into Octave’s internal sparse format. The input x is either a 3 or 4 column
real matrix, containing the row, column, real and imaginary parts of the elements of
the sparse matrix. An element with a zero real and imaginary part can be used to
force a particular matrix size.

The above problem of memory reallocation can be avoided in oct-files. However, the
construction of a sparse matrix from an oct-file is more complex than can be discussed here,
and you are referred to chapter Appendix A [Dynamically Linked Functions], page 557, to
have a full description of the techniques involved.

21.1.3 Finding out Information about Sparse Matrices

There are a number of functions that allow information concerning sparse matrices to be
obtained. The most basic of these is issparse that identifies whether a particular Octave
object is in fact a sparse matrix.

Another very basic function is nnz that returns the number of non-zero entries there are
in a sparse matrix, while the function nzmax returns the amount of storage allocated to the
sparse matrix. Note that Octave tends to crop unused memory at the first opportunity for
sparse objects. There are some cases of user created sparse objects where the value returned
by nzmax will not be the same as nnz, but in general they will give the same result. The
function spstats returns some basic statistics on the columns of a sparse matrix including
the number of elements, the mean and the variance of each column.

[Loadable Function]issparse (expr )
Return 1 if the value of the expression expr is a sparse matrix.

[Built-in Function]scalar = nnz (a )
Returns the number of non zero elements in a.

See also: [sparse], page 348.

[Function File]nonzeros (s )
Returns a vector of the non-zero values of the sparse matrix s.

[Built-in Function]scalar = nzmax (SM )
Return the amount of storage allocated to the sparse matrix SM. Note that Octave
tends to crop unused memory at the first opportunity for sparse objects. There are
some cases of user created sparse objects where the value returned by nzmax will not
be the same as nnz, but in general they will give the same result.

See also: [sparse], page 348, [spalloc], page 348.
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[Function File][count, mean, var] = spstats (s )
[Function File][count, mean, var] = spstats (s, j )

Return the stats for the non-zero elements of the sparse matrix s. count is the number
of non-zeros in each column, mean is the mean of the non-zeros in each column, and
var is the variance of the non-zeros in each column.

Called with two input arguments, if s is the data and j is the bin number for the
data, compute the stats for each bin. In this case, bins can contain data values of
zero, whereas with spstats (s) the zeros may disappear.

When solving linear equations involving sparse matrices Octave determines the means
to solve the equation based on the type of the matrix as discussed in Section 21.2 [Sparse
Linear Algebra], page 363. Octave probes the matrix type when the div (/) or ldiv (\)
operator is first used with the matrix and then caches the type. However the matrix type
function can be used to determine the type of the sparse matrix prior to use of the div or
ldiv operators. For example

a = tril (sprandn(1024, 1024, 0.02), -1) ...
+ speye(1024);

matrix_type (a);
ans = Lower

show that Octave correctly determines the matrix type for lower triangular matrices.
matrix type can also be used to force the type of a matrix to be a particular type. For
example

a = matrix_type (tril (sprandn (1024, ...
1024, 0.02), -1) + speye(1024), ’Lower’);

This allows the cost of determining the matrix type to be avoided. However, incorrectly
defining the matrix type will result in incorrect results from solutions of linear equations,
and so it is entirely the responsibility of the user to correctly identify the matrix type

There are several graphical means of finding out information about sparse matrices.
The first is the spy command, which displays the structure of the non-zero elements of
the matrix. See Figure 21.1, for an example of the use of spy. More advanced graphical
information can be obtained with the treeplot, etreeplot and gplot commands.
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Figure 21.1: Structure of simple sparse matrix.

One use of sparse matrices is in graph theory, where the interconnections between nodes
are represented as an adjacency matrix. That is, if the i-th node in a graph is connected
to the j-th node. Then the ij-th node (and in the case of undirected graphs the ji-th node)
of the sparse adjacency matrix is non-zero. If each node is then associated with a set of
coordinates, then the gplot command can be used to graphically display the interconnections
between nodes.

As a trivial example of the use of gplot, consider the example

A = sparse([2,6,1,3,2,4,3,5,4,6,1,5],
[1,1,2,2,3,3,4,4,5,5,6,6],1,6,6);

xy = [0,4,8,6,4,2;5,0,5,7,5,7]’;
gplot(A,xy)

which creates an adjacency matrix A where node 1 is connected to nodes 2 and 6, node
2 with nodes 1 and 3, etc. The coordinates of the nodes are given in the n-by-2 matrix xy.
See Figure 21.2.
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Figure 21.2: Simple use of the gplot command.

The dependencies between the nodes of a Cholesky factorization can be calculated
in linear time without explicitly needing to calculate the Cholesky factorization by the
etree command. This command returns the elimination tree of the matrix and can
be displayed graphically by the command treeplot(etree(A)) if A is symmetric or
treeplot(etree(A+A’)) otherwise.

[Function File]spy (x )
[Function File]spy (. . . , markersize )
[Function File]spy (. . . , line_spec )

Plot the sparsity pattern of the sparse matrix x. If the argument markersize is given
as an scalar value, it is used to determine the point size in the plot. If the string
line spec is given it is passed to plot and determines the appearance of the plot.

See also: [plot], page 205.

[Loadable Function]p = etree (s )
[Loadable Function]p = etree (s, typ )
[Loadable Function][p, q] = etree (s, typ )

Returns the elimination tree for the matrix s. By default s is assumed to be symmetric
and the symmetric elimination tree is returned. The argument typ controls whether
a symmetric or column elimination tree is returned. Valid values of typ are ’sym’ or
’col’, for symmetric or column elimination tree respectively
Called with a second argument, etree also returns the postorder permutations on the
tree.

[Function File]etreeplot (tree )
[Function File]etreeplot (tree, node_style, edge_style )

Plot the elimination tree of the matrix s or s+s’ if s in non-symmetric. The optional
parameters line style and edge style define the output style.
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See also: [treeplot], page 353, [gplot], page 353.

[Function File]gplot (a, xy )
[Function File]gplot (a, xy, line_style )
[Function File][x, y] = gplot (a, xy )

Plot a graph defined by A and xy in the graph theory sense. A is the adjacency matrix
of the array to be plotted and xy is an n-by-2 matrix containing the coordinates of
the nodes of the graph.
The optional parameter line style defines the output style for the plot. Called with
no output arguments the graph is plotted directly. Otherwise, return the coordinates
of the plot in x and y.

See also: [treeplot], page 353, [etreeplot], page 352, [spy], page 352.

[Function File]treeplot (tree )
[Function File]treeplot (tree, line_style, edge_style )

Produces a graph of tree or forest. The first argument is vector of predecessors,
optional parameters line style and edge style define the output style. The complexity
of the algorithm is O(n) in terms of is time and memory requirements.

See also: [etreeplot], page 352, [gplot], page 353.

[Function File]treelayout (Tree )
[Function File]treelayout (Tree, permutation )

treelayout lays out a tree or a forest. The first argument Tree is a vector of prede-
cessors, optional parameter permutation is an optional postorder permutation. The
complexity of the algorithm is O(n) in terms of time and memory requirements.

See also: [etreeplot], page 352, [gplot], page 353, [treeplot], page 353.

21.1.4 Basic Operators and Functions on Sparse Matrices

21.1.4.1 Sparse Functions

An important consideration in the use of the sparse functions of Octave is that many of the
internal functions of Octave, such as diag, cannot accept sparse matrices as an input. The
sparse implementation in Octave therefore uses the dispatch function to overload the normal
Octave functions with equivalent functions that work with sparse matrices. However, at
any time the sparse matrix specific version of the function can be used by explicitly calling
its function name.

The table below lists all of the sparse functions of Octave. Note that the names of the
specific sparse forms of the functions are typically the same as the general versions with a
sp prefix. In the table below, and the rest of this article the specific sparse versions of the
functions are used.

Generate sparse matrices:
spalloc, spdiags, speye, sprand, sprandn, sprandsym

Sparse matrix conversion:
full, sparse, spconvert

Manipulate sparse matrices
issparse, nnz, nonzeros, nzmax, spfun, spones, spy
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Graph Theory:
etree, etreeplot, gplot, treeplot

Sparse matrix reordering:
amd, ccolamd, colamd, colperm, csymamd, dmperm, symamd, randperm, sym-
rcm

Linear algebra:
condest, eigs, matrix type, normest, sprank, spaugment, svds

Iterative techniques:
luinc, pcg, pcr

Miscellaneous:
spparms, symbfact, spstats

In addition all of the standard Octave mapper functions (i.e., basic math functions that
take a single argument) such as abs, etc. can accept sparse matrices. The reader is referred
to the documentation supplied with these functions within Octave itself for further details.

21.1.4.2 The Return Types of Operators and Functions

The two basic reasons to use sparse matrices are to reduce the memory usage and to not have
to do calculations on zero elements. The two are closely related in that the computation
time on a sparse matrix operator or function is roughly linear with the number of non-zero
elements.

Therefore, there is a certain density of non-zero elements of a matrix where it no longer
makes sense to store it as a sparse matrix, but rather as a full matrix. For this reason
operators and functions that have a high probability of returning a full matrix will always
return one. For example adding a scalar constant to a sparse matrix will almost always
make it a full matrix, and so the example

speye(3) + 0
⇒ 1 0 0
0 1 0
0 0 1

returns a full matrix as can be seen.
Additionally, if sparse_auto_mutate is true, all sparse functions test the amount of

memory occupied by the sparse matrix to see if the amount of storage used is larger than
the amount used by the full equivalent. Therefore speye (2) * 1 will return a full matrix
as the memory used is smaller for the full version than the sparse version.

As all of the mixed operators and functions between full and sparse matrices exist, in
general this does not cause any problems. However, one area where it does cause a problem
is where a sparse matrix is promoted to a full matrix, where subsequent operations would
resparsify the matrix. Such cases are rare, but can be artificially created, for example
(fliplr(speye(3)) + speye(3)) - speye(3) gives a full matrix when it should give a
sparse one. In general, where such cases occur, they impose only a small memory penalty.

There is however one known case where this behavior of Octave’s sparse matrices will
cause a problem. That is in the handling of the diag function. Whether diag returns a
sparse or full matrix depending on the type of its input arguments. So
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a = diag (sparse([1,2,3]), -1);

should return a sparse matrix. To ensure this actually happens, the sparse function, and
other functions based on it like speye, always returns a sparse matrix, even if the memory
used will be larger than its full representation.

[Built-in Function]val = sparse_auto_mutate ()
[Built-in Function]old_val = sparse_auto_mutate (new_val )

Query or set the internal variable that controls whether Octave will automatically
mutate sparse matrices to real matrices to save memory. For example,

s = speye(3);
sparse_auto_mutate (false)
s (:, 1) = 1;
typeinfo (s)
⇒ sparse matrix
sparse_auto_mutate (true)
s (1, :) = 1;
typeinfo (s)
⇒ matrix

Note that the sparse_auto_mutate option is incompatible with matlab, and so it is
off by default.

21.1.4.3 Mathematical Considerations

The attempt has been made to make sparse matrices behave in exactly the same manner
as there full counterparts. However, there are certain differences and especially differences
with other products sparse implementations.

Firstly, the "./" and ".^" operators must be used with care. Consider what the examples

s = speye (4);
a1 = s .^ 2;
a2 = s .^ s;
a3 = s .^ -2;
a4 = s ./ 2;
a5 = 2 ./ s;
a6 = s ./ s;

will give. The first example of s raised to the power of 2 causes no problems. However
s raised element-wise to itself involves a large number of terms 0 .^ 0 which is 1. There s

.^ s is a full matrix.

Likewise s .^ -2 involves terms like 0 .^ -2 which is infinity, and so s .^ -2 is equally
a full matrix.

For the "./" operator s ./ 2 has no problems, but 2 ./ s involves a large number of
infinity terms as well and is equally a full matrix. The case of s ./ s involves terms like
0 ./ 0 which is a NaN and so this is equally a full matrix with the zero elements of s filled
with NaN values.

The above behavior is consistent with full matrices, but is not consistent with sparse
implementations in other products.
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A particular problem of sparse matrices comes about due to the fact that as the zeros
are not stored, the sign-bit of these zeros is equally not stored. In certain cases the sign-bit
of zero is important. For example

a = 0 ./ [-1, 1; 1, -1];
b = 1 ./ a
⇒ -Inf Inf

Inf -Inf
c = 1 ./ sparse (a)
⇒ Inf Inf

Inf Inf

To correct this behavior would mean that zero elements with a negative sign-bit would
need to be stored in the matrix to ensure that their sign-bit was respected. This is not done
at this time, for reasons of efficiency, and so the user is warned that calculations where the
sign-bit of zero is important must not be done using sparse matrices.

In general any function or operator used on a sparse matrix will result in a sparse
matrix with the same or a larger number of non-zero elements than the original matrix.
This is particularly true for the important case of sparse matrix factorizations. The usual
way to address this is to reorder the matrix, such that its factorization is sparser than
the factorization of the original matrix. That is the factorization of L * U = P * S * Q has
sparser terms L and U than the equivalent factorization L * U = S.

Several functions are available to reorder depending on the type of the matrix to be
factorized. If the matrix is symmetric positive-definite, then symamd or csymamd should be
used. Otherwise amd, colamd or ccolamd should be used. For completeness the reordering
functions colperm and randperm are also available.

See Figure 21.3, for an example of the structure of a simple positive definite matrix.
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Figure 21.3: Structure of simple sparse matrix.
The standard Cholesky factorization of this matrix can be obtained by the same com-

mand that would be used for a full matrix. This can be visualized with the command r
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= chol(A); spy(r);. See Figure 21.4. The original matrix had 598 non-zero terms, while
this Cholesky factorization has 10200, with only half of the symmetric matrix being stored.
This is a significant level of fill in, and although not an issue for such a small test case, can
represents a large overhead in working with other sparse matrices.

The appropriate sparsity preserving permutation of the original matrix is given by
symamd and the factorization using this reordering can be visualized using the command
q = symamd(A); r = chol(A(q,q)); spy(r). This gives 399 non-zero terms which is a sig-
nificant improvement.

The Cholesky factorization itself can be used to determine the appropriate sparsity
preserving reordering of the matrix during the factorization, In that case this might be
obtained with three return arguments as r[r, p, q] = chol(A); spy(r).
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Figure 21.4: Structure of the un-permuted Cholesky factorization of the above matrix.
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Figure 21.5: Structure of the permuted Cholesky factorization of the above matrix.

In the case of an asymmetric matrix, the appropriate sparsity preserving permutation is
colamd and the factorization using this reordering can be visualized using the command q
= colamd(A); [l, u, p] = lu(A(:,q)); spy(l+u).

Finally, Octave implicitly reorders the matrix when using the div (/) and ldiv (\) op-
erators, and so no the user does not need to explicitly reorder the matrix to maximize
performance.

[Loadable Function]p = amd (s )
[Loadable Function]p = amd (s, opts )

Returns the approximate minimum degree permutation of a matrix. This permuta-
tion such that the Cholesky factorization of s (p, p) tends to be sparser than the
Cholesky factorization of s itself. amd is typically faster than symamd but serves a
similar purpose.
The optional parameter opts is a structure that controls the behavior of amd. The
fields of these structure are

opts.dense Determines what amd considers to be a dense row or column of the input
matrix. Rows or columns with more than max(16, (dense * sqrt (n)
entries, where n is the order of the matrix s, are ignored by amd during
the calculation of the permutation The value of dense must be a positive
scalar and its default value is 10.0

opts.aggressive
If this value is a non zero scalar, then amd performs aggressive absorption.
The default is not to perform aggressive absorption.

The author of the code itself is Timothy A. Davis (davis@cise.ufl.edu), University of
Florida (see http://www.cise.ufl.edu/research/sparse/amd).

See also: [symamd], page 362, [colamd], page 360.

http://www.cise.ufl.edu/research/sparse/amd
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[Loadable Function]p = ccolamd (s )
[Loadable Function]p = ccolamd (s, knobs )
[Loadable Function]p = ccolamd (s, knobs, cmember )
[Loadable Function][p, stats] = ccolamd (. . . )

Constrained column approximate minimum degree permutation. p = ccolamd (s)
returns the column approximate minimum degree permutation vector for the sparse
matrix s. For a non-symmetric matrix s, s (:, p) tends to have sparser LU factors
than s. chol (s (:, p)’ * s (:, p)) also tends to be sparser than chol (s’ * s). p
= ccolamd (s, 1) optimizes the ordering for lu (s (:, p)). The ordering is followed
by a column elimination tree post-ordering.
knobs is an optional one- to five-element input vector, with a default value of [0 10
10 1 0] if not present or empty. Entries not present are set to their defaults.

knobs(1) if nonzero, the ordering is optimized for lu (S (:, p)). It will be a poor
ordering for chol (s (:, p)’ * s (:, p)). This is the most important
knob for ccolamd.

knob(2) if s is m-by-n, rows with more than max (16, knobs (2) * sqrt (n))
entries are ignored.

knob(3) columns with more than max (16, knobs (3) * sqrt (min (m, n))) en-
tries are ignored and ordered last in the output permutation (subject to
the cmember constraints).

knob(4) if nonzero, aggressive absorption is performed.

knob(5) if nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the column
ordering. If cmember (j) = c , then column j is in constraint set c (c must be in the
range 1 to n). In the output permutation p, all columns in set 1 appear first, followed
by all columns in set 2, and so on. cmember = ones(1,n) if not present or empty.
ccolamd (s, [], 1 : n) returns 1 : n

p = ccolamd (s) is about the same as p = colamd (s). knobs and its default values
differ. colamd always does aggressive absorption, and it finds an ordering suitable
for both lu (s (:, p)) and chol (S (:, p)’ * s (:, p)); it cannot optimize its
ordering for lu (s (:, p)) to the extent that ccolamd (s, 1) can.
stats is an optional 20-element output vector that provides data about the ordering
and the validity of the input matrix s. Ordering statistics are in stats (1 : 3). stats
(1) and stats (2) are the number of dense or empty rows and columns ignored by
CCOLAMD and stats (3) is the number of garbage collections performed on the
internal data structure used by CCOLAMD (roughly of size 2.2 * nnz (s) + 4 * m

+ 7 * n integers).
stats (4 : 7) provide information if CCOLAMD was able to continue. The matrix
is OK if stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index
that is unsorted or contains duplicate entries, or zero if no such column exists. stats
(6) is the last seen duplicate or out-of-order row index in the column index given by
stats (5), or zero if no such row index exists. stats (7) is the number of duplicate
or out-of-order row indices. stats (8 : 20) is always zero in the current version of
CCOLAMD (reserved for future use).
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The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S.
Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the Na-
tional Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant
from Sandia National Lab. See http://www.cise.ufl.edu/research/sparse for
ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

See also: [colamd], page 360, [csymamd], page 361.

[Loadable Function]p = colamd (s )
[Loadable Function]p = colamd (s, knobs )
[Loadable Function][p, stats] = colamd (s )
[Loadable Function][p, stats] = colamd (s, knobs )

Column approximate minimum degree permutation. p = colamd (s) returns the col-
umn approximate minimum degree permutation vector for the sparse matrix s. For
a non-symmetric matrix s, s (:,p) tends to have sparser LU factors than s. The
Cholesky factorization of s (:,p)’ * s (:,p) also tends to be sparser than that of
s’ * s .

knobs is an optional one- to three-element input vector. If s is m-by-n, then rows
with more than max(16,knobs(1)*sqrt(n)) entries are ignored. Columns with more
than max(16,knobs(2)*sqrt(min(m,n))) entries are removed prior to ordering, and
ordered last in the output permutation p. Only completely dense rows or columns are
removed if knobs (1) and knobs (2) are < 0, respectively. If knobs (3) is nonzero,
stats and knobs are printed. The default is knobs = [10 10 0]. Note that knobs
differs from earlier versions of colamd

stats is an optional 20-element output vector that provides data about the ordering
and the validity of the input matrix s. Ordering statistics are in stats (1:3). stats
(1) and stats (2) are the number of dense or empty rows and columns ignored
by COLAMD and stats (3) is the number of garbage collections performed on the
internal data structure used by COLAMD (roughly of size 2.2 * nnz(s) + 4 * m + 7
* n integers).

Octave built-in functions are intended to generate valid sparse matrices, with no
duplicate entries, with ascending row indices of the nonzeros in each column, with a
non-negative number of entries in each column (!) and so on. If a matrix is invalid,
then COLAMD may or may not be able to continue. If there are duplicate entries
(a row index appears two or more times in the same column) or if the row indices in
a column are out of order, then COLAMD can correct these errors by ignoring the
duplicate entries and sorting each column of its internal copy of the matrix s (the
input matrix s is not repaired, however). If a matrix is invalid in other ways then
COLAMD cannot continue, an error message is printed, and no output arguments (p
or stats) are returned. COLAMD is thus a simple way to check a sparse matrix to
see if it’s valid.

stats (4:7) provide information if COLAMD was able to continue. The matrix is
OK if stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index
that is unsorted or contains duplicate entries, or zero if no such column exists. stats
(6) is the last seen duplicate or out-of-order row index in the column index given by
stats (5), or zero if no such row index exists. stats (7) is the number of duplicate

http://www.cise.ufl.edu/research/sparse
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or out-of-order row indices. stats (8:20) is always zero in the current version of
COLAMD (reserved for future use).
The ordering is followed by a column elimination tree post-ordering.
The authors of the code itself are Stefan I. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National
Laboratory. (see http://www.cise.ufl.edu/research/sparse/colamd)

See also: [colperm], page 361, [symamd], page 362.

[Function File]p = colperm (s )
Returns the column permutations such that the columns of s (:, p) are ordered in
terms of increase number of non-zero elements. If s is symmetric, then p is chosen
such that s (p, p) orders the rows and columns with increasing number of non zeros
elements.

[Loadable Function]p = csymamd (s )
[Loadable Function]p = csymamd (s, knobs )
[Loadable Function]p = csymamd (s, knobs, cmember )
[Loadable Function][p, stats] = csymamd (. . . )

For a symmetric positive definite matrix s, returns the permutation vector p such that
s(p,p) tends to have a sparser Cholesky factor than s. Sometimes csymamd works
well for symmetric indefinite matrices too. The matrix s is assumed to be symmetric;
only the strictly lower triangular part is referenced. s must be square. The ordering
is followed by an elimination tree post-ordering.
knobs is an optional one- to three-element input vector, with a default value of [10
1 0] if present or empty. Entries not present are set to their defaults.

knobs(1) If s is n-by-n, then rows and columns with more than
max(16,knobs(1)*sqrt(n)) entries are ignored, and ordered
last in the output permutation (subject to the cmember constraints).

knobs(2) If nonzero, aggressive absorption is performed.

knobs(3) If nonzero, statistics and knobs are printed.

cmember is an optional vector of length n. It defines the constraints on the ordering.
If cmember(j) = s , then row/column j is in constraint set c (c must be in the range
1 to n). In the output permutation p, rows/columns in set 1 appear first, followed by
all rows/columns in set 2, and so on. cmember = ones(1,n) if not present or empty.
csymamd(s,[],1:n) returns 1:n.
p = csymamd(s) is about the same as p = symamd(s). knobs and its default values
differ.
stats (4:7) provide information if CCOLAMD was able to continue. The matrix
is OK if stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index
that is unsorted or contains duplicate entries, or zero if no such column exists. stats
(6) is the last seen duplicate or out-of-order row index in the column index given by
stats (5), or zero if no such row index exists. stats (7) is the number of duplicate
or out-of-order row indices. stats (8:20) is always zero in the current version of
CCOLAMD (reserved for future use).

http://www.cise.ufl.edu/research/sparse/colamd
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The authors of the code itself are S. Larimore, T. Davis (Uni of Florida) and S.
Rajamanickam in collaboration with J. Bilbert and E. Ng. Supported by the Na-
tional Science Foundation (DMS-9504974, DMS-9803599, CCR-0203270), and a grant
from Sandia National Lab. See http://www.cise.ufl.edu/research/sparse for
ccolamd, csymamd, amd, colamd, symamd, and other related orderings.

See also: [symamd], page 362, [ccolamd], page 359.

[Loadable Function]p = dmperm (s )
[Loadable Function][p, q, r, s] = dmperm (s )

Perform a Dulmage-Mendelsohn permutation on the sparse matrix s. With a single
output argument dmperm performs the row permutations p such that s (p,:) has
no zero elements on the diagonal.
Called with two or more output arguments, returns the row and column permutations,
such that s (p, q) is in block triangular form. The values of r and s define the
boundaries of the blocks. If s is square then r == s .
The method used is described in: A. Pothen & C.-J. Fan. Computing the block
triangular form of a sparse matrix. ACM Trans. Math. Software, 16(4):303-324,
1990.

See also: [colamd], page 360, [ccolamd], page 359.

[Loadable Function]p = symamd (s )
[Loadable Function]p = symamd (s, knobs )
[Loadable Function][p, stats] = symamd (s )
[Loadable Function][p, stats] = symamd (s, knobs )

For a symmetric positive definite matrix s, returns the permutation vector p such
that s (p, p) tends to have a sparser Cholesky factor than s. Sometimes SYMAMD
works well for symmetric indefinite matrices too. The matrix s is assumed to be
symmetric; only the strictly lower triangular part is referenced. s must be square.
knobs is an optional one- to two-element input vector. If s is n-by-n, then rows and
columns with more than max(16,knobs(1)*sqrt(n)) entries are removed prior to
ordering, and ordered last in the output permutation p. No rows/columns are removed
if knobs(1) < 0. If knobs (2) is nonzero, stats and knobs are printed. The default
is knobs = [10 0]. Note that knobs differs from earlier versions of symamd.
stats is an optional 20-element output vector that provides data about the ordering
and the validity of the input matrix s. Ordering statistics are in stats (1:3). stats
(1) = stats (2) is the number of dense or empty rows and columns ignored by
SYMAMD and stats (3) is the number of garbage collections performed on the
internal data structure used by SYMAMD (roughly of size 8.4 * nnz (tril (s, -
1)) + 9 * n integers).
Octave built-in functions are intended to generate valid sparse matrices, with no
duplicate entries, with ascending row indices of the nonzeros in each column, with a
non-negative number of entries in each column (!) and so on. If a matrix is invalid,
then SYMAMD may or may not be able to continue. If there are duplicate entries
(a row index appears two or more times in the same column) or if the row indices in
a column are out of order, then SYMAMD can correct these errors by ignoring the
duplicate entries and sorting each column of its internal copy of the matrix S (the

http://www.cise.ufl.edu/research/sparse
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input matrix S is not repaired, however). If a matrix is invalid in other ways then
SYMAMD cannot continue, an error message is printed, and no output arguments (p
or stats) are returned. SYMAMD is thus a simple way to check a sparse matrix to
see if it’s valid.

stats (4:7) provide information if SYMAMD was able to continue. The matrix is
OK if stats (4) is zero, or 1 if invalid. stats (5) is the rightmost column index
that is unsorted or contains duplicate entries, or zero if no such column exists. stats
(6) is the last seen duplicate or out-of-order row index in the column index given by
stats (5), or zero if no such row index exists. stats (7) is the number of duplicate
or out-of-order row indices. stats (8:20) is always zero in the current version of
SYMAMD (reserved for future use).

The ordering is followed by a column elimination tree post-ordering.

The authors of the code itself are Stefan I. Larimore and Timothy A. Davis
(davis@cise.ufl.edu), University of Florida. The algorithm was developed in
collaboration with John Gilbert, Xerox PARC, and Esmond Ng, Oak Ridge National
Laboratory. (see http://www.cise.ufl.edu/research/sparse/colamd)

See also: [colperm], page 361, [colamd], page 360.

[Loadable Function]p = symrcm (S )
Symmetric reverse Cuthill-McKee permutation of S. Return a permutation vector p
such that S (p, p) tends to have its diagonal elements closer to the diagonal than
S. This is a good preordering for LU or Cholesky factorization of matrices that come
from ’long, skinny’ problems. It works for both symmetric and asymmetric S.

The algorithm represents a heuristic approach to the NP-complete bandwidth mini-
mization problem. The implementation is based in the descriptions found in

E. Cuthill, J. McKee: Reducing the Bandwidth of Sparse Symmetric Matrices. Pro-
ceedings of the 24th ACM National Conference, 157–172 1969, Brandon Press, New
Jersey.

Alan George, Joseph W. H. Liu: Computer Solution of Large Sparse Positive Definite
Systems, Prentice Hall Series in Computational Mathematics, ISBN 0-13-165274-5,
1981.

See also: [colperm], page 361, [colamd], page 360, [symamd], page 362.

21.2 Linear Algebra on Sparse Matrices

Octave includes a polymorphic solver for sparse matrices, where the exact solver used to
factorize the matrix, depends on the properties of the sparse matrix itself. Generally, the
cost of determining the matrix type is small relative to the cost of factorizing the matrix
itself, but in any case the matrix type is cached once it is calculated, so that it is not
re-determined each time it is used in a linear equation.

The selection tree for how the linear equation is solve is

1. If the matrix is diagonal, solve directly and goto 8
2. If the matrix is a permuted diagonal, solve directly taking into account the permuta-

tions. Goto 8

http://www.cise.ufl.edu/research/sparse/colamd
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3. If the matrix is square, banded and if the band density is less than that given by
spparms ("bandden") continue, else goto 4.
a. If the matrix is tridiagonal and the right-hand side is not sparse continue, else goto

3b.
1. If the matrix is hermitian, with a positive real diagonal, attempt Cholesky

factorization using lapack xPTSV.
2. If the above failed or the matrix is not hermitian with a positive real diagonal

use Gaussian elimination with pivoting using lapack xGTSV, and goto 8.
b. If the matrix is hermitian with a positive real diagonal, attempt Cholesky factor-

ization using lapack xPBTRF.
c. if the above failed or the matrix is not hermitian with a positive real diagonal use

Gaussian elimination with pivoting using lapack xGBTRF, and goto 8.
4. If the matrix is upper or lower triangular perform a sparse forward or backward sub-

stitution, and goto 8
5. If the matrix is a upper triangular matrix with column permutations or lower triangular

matrix with row permutations, perform a sparse forward or backward substitution, and
goto 8

6. If the matrix is square, hermitian with a real positive diagonal, attempt sparse Cholesky
factorization using CHOLMOD.

7. If the sparse Cholesky factorization failed or the matrix is not hermitian with a real
positive diagonal, and the matrix is square, factorize using UMFPACK.

8. If the matrix is not square, or any of the previous solvers flags a singular or near
singular matrix, find a minimum norm solution using CXSPARSE2.

The band density is defined as the number of non-zero values in the matrix divided by
the number of non-zero values in the matrix. The banded matrix solvers can be entirely
disabled by using spparms to set bandden to 1 (i.e., spparms ("bandden", 1)).

The QR solver factorizes the problem with a Dulmage-Mendelsohn, to separate the
problem into blocks that can be treated as over-determined, multiple well determined blocks,
and a final over-determined block. For matrices with blocks of strongly connected nodes
this is a big win as LU decomposition can be used for many blocks. It also significantly
improves the chance of finding a solution to over-determined problems rather than just
returning a vector of NaN ’s.

All of the solvers above, can calculate an estimate of the condition number. This can
be used to detect numerical stability problems in the solution and force a minimum norm
solution to be used. However, for narrow banded, triangular or diagonal matrices, the cost
of calculating the condition number is significant, and can in fact exceed the cost of factoring
the matrix. Therefore the condition number is not calculated in these cases, and Octave
relies on simpler techniques to detect singular matrices or the underlying lapack code in
the case of banded matrices.

The user can force the type of the matrix with the matrix_type function. This overcomes
the cost of discovering the type of the matrix. However, it should be noted that identifying

2 The CHOLMOD, UMFPACK and CXSPARSE packages were written by Tim Davis and are available
at http://www.cise.ufl.edu/research/sparse/
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the type of the matrix incorrectly will lead to unpredictable results, and so matrix_type
should be used with care.

[Function File][n, c] = normest (a, tol )
Estimate the 2-norm of the matrix a using a power series analysis. This is typically
used for large matrices, where the cost of calculating the norm (a) is prohibitive and
an approximation to the 2-norm is acceptable.
tol is the tolerance to which the 2-norm is calculated. By default tol is 1e-6. c returns
the number of iterations needed for normest to converge.

[Function File][est, v, w, iter] = onenormest (a, t )
[Function File][est, v, w, iter] = onenormest (apply, apply_t, n, t )

Apply Higham and Tisseur’s randomized block 1-norm estimator to matrix a using t
test vectors. If t exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the norm of inv (A) given an
LU factorization, onenormest applies A and its conjugate transpose through a pair
of functions apply and apply t, respectively, to a dense matrix of size n by t. The
implicit version requires an explicit dimension n.
Returns the norm estimate est, two vectors v and w related by norm (w, 1) = est *
norm (v, 1), and the number of iterations iter. The number of iterations is limited
to 10 and is at least 2.
References:
• Nicholas J. Higham and Franoise Tisseur, "A Block Algorithm for Matrix 1-Norm

Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no
4, pp 1185-1201. http://dx.doi.org/10.1137/S0895479899356080

• Nicholas J. Higham and Franoise Tisseur, "A Block Algorithm for Matrix
1-Norm Estimation, with an Application to 1-Norm Pseudospectra."
http://citeseer.ist.psu.edu/223007.html

See also: [condest], page 365, [norm], page 318, [cond], page 316.

[Function File][est, v] = condest (a, t )
[Function File][est, v] = condest (a, solve, solve_t, t )
[Function File][est, v] = condest (apply, apply_t, solve, solve_t, n, t )

Estimate the 1-norm condition number of a matrix A using t test vectors using a
randomized 1-norm estimator. If t exceeds 5, then only 5 test vectors are used.
If the matrix is not explicit, e.g., when estimating the condition number of a given
an LU factorization, condest uses the following functions:

apply A*x for a matrix x of size n by t.

apply t A’*x for a matrix x of size n by t.

solve A \ b for a matrix b of size n by t.

solve t A’ \ b for a matrix b of size n by t.

The implicit version requires an explicit dimension n.
condest uses a randomized algorithm to approximate the 1-norms.

http://dx.doi.org/10.1137/S0895479899356080
http://citeseer.ist.psu.edu/223007.html
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condest returns the 1-norm condition estimate est and a vector v satisfying norm
(A*v, 1) == norm (A, 1) * norm (v, 1) / est . When est is large, v is an approxi-
mate null vector.
References:
• Nicholas J. Higham and Franoise Tisseur, "A Block Algorithm for Matrix 1-Norm

Estimation, with an Application to 1-Norm Pseudospectra." SIMAX vol 21, no
4, pp 1185-1201. http://dx.doi.org/10.1137/S0895479899356080

• Nicholas J. Higham and Franoise Tisseur, "A Block Algorithm for Matrix
1-Norm Estimation, with an Application to 1-Norm Pseudospectra."
http://citeseer.ist.psu.edu/223007.html

See also: [cond], page 316, [norm], page 318, [onenormest], page 365.

[Loadable Function]spparms ()
[Loadable Function]vals = spparms ()
[Loadable Function][keys, vals] = spparms ()
[Loadable Function]val = spparms (key )
[Loadable Function]spparms (vals )
[Loadable Function]spparms (’defaults’)
[Loadable Function]spparms (’tight’)
[Loadable Function]spparms (key, val )

Sets or displays the parameters used by the sparse solvers and factorization functions.
The first four calls above get information about the current settings, while the others
change the current settings. The parameters are stored as pairs of keys and values,
where the values are all floats and the keys are one of the following strings:

spumoni Printing level of debugging information of the solvers (default 0)

ths_rel Included for compatibility. Not used. (default 1)

ths_abs Included for compatibility. Not used. (default 1)

exact_d Included for compatibility. Not used. (default 0)

supernd Included for compatibility. Not used. (default 3)

rreduce Included for compatibility. Not used. (default 3)

wh_frac Included for compatibility. Not used. (default 0.5)

autommd Flag whether the LU/QR and the ’\’ and ’/’ operators will automatically
use the sparsity preserving mmd functions (default 1)

autoamd Flag whether the LU and the ’\’ and ’/’ operators will automatically use
the sparsity preserving amd functions (default 1)

piv_tol The pivot tolerance of the UMFPACK solvers (default 0.1)

sym_tol The pivot tolerance of the UMFPACK symmetric solvers (default 0.001)

bandden The density of non-zero elements in a banded matrix before it is treated
by the lapack banded solvers (default 0.5)

umfpack Flag whether the UMFPACK or mmd solvers are used for the LU, ’\’
and ’/’ operations (default 1)

http://dx.doi.org/10.1137/S0895479899356080
http://citeseer.ist.psu.edu/223007.html
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The value of individual keys can be set with spparms (key, val). The default values
can be restored with the special keyword ’defaults’. The special keyword ’tight’ can
be used to set the mmd solvers to attempt for a sparser solution at the potential cost
of longer running time.

[Loadable Function]p = sprank (s )
Calculates the structural rank of a sparse matrix s. Note that only the structure of
the matrix is used in this calculation based on a Dulmage-Mendelsohn permutation
to block triangular form. As such the numerical rank of the matrix s is bounded by
sprank (s) >= rank (s). Ignoring floating point errors sprank (s) == rank (s).

See also: [dmperm], page 362.

[Loadable Function][count, h, parent, post, r] = symbfact (s, typ, mode )
Performs a symbolic factorization analysis on the sparse matrix s. Where

s s is a complex or real sparse matrix.

typ Is the type of the factorization and can be one of

sym Factorize s. This is the default.

col Factorize s’ * s .

row Factorize s * s’.

lo Factorize s’

mode The default is to return the Cholesky factorization for r, and if mode is
’L’, the conjugate transpose of the Cholesky factorization is returned. The
conjugate transpose version is faster and uses less memory, but returns
the same values for count, h, parent and post outputs.

The output variables are

count The row counts of the Cholesky factorization as determined by typ.

h The height of the elimination tree.

parent The elimination tree itself.

post A sparse boolean matrix whose structure is that of the Cholesky factor-
ization as determined by typ.

For non square matrices, the user can also utilize the spaugment function to find a least
squares solution to a linear equation.

[Function File]s = spaugment (a, c )
Creates the augmented matrix of a. This is given by

[c * eye(m, m),a; a’, zeros(n,
n)]

This is related to the least squares solution of a \\ b , by
s * [ r / c; x] = [b, zeros(n,
columns(b)]

where r is the residual error
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r = b - a * x

As the matrix s is symmetric indefinite it can be factorized with lu, and the minimum
norm solution can therefore be found without the need for a qr factorization. As the
residual error will be zeros (m, m) for under determined problems, and example can
be

m = 11; n = 10; mn = max(m ,n);
a = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],

[-1, 0, 1], m, n);
x0 = a \ ones (m,1);
s = spaugment (a);
[L, U, P, Q] = lu (s);
x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)])));
x1 = x1(end - n + 1 : end);

To find the solution of an overdetermined problem needs an estimate of the residual
error r and so it is more complex to formulate a minimum norm solution using the
spaugment function.

In general the left division operator is more stable and faster than using the spaugment
function.

Finally, the function eigs can be used to calculate a limited number of eigenvalues and
eigenvectors based on a selection criteria and likewise for svds which calculates a limited
number of singular values and vectors.

[Loadable Function]d = eigs (a )
[Loadable Function]d = eigs (a, k )
[Loadable Function]d = eigs (a, k, sigma )
[Loadable Function]d = eigs (a, k, sigma,opts )
[Loadable Function]d = eigs (a, b )
[Loadable Function]d = eigs (a, b, k )
[Loadable Function]d = eigs (a, b, k, sigma )
[Loadable Function]d = eigs (a, b, k, sigma, opts )
[Loadable Function]d = eigs (af, n )
[Loadable Function]d = eigs (af, n, b )
[Loadable Function]d = eigs (af, n, k )
[Loadable Function]d = eigs (af, n, b, k )
[Loadable Function]d = eigs (af, n, k, sigma )
[Loadable Function]d = eigs (af, n, b, k, sigma )
[Loadable Function]d = eigs (af, n, k, sigma, opts )
[Loadable Function]d = eigs (af, n, b, k, sigma, opts )
[Loadable Function][v, d] = eigs (a, . . . )
[Loadable Function][v, d] = eigs (af, n, . . . )
[Loadable Function][v, d, flag] = eigs (a, . . . )
[Loadable Function][v, d, flag] = eigs (af, n, . . . )

Calculate a limited number of eigenvalues and eigenvectors of a, based on a selection
criteria. The number eigenvalues and eigenvectors to calculate is given by k whose
default value is 6.
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By default eigs solve the equation Aν = λν , where λ is a scalar representing one of
the eigenvalues, and ν is the corresponding eigenvector. If given the positive definite
matrix B then eigs solves the general eigenvalue equation Aν = λBν .
The argument sigma determines which eigenvalues are returned. sigma can be either
a scalar or a string. When sigma is a scalar, the k eigenvalues closest to sigma are
returned. If sigma is a string, it must have one of the values

’lm’ Largest magnitude (default).

’sm’ Smallest magnitude.

’la’ Largest Algebraic (valid only for real symmetric problems).

’sa’ Smallest Algebraic (valid only for real symmetric problems).

’be’ Both ends, with one more from the high-end if k is odd (valid only for
real symmetric problems).

’lr’ Largest real part (valid only for complex or unsymmetric problems).

’sr’ Smallest real part (valid only for complex or unsymmetric problems).

’li’ Largest imaginary part (valid only for complex or unsymmetric prob-
lems).

’si’ Smallest imaginary part (valid only for complex or unsymmetric prob-
lems).

If opts is given, it is a structure defining some of the options that eigs should use.
The fields of the structure opts are

issym If af is given, then flags whether the function af defines a symmetric
problem. It is ignored if a is given. The default is false.

isreal If af is given, then flags whether the function af defines a real problem.
It is ignored if a is given. The default is true.

tol Defines the required convergence tolerance, given as tol * norm (A). The
default is eps.

maxit The maximum number of iterations. The default is 300.

p The number of Lanzcos basis vectors to use. More vectors will result in
faster convergence, but a larger amount of memory. The optimal value of
’p’ is problem dependent and should be in the range k to n. The default
value is 2 * k .

v0 The starting vector for the computation. The default is to have Arpack
randomly generate a starting vector.

disp The level of diagnostic printout. If disp is 0 then there is no printout.
The default value is 1.

cholB Flag if chol (b) is passed rather than b. The default is false.

permB The permutation vector of the Cholesky factorization of b if cholB is
true. That is chol ( b (permB, permB)). The default is 1:n .
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It is also possible to represent a by a function denoted af. af must be followed by
a scalar argument n defining the length of the vector argument accepted by af. af
can be passed either as an inline function, function handle or as a string. In the case
where af is passed as a string, the name of the string defines the function to use.
af is a function of the form function y = af (x), y = ...; endfunction, where the
required return value of af is determined by the value of sigma, and are

A * x If sigma is not given or is a string other than ’sm’.

A \ x If sigma is ’sm’.

(A - sigma * I) \ x
for standard eigenvalue problem, where I is the identity matrix of the
same size as A. If sigma is zero, this reduces the A \ x.

(A - sigma * B) \ x
for the general eigenvalue problem.

The return arguments of eigs depends on the number of return arguments. With a
single return argument, a vector d of length k is returned, represent the k eigenval-
ues that have been found. With two return arguments, v is a n-by-k matrix whose
columns are the k eigenvectors corresponding to the returned eigenvalues. The eigen-
values themselves are then returned in d in the form of a n-by-k matrix, where the
elements on the diagonal are the eigenvalues.
Given a third return argument flag, eigs also returns the status of the convergence.
If flag is 0, then all eigenvalues have converged, otherwise not.
This function is based on the Arpack package, written by R Lehoucq,
K Maschhoff, D Sorensen and C Yang. For more information see
http://www.caam.rice.edu/software/ARPACK/.

See also: [eig], page 316, [svds], page 370.

[Function File]s = svds (a )
[Function File]s = svds (a, k )
[Function File]s = svds (a, k, sigma )
[Function File]s = svds (a, k, sigma, opts )
[Function File][u, s, v, flag] = svds (. . . )

Find a few singular values of the matrix a. The singular values are calculated using
[m, n] = size(a)
s = eigs([sparse(m, m), a; ...

a’, sparse(n, n)])

The eigenvalues returned by eigs correspond to the singular values of a. The number
of singular values to calculate is given by k, whose default value is 6.
The argument sigma can be used to specify which singular values to find. sigma can
be either the string ’L’, the default, in which case the largest singular values of a are
found. Otherwise sigma should be a real scalar, in which case the singular values
closest to sigma are found. Note that for relatively small values of sigma, there is the
chance that the requested number of singular values are not returned. In that case
sigma should be increased.

http://www.caam.rice.edu/software/ARPACK/
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If opts is given, then it is a structure that defines options that svds will pass to eigs.
The possible fields of this structure are therefore determined by eigs. By default
three fields of this structure are set by svds.

tol The required convergence tolerance for the singular values. eigs is passed
tol divided by sqrt(2). The default value is 1e-10.

maxit The maximum number of iterations. The default is 300.

disp The level of diagnostic printout. If disp is 0 then there is no printout.
The default value is 0.

If more than one output argument is given, then svds also calculates the left and
right singular vectors of a. flag is used to signal the convergence of svds. If svds
converges to the desired tolerance, then flag given by

norm (a * v - u * s, 1) <= ...
tol * norm (a, 1)

will be zero.

See also: [eigs], page 368.

21.3 Iterative Techniques applied to sparse matrices

The left division \ and right division / operators, discussed in the previous section, use
direct solvers to resolve a linear equation of the form x = A \ b or x = b / A . Octave equally
includes a number of functions to solve sparse linear equations using iterative techniques.

[Function File]x = pcg (a, b, tol, maxit, m1, m2, x0, . . . )
[Function File][x, flag, relres, iter, resvec, eigest] = pcg (. . . )

Solves the linear system of equations a * x = b by means of the Preconditioned Con-
jugate Gradient iterative method. The input arguments are
• a can be either a square (preferably sparse) matrix or a function handle, inline

function or string containing the name of a function which computes a * x . In
principle a should be symmetric and positive definite; if pcg finds a to not be
positive definite, you will get a warning message and the flag output parameter
will be set.

• b is the right hand side vector.
• tol is the required relative tolerance for the residual error, b - a * x . The iter-

ation stops if norm (b - a * x) <= tol * norm (b - a * x0). If tol is empty or
is omitted, the function sets tol = 1e-6 by default.

• maxit is the maximum allowable number of iterations; if [] is supplied for maxit,
or pcg has less arguments, a default value equal to 20 is used.

• m = m1 * m2 is the (left) preconditioning matrix, so that the iteration is (the-
oretically) equivalent to solving by pcg P * x = m \ b , with P = m \ a . Note
that a proper choice of the preconditioner may dramatically improve the overall
performance of the method. Instead of matrices m1 and m2, the user may pass
two functions which return the results of applying the inverse of m1 and m2 to
a vector (usually this is the preferred way of using the preconditioner). If []



372 GNU Octave

is supplied for m1, or m1 is omitted, no preconditioning is applied. If m2 is
omitted, m = m1 will be used as preconditioner.

• x0 is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero
vector by default.

The arguments which follow x0 are treated as parameters, and passed in a proper
way to any of the functions (a or m) which are passed to pcg. See the examples below
for further details. The output arguments are
• x is the computed approximation to the solution of a * x = b .
• flag reports on the convergence. flag = 0 means the solution converged and the

tolerance criterion given by tol is satisfied. flag = 1 means that the maxit limit
for the iteration count was reached. flag = 3 reports that the (preconditioned)
matrix was found not positive definite.

• relres is the ratio of the final residual to its initial value, measured in the Eu-
clidean norm.

• iter is the actual number of iterations performed.
• resvec describes the convergence history of the method. resvec (i,1) is the

Euclidean norm of the residual, and resvec (i,2) is the preconditioned residual
norm, after the (i-1)-th iteration, i = 1, 2, ..., iter+1. The preconditioned
residual norm is defined as norm (r) ^ 2 = r’ * (m \ r) where r = b - a * x ,
see also the description of m. If eigest is not required, only resvec (:,1) is
returned.

• eigest returns the estimate for the smallest eigest (1) and largest eigest (2)
eigenvalues of the preconditioned matrix P = m \ a . In particular, if no precon-
ditioning is used, the estimates for the extreme eigenvalues of a are returned.
eigest (1) is an overestimate and eigest (2) is an underestimate, so that
eigest (2) / eigest (1) is a lower bound for cond (P, 2), which nevertheless
in the limit should theoretically be equal to the actual value of the condition
number. The method which computes eigest works only for symmetric positive
definite a and m, and the user is responsible for verifying this assumption.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of
A)

n = 10;
a = diag (sparse (1:n));
b = rand (n, 1);

[l, u, p, q] = luinc (a, 1.e-3);

Example 1: Simplest use of pcg
x = pcg(A,b)

Example 2: pcg with a function which computes a * x

function y = apply_a (x)
y = [1:N]’.*x;

endfunction

x = pcg ("apply_a", b)

Example 3: pcg with a preconditioner: l * u
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x = pcg (a, b, 1.e-6, 500, l*u);

Example 4: pcg with a preconditioner: l * u. Faster than Example 3 since lower
and upper triangular matrices are easier to invert

x = pcg (a, b, 1.e-6, 500, l, u);

Example 5: Preconditioned iteration, with full diagnostics. The preconditioner
(quite strange, because even the original matrix a is trivial) is defined as a function

function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k)./[1:k]’;

endfunction

[x, flag, relres, iter, resvec, eigest] = ...
pcg (a, b, [], [], "apply_m");

semilogy (1:iter+1, resvec);

Example 6: Finally, a preconditioner which depends on a parameter k.
function y = apply_M (x, varargin)
K = varargin{1};
y = x;
y(1:K) = x(1:K)./[1:K]’;
endfunction

[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m", [], [], 3)

References

[1] C.T.Kelley, ’Iterative methods for linear and nonlinear equations’, SIAM, 1995
(the base PCG algorithm)
[2] Y.Saad, ’Iterative methods for sparse linear systems’, PWS 1996 (condition number
estimate from PCG) Revised version of this book is available online at http://www-
users.cs.umn.edu/~saad/books.html

See also: [sparse], page 348, [pcr], page 373.

[Function File]x = pcr (a, b, tol, maxit, m, x0, . . . )
[Function File][x, flag, relres, iter, resvec] = pcr (. . . )

Solves the linear system of equations a * x = b by means of the Preconditioned Con-
jugate Residuals iterative method. The input arguments are
• a can be either a square (preferably sparse) matrix or a function handle, inline

function or string containing the name of a function which computes a * x . In
principle a should be symmetric and non-singular; if pcr finds a to be numerically
singular, you will get a warning message and the flag output parameter will be
set.

• b is the right hand side vector.
• tol is the required relative tolerance for the residual error, b - a * x . The iter-

ation stops if norm (b - a * x) <= tol * norm (b - a * x0). If tol is empty or
is omitted, the function sets tol = 1e-6 by default.
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• maxit is the maximum allowable number of iterations; if [] is supplied for maxit,
or pcr has less arguments, a default value equal to 20 is used.

• m is the (left) preconditioning matrix, so that the iteration is (theoretically)
equivalent to solving by pcr P * x = m \ b , with P = m \ a . Note that a proper
choice of the preconditioner may dramatically improve the overall performance
of the method. Instead of matrix m, the user may pass a function which returns
the results of applying the inverse of m to a vector (usually this is the preferred
way of using the preconditioner). If [] is supplied for m, or m is omitted, no
preconditioning is applied.

• x0 is the initial guess. If x0 is empty or omitted, the function sets x0 to a zero
vector by default.

The arguments which follow x0 are treated as parameters, and passed in a proper
way to any of the functions (a or m) which are passed to pcr. See the examples below
for further details. The output arguments are

• x is the computed approximation to the solution of a * x = b .

• flag reports on the convergence. flag = 0 means the solution converged and the
tolerance criterion given by tol is satisfied. flag = 1 means that the maxit limit
for the iteration count was reached. flag = 3 reports t pcr breakdown, see [1]
for details.

• relres is the ratio of the final residual to its initial value, measured in the Eu-
clidean norm.

• iter is the actual number of iterations performed.

• resvec describes the convergence history of the method, so that resvec (i) con-
tains the Euclidean norms of the residual after the (i-1)-th iteration, i = 1,2,
..., iter+1.

Let us consider a trivial problem with a diagonal matrix (we exploit the sparsity of
A)

n = 10;
a = sparse (diag (1:n));
b = rand (N, 1);

Example 1: Simplest use of pcr

x = pcr(A, b)

Example 2: pcr with a function which computes a * x .

function y = apply_a (x)
y = [1:10]’.*x;

endfunction

x = pcr ("apply_a", b)

Example 3: Preconditioned iteration, with full diagnostics. The preconditioner
(quite strange, because even the original matrix a is trivial) is defined as a function
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function y = apply_m (x)
k = floor (length(x)-2);
y = x;
y(1:k) = x(1:k)./[1:k]’;

endfunction

[x, flag, relres, iter, resvec] = ...
pcr (a, b, [], [], "apply_m")

semilogy([1:iter+1], resvec);

Example 4: Finally, a preconditioner which depends on a parameter k.
function y = apply_m (x, varargin)

k = varargin{1};
y = x; y(1:k) = x(1:k)./[1:k]’;

endfunction

[x, flag, relres, iter, resvec] = ...
pcr (a, b, [], [], "apply_m"’, [], 3)

References

[1] W. Hackbusch, "Iterative Solution of Large Sparse Systems of Equations", section
9.5.4; Springer, 1994

See also: [sparse], page 348, [pcg], page 371.

The speed with which an iterative solver converges to a solution can be accelerated with
the use of a pre-conditioning matrix M. In this case the linear equation M^-1 * x = M^-1 *
A \ b is solved instead. Typical pre-conditioning matrices are partial factorizations of the
original matrix.

[Loadable Function][l, u, p, q] = luinc (a, ’0’)
[Loadable Function][l, u, p, q] = luinc (a, droptol )
[Loadable Function][l, u, p, q] = luinc (a, opts )

Produce the incomplete LU factorization of the sparse matrix a. Two types of incom-
plete factorization are possible, and the type is determined by the second argument
to luinc.
Called with a second argument of ’0’, the zero-level incomplete LU factorization
is produced. This creates a factorization of a where the position of the non-zero
arguments correspond to the same positions as in the matrix a.
Alternatively, the fill-in of the incomplete LU factorization can be controlled through
the variable droptol or the structure opts. The UMFPACK multifrontal factoriza-
tion code by Tim A. Davis is used for the incomplete LU factorization, (availability
http://www.cise.ufl.edu/research/sparse/umfpack/)
droptol determines the values below which the values in the LU factorization are
dropped and replaced by zero. It must be a positive scalar, and any values in the
factorization whose absolute value are less than this value are dropped, expect if
leaving them increase the sparsity of the matrix. Setting droptol to zero results in a
complete LU factorization which is the default.
opts is a structure containing one or more of the fields

http://www.cise.ufl.edu/research/sparse/umfpack/
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droptol The drop tolerance as above. If opts only contains droptol then this is
equivalent to using the variable droptol.

milu A logical variable flagging whether to use the modified incomplete LU
factorization. In the case that milu is true, the dropped values are sub-
tracted from the diagonal of the matrix U of the factorization. The default
is false.

udiag A logical variable that flags whether zero elements on the diagonal of U
should be replaced with droptol to attempt to avoid singular factors. The
default is false.

thresh Defines the pivot threshold in the interval [0,1]. Values outside that range
are ignored.

All other fields in opts are ignored. The outputs from luinc are the same as for lu.

Given the string argument ’vector’, luinc returns the values of p q as vector values.

See also: [sparse], page 348, [lu], page 322.

21.4 Real Life Example of the use of Sparse Matrices

A common application for sparse matrices is in the solution of Finite Element Models.
Finite element models allow numerical solution of partial differential equations that do not
have closed form solutions, typically because of the complex shape of the domain.

In order to motivate this application, we consider the boundary value Laplace equation.
This system can model scalar potential fields, such as heat or electrical potential. Given
a medium Ω with boundary ∂Ω . At all points on the ∂Ω the boundary conditions are
known, and we wish to calculate the potential in Ω . Boundary conditions may specify the
potential (Dirichlet boundary condition), its normal derivative across the boundary (Neu-
mann boundary condition), or a weighted sum of the potential and its derivative (Cauchy
boundary condition).

In a thermal model, we want to calculate the temperature in Ω and know the boundary
temperature (Dirichlet condition) or heat flux (from which we can calculate the Neumann
condition by dividing by the thermal conductivity at the boundary). Similarly, in an electri-
cal model, we want to calculate the voltage in Ω and know the boundary voltage (Dirichlet)
or current (Neumann condition after diving by the electrical conductivity). In an electrical
model, it is common for much of the boundary to be electrically isolated; this is a Neumann
boundary condition with the current equal to zero.

The simplest finite element models will divide Ω into simplexes (triangles in 2D, pyramids
in 3D). We take as an 3D example a cylindrical liquid filled tank with a small non-conductive
ball from the EIDORS project3. This is model is designed to reflect an application of
electrical impedance tomography, where current patterns are applied to such a tank in order
to image the internal conductivity distribution. In order to describe the FEM geometry, we
have a matrix of vertices nodes and simplices elems.

3 EIDORS - Electrical Impedance Tomography and Diffuse optical Tomography Reconstruction Software
http://eidors3d.sourceforge.net

http://eidors3d.sourceforge.net
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The following example creates a simple rectangular 2D electrically conductive medium
with 10 V and 20 V imposed on opposite sides (Dirichlet boundary conditions). All other
edges are electrically isolated.

node_y= [1;1.2;1.5;1.8;2]*ones(1,11);
node_x= ones(5,1)*[1,1.05,1.1,1.2, ...

1.3,1.5,1.7,1.8,1.9,1.95,2];
nodes= [node_x(:), node_y(:)];

[h,w]= size(node_x);
elems= [];
for idx= 1:w-1

widx= (idx-1)*h;
elems= [elems; ...
widx+[(1:h-1);(2:h);h+(1:h-1)]’; ...
widx+[(2:h);h+(2:h);h+(1:h-1)]’ ];

endfor

E= size(elems,1); # No. of simplices
N= size(nodes,1); # No. of vertices
D= size(elems,2); # dimensions+1

This creates a N-by-2 matrix nodes and a E-by-3 matrix elems with values, which define
finite element triangles:

nodes(1:7,:)’
1.00 1.00 1.00 1.00 1.00 1.05 1.05 ...
1.00 1.20 1.50 1.80 2.00 1.00 1.20 ...

elems(1:7,:)’
1 2 3 4 2 3 4 ...
2 3 4 5 7 8 9 ...
6 7 8 9 6 7 8 ...

Using a first order FEM, we approximate the electrical conductivity distribution in Ω
as constant on each simplex (represented by the vector conductivity). Based on the
finite element geometry, we first calculate a system (or stiffness) matrix for each simplex
(represented as 3-by-3 elements on the diagonal of the element-wise system matrix SE.
Based on SE and a N-by-DE connectivity matrix C, representing the connections between
simplices and vertices, the global connectivity matrix S is calculated.

# Element conductivity
conductivity= [1*ones(1,16), ...

2*ones(1,48), 1*ones(1,16)];

# Connectivity matrix
C = sparse ((1:D*E), reshape (elems’, ...

D*E, 1), 1, D*E, N);

# Calculate system matrix
Siidx = floor ([0:D*E-1]’/D) * D * ...
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ones(1,D) + ones(D*E,1)*(1:D) ;
Sjidx = [1:D*E]’*ones(1,D);
Sdata = zeros(D*E,D);
dfact = factorial(D-1);
for j=1:E

a = inv([ones(D,1), ...
nodes(elems(j,:), :)]);

const = conductivity(j) * 2 / ...
dfact / abs(det(a));

Sdata(D*(j-1)+(1:D),:) = const * ...
a(2:D,:)’ * a(2:D,:);

endfor
# Element-wise system matrix
SE= sparse(Siidx,Sjidx,Sdata);
# Global system matrix
S= C’* SE *C;

The system matrix acts like the conductivity S in Ohm’s law SV = I. Based on the
Dirichlet and Neumann boundary conditions, we are able to solve for the voltages at each
vertex V.

# Dirichlet boundary conditions
D_nodes=[1:5, 51:55];
D_value=[10*ones(1,5), 20*ones(1,5)];

V= zeros(N,1);
V(D_nodes) = D_value;
idx = 1:N; # vertices without Dirichlet

# boundary condns
idx(D_nodes) = [];

# Neumann boundary conditions. Note that
# N_value must be normalized by the
# boundary length and element conductivity
N_nodes=[];
N_value=[];

Q = zeros(N,1);
Q(N_nodes) = N_value;

V(idx) = S(idx,idx) \ ( Q(idx) - ...
S(idx,D_nodes) * V(D_nodes));

Finally, in order to display the solution, we show each solved voltage value in the z-axis
for each simplex vertex. See Figure 21.6.
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elemx = elems(:,[1,2,3,1])’;
xelems = reshape (nodes(elemx, 1), 4, E);
yelems = reshape (nodes(elemx, 2), 4, E);
velems = reshape (V(elemx), 4, E);
plot3 (xelems,yelems,velems,’k’);
print (’grid.eps’);
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Figure 21.6: Example finite element model the showing triangular elements. The height
of each vertex corresponds to the solution value.
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22 Numerical Integration

Octave comes with several built-in functions for computing the integral of a function nu-
merically. These functions all solve 1-dimensional integration problems.

22.1 Functions of One Variable

Octave supports three different algorithms for computing the integral

∫ b

a

f(x)dx

of a function f over the interval from a to b. These are

quad Numerical integration based on Gaussian quadrature.

quadl Numerical integration using an adaptive Lobatto rule.

quadgk Numerical integration using an adaptive Gauss-Konrod rule.

quadv Numerical integration using an adaptive vectorized Simpson’s rule.

trapz Numerical integration using the trapezoidal method.

Besides these functions Octave also allows you to perform cumulative numerical integration
using the trapezoidal method through the cumtrapz function.

[Loadable Function][v, ier, nfun, err] = quad (f, a, b, tol, sing )
Integrate a nonlinear function of one variable using Quadpack. The first argument is
the name of the function, the function handle or the inline function to call to compute
the value of the integrand. It must have the form

y = f (x)

where y and x are scalars.

The second and third arguments are limits of integration. Either or both may be
infinite.

The optional argument tol is a vector that specifies the desired accuracy of the result.
The first element of the vector is the desired absolute tolerance, and the second
element is the desired relative tolerance. To choose a relative test only, set the absolute
tolerance to zero. To choose an absolute test only, set the relative tolerance to zero.

The optional argument sing is a vector of values at which the integrand is known to
be singular.

The result of the integration is returned in v and ier contains an integer error code
(0 indicates a successful integration). The value of nfun indicates how many function
evaluations were required, and err contains an estimate of the error in the solution.

You can use the function quad_options to set optional parameters for quad.

It should be noted that since quad is written in Fortran it cannot be called recursively.
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[Loadable Function]quad_options (opt, val )
When called with two arguments, this function allows you set options parameters
for the function quad. Given one argument, quad_options returns the value of the
corresponding option. If no arguments are supplied, the names of all the available
options and their current values are displayed.

Options include

"absolute tolerance"
Absolute tolerance; may be zero for pure relative error test.

"relative tolerance"
Nonnegative relative tolerance. If the absolute tolerance is zero, the rela-
tive tolerance must be greater than or equal to max (50*eps, 0.5e-28).

"single precision absolute tolerance"
Absolute tolerance for single precision; may be zero for pure relative error
test.

"single precision relative tolerance"
Nonnegative relative tolerance for single precision. If the absolute toler-
ance is zero, the relative tolerance must be greater than or equal to max
(50*eps, 0.5e-28).

Here is an example of using quad to integrate the function

f(x) = x sin(1/x)
√
|1− x|

from x = 0 to x = 3.

This is a fairly difficult integration (plot the function over the range of integration to see
why).

The first step is to define the function:

function y = f (x)
y = x .* sin (1 ./ x) .* sqrt (abs (1 - x));

endfunction

Note the use of the ‘dot’ forms of the operators. This is not necessary for the call to
quad, but it makes it much easier to generate a set of points for plotting (because it makes
it possible to call the function with a vector argument to produce a vector result).

Then we simply call quad:

[v, ier, nfun, err] = quad ("f", 0, 3)
⇒ 1.9819
⇒ 1
⇒ 5061
⇒ 1.1522e-07

Although quad returns a nonzero value for ier, the result is reasonably accurate (to see
why, examine what happens to the result if you move the lower bound to 0.1, then 0.01,
then 0.001, etc.).
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[Function File]q = quadl (f, a, b )
[Function File]q = quadl (f, a, b, tol )
[Function File]q = quadl (f, a, b, tol, trace )
[Function File]q = quadl (f, a, b, tol, trace, p1, p2, . . . )

Numerically evaluate integral using adaptive Lobatto rule. quadl (f, a, b) approx-
imates the integral of f(x) to machine precision. f is either a function handle, inline
function or string containing the name of the function to evaluate. The function f
must return a vector of output values if given a vector of input values.
If defined, tol defines the relative tolerance to which to which to integrate f(x).
While if trace is defined, displays the left end point of the current interval, the interval
length, and the partial integral.
Additional arguments p1, etc., are passed directly to f. To use default values for tol
and trace, one may pass empty matrices.
Reference: W. Gander and W. Gautschi, ’Adaptive Quadrature - Revisited’, BIT Vol.
40, No. 1, March 2000, pp. 84–101. http://www.inf.ethz.ch/personal/gander/

[Function File]quadgk (f, a, b, abstol, trace )
[Function File]quadgk (f, a, b, prop, val, . . . )
[Function File][q, err] = quadgk (. . . )

Numerically evaluate integral using adaptive Gauss-Konrod quadrature. The formu-
lation is based on a proposal by L.F. Shampine, "Vectorized adaptive quadrature in
matlab", Journal of Computational and Applied Mathematics, pp131-140, Vol 211,
Issue 2, Feb 2008 where all function evaluations at an iteration are calculated with
a single call to f. Therefore the function f must be of the form f (x) and accept
vector values of x and return a vector of the same length representing the function
evaluations at the given values of x. The function f can be defined in terms of a
function handle, inline function or string.
The bounds of the quadrature [a, b] can be finite or infinite and contain weak
end singularities. Variable transformation will be used to treat infinite intervals and
weaken the singularities. For example

quadgk(@(x) 1 ./ (sqrt (x) .* (x + 1)), 0, Inf)

Note that the formulation of the integrand uses the element-by-element operator ./
and all user functions to quadgk should do the same.
The absolute tolerance can be passed as a fourth argument in a manner compatible
with quadv. Equally the user can request that information on the convergence can
be printed is the fifth argument is logically true.
Alternatively, certain properties of quadgk can be passed as pairs prop, val . Valid
properties are

AbsTol Defines the absolute error tolerance for the quadrature. The default ab-
solute tolerance is 1e-10.

RelTol Defines the relative error tolerance for the quadrature. The default rela-
tive tolerance is 1e-5.

MaxIntervalCount
quadgk initially subdivides the interval on which to perform the quadra-
ture into 10 intervals. Sub-intervals that have an unacceptable error are

http://www.inf.ethz.ch/personal/gander/
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sub-divided and re-evaluated. If the number of sub-intervals exceeds at
any point 650 sub-intervals then a poor convergence is signaled and the
current estimate of the integral is returned. The property ’MaxInterval-
Count’ can be used to alter the number of sub-intervals that can exist
before exiting.

WayPoints
If there exists discontinuities in the first derivative of the function to
integrate, then these can be flagged with the "WayPoints" property. This
forces the ends of a sub-interval to fall on the breakpoints of the function
and can result in significantly improved estimation of the error in the
integral, faster computation or both. For example,

quadgk (@(x) abs (1 - x .^ 2), 0, 2, ’Waypoints’, 1)

signals the breakpoint in the integrand at x = 1.

Trace If logically true, then quadgk prints information on the convergence of
the quadrature at each iteration.

If any of a, b or waypoints is complex, then the quadrature is treated as a contour
integral along a piecewise continuous path defined by the above. In this case the
integral is assumed to have no edge singularities. For example

quadgk (@(z) log (z), 1+1i, 1+1i, "WayPoints",
[1-1i, -1,-1i, -1+1i])

integrates log (z) along the square defined by [1+1i, 1-1i, -1-1i, -1+1i]

If two output arguments are requested, then err returns the approximate bounds on
the error in the integral abs (q - i), where i is the exact value of the integral.

See also: [triplequad], page 386, [dblquad], page 386, [quad], page 381, [quadl],
page 382, [quadv], page 384, [trapz], page 385.

[Function File]q = quadv (f, a, b )
[Function File]q = quadl (f, a, b, tol )
[Function File]q = quadl (f, a, b, tol, trace )
[Function File]q = quadl (f, a, b, tol, trace, p1, p2, . . . )
[Function File][q, fcnt] = quadl (. . . )

Numerically evaluate integral using adaptive Simpson’s rule. quadv (f, a, b) ap-
proximates the integral of f(x) to the default absolute tolerance of 1e-6. f is either
a function handle, inline function or string containing the name of the function to
evaluate. The function f must accept a string, and can return a vector representing
the approximation to n different sub-functions.

If defined, tol defines the absolute tolerance to which to which to integrate each sub-
interval of f(x). While if trace is defined, displays the left end point of the current
interval, the interval length, and the partial integral.

Additional arguments p1, etc., are passed directly to f. To use default values for tol
and trace, one may pass empty matrices.

See also: [triplequad], page 386, [dblquad], page 386, [quad], page 381, [quadl],
page 382, [quadgk], page 383, [trapz], page 385.
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[Function File]z = trapz (y )
[Function File]z = trapz (x, y )
[Function File]z = trapz (. . . , dim )

Numerical integration using trapezoidal method. trapz (y) computes the integral of
the y along the first non-singleton dimension. If the argument x is omitted a equally
spaced vector is assumed. trapz (x, y) evaluates the integral with respect to x.

See also: [cumtrapz], page 385.

[Function File]z = cumtrapz (y )
[Function File]z = cumtrapz (x, y )
[Function File]z = cumtrapz (. . . , dim )

Cumulative numerical integration using trapezoidal method. cumtrapz (y) computes
the cumulative integral of the y along the first non-singleton dimension. If the ar-
gument x is omitted a equally spaced vector is assumed. cumtrapz (x, y) evaluates
the cumulative integral with respect to x.

See also: [trapz], page 385, [cumsum], page 299.

22.2 Orthogonal Collocation

[Loadable Function][r, amat, bmat, q] = colloc (n, "left", "right")
Compute derivative and integral weight matrices for orthogonal collocation using
the subroutines given in J. Villadsen and M. L. Michelsen, Solution of Differential
Equation Models by Polynomial Approximation.

Here is an example of using colloc to generate weight matrices for solving the second
order differential equation u′−αu′′ = 0 with the boundary conditions u(0) = 0 and u(1) = 1.

First, we can generate the weight matrices for n points (including the endpoints of the
interval), and incorporate the boundary conditions in the right hand side (for a specific
value of α).

n = 7;
alpha = 0.1;
[r, a, b] = colloc (n-2, "left", "right");
at = a(2:n-1,2:n-1);
bt = b(2:n-1,2:n-1);
rhs = alpha * b(2:n-1,n) - a(2:n-1,n);

Then the solution at the roots r is
u = [ 0; (at - alpha * bt) \ rhs; 1]

⇒ [ 0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00 ]

22.3 Functions of Multiple Variables

Octave does not have built-in functions for computing the integral of functions of multiple
variables directly. It is however possible to compute the integral of a function of multiple
variables using the functions for one-dimensional integrals.

To illustrate how the integration can be performed, we will integrate the function

f(x, y) = sin(πxy)
√
xy
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for x and y between 0 and 1.

The first approach creates a function that integrates f with respect to x, and then
integrates that function with respect to y. Since quad is written in Fortran it cannot be
called recursively. This means that quad cannot integrate a function that calls quad, and
hence cannot be used to perform the double integration. It is however possible with quadl,
which is what the following code does.

function I = g(y)
I = ones(1, length(y));
for i = 1:length(y)
f = @(x) sin(pi.*x.*y(i)).*sqrt(x.*y(i));
I(i) = quadl(f, 0, 1);

endfor
endfunction

I = quadl("g", 0, 1)
⇒ 0.30022

The above process can be simplified with the dblquad and triplequad functions for
integrals over two and three variables. For example

I = dblquad (@(x, y) sin(pi.*x.*y).*sqrt(x.*y), 0, 1, 0, 1)
⇒ 0.30022

[Function File]dblquad (f, xa, xb, ya, yb, tol, quadf, . . . )
Numerically evaluate a double integral. The function over with to integrate is defined
by f , and the interval for the integration is defined by [xa, xb, ya, yb]. The func-
tion f must accept a vector x and a scalar y, and return a vector of the same length
as x.

If defined, tol defines the absolute tolerance to which to which to integrate each
sub-integral.

Additional arguments, are passed directly to f. To use the default value for tol one
may pass an empty matrix.

See also: [triplequad], page 386, [quad], page 381, [quadv], page 384, [quadl], page 382,
[quadgk], page 383, [trapz], page 385.

[Function File]triplequad (f, xa, xb, ya, yb, za, zb, tol, quadf, . . . )
Numerically evaluate a triple integral. The function over which to integrate is defined
by f , and the interval for the integration is defined by [xa, xb, ya, yb, za, zb].
The function f must accept a vector x and a scalar y, and return a vector of the same
length as x.

If defined, tol defines the absolute tolerance to which to which to integrate each
sub-integral.

Additional arguments, are passed directly to f. To use the default value for tol one
may pass an empty matrix.

See also: [dblquad], page 386, [quad], page 381, [quadv], page 384, [quadl], page 382,
[quadgk], page 383, [trapz], page 385.
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The above mentioned approach works but is fairly slow, and that problem increases
exponentially with the dimensionality the problem. Another possible solution is to use
Orthogonal Collocation as described in the previous section. The integral of a function
f(x, y) for x and y between 0 and 1 can be approximated using n points by

∫ 1

0

∫ 1

0

f(x, y)dxdy ≈
n∑

i=1

n∑
j=1

qiqjf(ri, rj),

where q and r is as returned by colloc(n). The generalization to more than two variables
is straight forward. The following code computes the studied integral using n = 7 points.

f = @(x,y) sin(pi*x*y’).*sqrt(x*y’);
n = 7;
[t, A, B, q] = colloc(n);
I = q’*f(t,t)*q;

⇒ 0.30022

It should be noted that the number of points determines the quality of the approximation.
If the integration needs to be performed between a and b instead of 0 and 1, a change of
variables is needed.





Chapter 23: Differential Equations 389

23 Differential Equations

Octave has built-in functions for solving ordinary differential equations, and differential-
algebraic equations. All solvers are based on reliable ODE routines written in Fortran.

23.1 Ordinary Differential Equations

The function lsode can be used to solve ODEs of the form

dx

dt
= f(x, t)

using Hindmarsh’s ODE solver Lsode.

[Loadable Function][x, istate, msg] = lsode (fcn, x_0, t, t_crit )
Solve the set of differential equations

dx

dt
= f(x, t)

with
x(t0) = x0

The solution is returned in the matrix x, with each row corresponding to an element
of the vector t. The first element of t should be t0 and should correspond to the initial
state of the system x 0, so that the first row of the output is x 0.
The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of right hand sides for the set of equations. The
function must have the form

xdot = f (x, t)

in which xdot and x are vectors and t is a scalar.
If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the Jacobian of f . The Jacobian
function must have the form

jac = j (x, t)

in which jac is the matrix of partial derivatives

J =
∂fi

∂xj

=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

...
...

. . .
...

∂f3
∂x1

∂f3
∂x2

· · · ∂f3
∂xN


The second and third arguments specify the initial state of the system, x0, and the
initial value of the independent variable t0.
The fourth argument is optional, and may be used to specify a set of times that
the ODE solver should not integrate past. It is useful for avoiding difficulties with
singularities and points where there is a discontinuity in the derivative.
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After a successful computation, the value of istate will be 2 (consistent with the
Fortran version of Lsode).
If the computation is not successful, istate will be something other than 2 and msg
will contain additional information.
You can use the function lsode_options to set optional parameters for lsode.

See also: [daspk], page 391, [dassl], page 395, [dasrt], page 397.

[Loadable Function]lsode_options (opt, val )
When called with two arguments, this function allows you set options parameters for
the function lsode. Given one argument, lsode_options returns the value of the
corresponding option. If no arguments are supplied, the names of all the available
options and their current values are displayed.
Options include

"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector.

"relative tolerance"
Relative tolerance parameter. Unlike the absolute tolerance, this param-
eter may only be a scalar.
The local error test applied at each integration step is

abs (local error in x(i)) <= ...
rtol * abs (y(i)) + atol(i)

"integration method"
A string specifying the method of integration to use to solve the ODE
system. Valid values are

"adams"
"non-stiff"

No Jacobian used (even if it is available).

"bdf"

"stiff" Use stiff backward differentiation formula (BDF) method. If
a function to compute the Jacobian is not supplied, lsode
will compute a finite difference approximation of the Jacobian
matrix.

"initial step size"
The step size to be attempted on the first step (default is determined
automatically).

"maximum order"
Restrict the maximum order of the solution method. If using the Adams
method, this option must be between 1 and 12. Otherwise, it must be
between 1 and 5, inclusive.

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).
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"minimum step size"
The minimum absolute step size allowed (default is 0).

"step limit"
Maximum number of steps allowed (default is 100000).

Here is an example of solving a set of three differential equations using lsode. Given
the function

function xdot = f (x, t)

xdot = zeros (3,1);

xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) \
- 8.375e-06*x(1)^2);

xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
xdot(3) = 0.161*(x(1) - x(3));

endfunction

and the initial condition x0 = [ 4; 1.1; 4 ], the set of equations can be integrated using
the command

t = linspace (0, 500, 1000);

y = lsode ("f", x0, t);

If you try this, you will see that the value of the result changes dramatically between t
= 0 and 5, and again around t = 305. A more efficient set of output points might be

t = [0, logspace (-1, log10(303), 150), \
logspace (log10(304), log10(500), 150)];

See Alan C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, in
Scientific Computing, R. S. Stepleman, editor, (1983) for more information about the inner
workings of lsode.

23.2 Differential-Algebraic Equations

The function daspk can be used to solve DAEs of the form

0 = f(ẋ, x, t), x(t = 0) = x0, ẋ(t = 0) = ẋ0

where ẋ = dx
dt

is the derivative of x. The equation is solved using Petzold’s DAE solver
Daspk.

[Loadable Function][x, xdot, istate, msg] = daspk (fcn, x_0, xdot_0, t,
t_crit )

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with
x(t0) = x0, ẋ(t0) = ẋ0
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The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t. The first element of t
should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.

The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.

If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

jac = j (x, xdot, t, c)

The second and third arguments to daspk specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.

The set of initial states and derivatives are not strictly required to be consistent.
If they are not consistent, you must use the daspk_options function to provide
additional information so that daspk can compute a consistent starting point.

The fifth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.

After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of Daspk).

If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.

You can use the function daspk_options to set optional parameters for daspk.

See also: [dassl], page 395.

[Loadable Function]daspk_options (opt, val )
When called with two arguments, this function allows you set options parameters for
the function daspk. Given one argument, daspk_options returns the value of the
corresponding option. If no arguments are supplied, the names of all the available
options and their current values are displayed.

Options include
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"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"
Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.
The local error test applied at each integration step is

abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)

"compute consistent initial condition"
Denoting the differential variables in the state vector by ‘Y_d’ and the
algebraic variables by ‘Y_a’, ddaspk can solve one of two initialization
problems:
1. Given Y d, calculate Y a and Y’ d
2. Given Y’, calculate Y.

In either case, initial values for the given components are input, and
initial guesses for the unknown components must also be provided as
input. Set this option to 1 to solve the first problem, or 2 to solve the
second (the default is 0, so you must provide a set of initial conditions
that are consistent).
If this option is set to a nonzero value, you must also set the "algebraic
variables" option to declare which variables in the problem are alge-
braic.

"use initial condition heuristics"
Set to a nonzero value to use the initial condition heuristics options de-
scribed below.

"initial condition heuristics"
A vector of the following parameters that can be used to control the initial
condition calculation.

MXNIT Maximum number of Newton iterations (default is 5).

MXNJ Maximum number of Jacobian evaluations (default is 6).

MXNH Maximum number of values of the artificial stepsize
parameter to be tried if the "compute consistent initial
condition" option has been set to 1 (default is 5).
Note that the maximum total number of Newton iterations
allowed is MXNIT*MXNJ*MXNH if the "compute consistent
initial condition" option has been set to 1 and
MXNIT*MXNJ if it is set to 2.

LSOFF Set to a nonzero value to disable the linesearch algorithm
(default is 0).
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STPTOL Minimum scaled step in linesearch algorithm (default is
eps^(2/3)).

EPINIT Swing factor in the Newton iteration convergence test. The
test is applied to the residual vector, premultiplied by the
approximate Jacobian. For convergence, the weighted RMS
norm of this vector (scaled by the error weights) must be less
than EPINIT*EPCON, where EPCON = 0.33 is the analogous
test constant used in the time steps. The default is EPINIT
= 0.01.

"print initial condition info"
Set this option to a nonzero value to display detailed information about
the initial condition calculation (default is 0).

"exclude algebraic variables from error test"
Set to a nonzero value to exclude algebraic variables from the error test.
You must also set the "algebraic variables" option to declare which
variables in the problem are algebraic (default is 0).

"algebraic variables"
A vector of the same length as the state vector. A nonzero element
indicates that the corresponding element of the state vector is an algebraic
variable (i.e., its derivative does not appear explicitly in the equation set.

This option is required by the compute consistent initial condition"
and "exclude algebraic variables from error test" options.

"enforce inequality constraints"
Set to one of the following values to enforce the inequality constraints
specified by the "inequality constraint types" option (default is 0).

1. To have constraint checking only in the initial condition calculation.

2. To enforce constraint checking during the integration.

3. To enforce both options 1 and 2.

"inequality constraint types"
A vector of the same length as the state specifying the type of inequality
constraint. Each element of the vector corresponds to an element of the
state and should be assigned one of the following codes

-2 Less than zero.

-1 Less than or equal to zero.

0 Not constrained.

1 Greater than or equal to zero.

2 Greater than zero.

This option only has an effect if the "enforce inequality constraints"
option is nonzero.
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"initial step size"
Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize (default is computed automatically).

"maximum order"
Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive (default is 5).

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).

Octave also includes Dassl, an earlier version of Daspk, and dasrt, which can be used
to solve DAEs with constraints (stopping conditions).

[Loadable Function][x, xdot, istate, msg] = dassl (fcn, x_0, xdot_0, t,
t_crit )

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with
x(t0) = x0, ẋ(t0) = ẋ0

The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t. The first element of t
should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.
The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.
If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

jac = j (x, xdot, t, c)

The second and third arguments to dassl specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.
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The set of initial states and derivatives are not strictly required to be consistent. In
practice, however, Dassl is not very good at determining a consistent set for you, so
it is best if you ensure that the initial values result in the function evaluating to zero.
The fifth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.
After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of Dassl).
If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.
You can use the function dassl_options to set optional parameters for dassl.

See also: [daspk], page 391, [dasrt], page 397, [lsode], page 389.

[Loadable Function]dassl_options (opt, val )
When called with two arguments, this function allows you set options parameters for
the function dassl. Given one argument, dassl_options returns the value of the
corresponding option. If no arguments are supplied, the names of all the available
options and their current values are displayed.
Options include

"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"
Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.
The local error test applied at each integration step is

abs (local error in x(i))
<= rtol(i) * abs (Y(i)) + atol(i)

"compute consistent initial condition"
If nonzero, dassl will attempt to compute a consistent set of initial con-
ditions. This is generally not reliable, so it is best to provide a consistent
set and leave this option set to zero.

"enforce nonnegativity constraints"
If you know that the solutions to your equations will always be nonnega-
tive, it may help to set this parameter to a nonzero value. However, it is
probably best to try leaving this option set to zero first, and only setting
it to a nonzero value if that doesn’t work very well.

"initial step size"
Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize.
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"maximum order"
Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive.

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions
(default is not specified).

"step limit"
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.

[Loadable Function][x, xdot, t_out, istat, msg] = dasrt (fcn [, g ], x_0,
xdot_0, t [, t_crit ])

Solve the set of differential-algebraic equations

0 = f(x, ẋ, t)

with
x(t0) = x0, ẋ(t0) = ẋ0

with functional stopping criteria (root solving).
The solution is returned in the matrices x and xdot, with each row in the result
matrices corresponding to one of the elements in the vector t out. The first element
of t should be t0 and correspond to the initial state of the system x 0 and its derivative
xdot 0, so that the first row of the output x is x 0 and the first row of the output
xdot is xdot 0.
The vector t provides an upper limit on the length of the integration. If the stopping
condition is met, the vector t out will be shorter than t, and the final element of t out
will be the point at which the stopping condition was met, and may not correspond
to any element of the vector t.
The first argument, fcn, is a string, inline, or function handle that names the function
f to call to compute the vector of residuals for the set of equations. It must have the
form

res = f (x, xdot, t)

in which x, xdot, and res are vectors, and t is a scalar.
If fcn is a two-element string array or a two-element cell array of strings, inline
functions, or function handles, the first element names the function f described above,
and the second element names a function to compute the modified Jacobian

J =
∂f

∂x
+ c

∂f

∂ẋ

The modified Jacobian function must have the form

jac = j (x, xdot, t, c)

The optional second argument names a function that defines the constraint functions
whose roots are desired during the integration. This function must have the form
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g_out = g (x, t)

and return a vector of the constraint function values. If the value of any of the
constraint functions changes sign, Dasrt will attempt to stop the integration at the
point of the sign change.
If the name of the constraint function is omitted, dasrt solves the same problem as
daspk or dassl.
Note that because of numerical errors in the constraint functions due to roundoff
and integration error, Dasrt may return false roots, or return the same root at two
or more nearly equal values of T. If such false roots are suspected, the user should
consider smaller error tolerances or higher precision in the evaluation of the constraint
functions.
If a root of some constraint function defines the end of the problem, the input to
Dasrt should nevertheless allow integration to a point slightly past that root, so
that Dasrt can locate the root by interpolation.
The third and fourth arguments to dasrt specify the initial condition of the states
and their derivatives, and the fourth argument specifies a vector of output times at
which the solution is desired, including the time corresponding to the initial condition.
The set of initial states and derivatives are not strictly required to be consistent. In
practice, however, Dassl is not very good at determining a consistent set for you, so
it is best if you ensure that the initial values result in the function evaluating to zero.
The sixth argument is optional, and may be used to specify a set of times that the DAE
solver should not integrate past. It is useful for avoiding difficulties with singularities
and points where there is a discontinuity in the derivative.
After a successful computation, the value of istate will be greater than zero (consistent
with the Fortran version of Dassl).
If the computation is not successful, the value of istate will be less than zero and msg
will contain additional information.
You can use the function dasrt_options to set optional parameters for dasrt.

See also: [daspk], page 391, [dasrt], page 397, [lsode], page 389.

[Loadable Function]dasrt_options (opt, val )
When called with two arguments, this function allows you set options parameters for
the function dasrt. Given one argument, dasrt_options returns the value of the
corresponding option. If no arguments are supplied, the names of all the available
options and their current values are displayed.
Options include

"absolute tolerance"
Absolute tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the relative tolerance must
also be a vector of the same length.

"relative tolerance"
Relative tolerance. May be either vector or scalar. If a vector, it must
match the dimension of the state vector, and the absolute tolerance must
also be a vector of the same length.
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The local error test applied at each integration step is
abs (local error in x(i)) <= ...

rtol(i) * abs (Y(i)) + atol(i)

"initial step size"
Differential-algebraic problems may occasionally suffer from severe scaling
difficulties on the first step. If you know a great deal about the scaling
of your problem, you can help to alleviate this problem by specifying an
initial stepsize.

"maximum order"
Restrict the maximum order of the solution method. This option must
be between 1 and 5, inclusive.

"maximum step size"
Setting the maximum stepsize will avoid passing over very large regions.

"step limit"
Maximum number of integration steps to attempt on a single call to the
underlying Fortran code.

See K. E. Brenan, et al., Numerical Solution of Initial-Value Problems in Differential-
Algebraic Equations, North-Holland (1989) for more information about the implementation
of Dassl.
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24 Optimization

Octave comes with support for solving various kinds of optimization problems. Specifically
Octave can solve problems in Linear Programming, Quadratic Programming, Nonlinear
Programming, and Linear Least Squares Minimization.

24.1 Linear Programming

Octave can solve Linear Programming problems using the glpk function. That is, Octave
can solve

min
x
cTx

subject to the linear constraints Ax = b where x ≥ 0.
The glpk function also supports variations of this problem.

[Function File][xopt, fmin, status, extra] = glpk (c, a, b, lb, ub, ctype,
vartype, sense, param )

Solve a linear program using the GNU GLPK library. Given three arguments, glpk
solves the following standard LP:

min
x
CTx

subject to

Ax = b x ≥ 0

but may also solve problems of the form

[min
x
|max

x
]CTx

subject to

Ax[= | ≤ | ≥]b LB ≤ x ≤ UB

Input arguments:

c A column array containing the objective function coefficients.

a A matrix containing the constraints coefficients.

b A column array containing the right-hand side value for each constraint
in the constraint matrix.

lb An array containing the lower bound on each of the variables. If lb is not
supplied, the default lower bound for the variables is zero.

ub An array containing the upper bound on each of the variables. If ub is
not supplied, the default upper bound is assumed to be infinite.
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ctype An array of characters containing the sense of each constraint in the
constraint matrix. Each element of the array may be one of the following
values

"F" A free (unbounded) constraint (the constraint is ignored).

"U" An inequality constraint with an upper bound (A(i,:)*x <=
b(i)).

"S" An equality constraint (A(i,:)*x = b(i)).

"L" An inequality with a lower bound (A(i,:)*x >= b(i)).

"D" An inequality constraint with both upper and lower bounds
(A(i,:)*x >= -b(i) and (A(i,:)*x <= b(i)).

vartype A column array containing the types of the variables.

"C" A continuous variable.

"I" An integer variable.

sense If sense is 1, the problem is a minimization. If sense is -1, the problem is
a maximization. The default value is 1.

param A structure containing the following parameters used to define the be-
havior of solver. Missing elements in the structure take on default values,
so you only need to set the elements that you wish to change from the
default.
Integer parameters:

msglev (LPX_K_MSGLEV, default: 1)
Level of messages output by solver routines:

0 No output.

1 Error messages only.

2 Normal output .

3 Full output (includes informational messages).

scale (LPX_K_SCALE, default: 1)
Scaling option:

0 No scaling.

1 Equilibration scaling.

2 Geometric mean scaling, then equilibration scal-
ing.

dual (LPX_K_DUAL, default: 0)
Dual simplex option:

0 Do not use the dual simplex.

1 If initial basic solution is dual feasible, use the
dual simplex.
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price (LPX_K_PRICE, default: 1)
Pricing option (for both primal and dual simplex):

0 Textbook pricing.

1 Steepest edge pricing.

round (LPX_K_ROUND, default: 0)
Solution rounding option:

0 Report all primal and dual values "as is".

1 Replace tiny primal and dual values by exact
zero.

itlim (LPX_K_ITLIM, default: -1)
Simplex iterations limit. If this value is positive, it is de-
creased by one each time when one simplex iteration has been
performed, and reaching zero value signals the solver to stop
the search. Negative value means no iterations limit.

itcnt (LPX_K_OUTFRQ, default: 200)
Output frequency, in iterations. This parameter specifies how
frequently the solver sends information about the solution to
the standard output.

branch (LPX_K_BRANCH, default: 2)
Branching heuristic option (for MIP only):

0 Branch on the first variable.

1 Branch on the last variable.

2 Branch using a heuristic by Driebeck and Tomlin.

btrack (LPX_K_BTRACK, default: 2)
Backtracking heuristic option (for MIP only):

0 Depth first search.

1 Breadth first search.

2 Backtrack using the best projection heuristic.

presol (LPX_K_PRESOL, default: 1)
If this flag is set, the routine lpx simplex solves the problem
using the built-in LP presolver. Otherwise the LP presolver
is not used.

lpsolver (default: 1)
Select which solver to use. If the problem is a MIP problem
this flag will be ignored.

1 Revised simplex method.

2 Interior point method.
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save (default: 0)
If this parameter is nonzero, save a copy of the problem in
CPLEX LP format to the file ‘"outpb.lp"’. There is cur-
rently no way to change the name of the output file.

Real parameters:

relax (LPX_K_RELAX, default: 0.07)
Relaxation parameter used in the ratio test. If it is zero,
the textbook ratio test is used. If it is non-zero (should be
positive), Harris’ two-pass ratio test is used. In the latter case
on the first pass of the ratio test basic variables (in the case
of primal simplex) or reduced costs of non-basic variables (in
the case of dual simplex) are allowed to slightly violate their
bounds, but not more than relax*tolbnd or relax*toldj
(thus, relax is a percentage of tolbnd or toldj.

tolbnd (LPX_K_TOLBND, default: 10e-7)
Relative tolerance used to check if the current basic solution
is primal feasible. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

toldj (LPX_K_TOLDJ, default: 10e-7)
Absolute tolerance used to check if the current basic solution
is dual feasible. It is not recommended that you change this
parameter unless you have a detailed understanding of its
purpose.

tolpiv (LPX_K_TOLPIV, default: 10e-9)
Relative tolerance used to choose eligible pivotal elements of
the simplex table. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

objll (LPX_K_OBJLL, default: -DBL_MAX)
Lower limit of the objective function. If on the phase II the
objective function reaches this limit and continues decreasing,
the solver stops the search. This parameter is used in the dual
simplex method only.

objul (LPX_K_OBJUL, default: +DBL_MAX)
Upper limit of the objective function. If on the phase II the
objective function reaches this limit and continues increasing,
the solver stops the search. This parameter is used in the dual
simplex only.

tmlim (LPX_K_TMLIM, default: -1.0)
Searching time limit, in seconds. If this value is positive, it
is decreased each time when one simplex iteration has been
performed by the amount of time spent for the iteration, and
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reaching zero value signals the solver to stop the search. Neg-
ative value means no time limit.

outdly (LPX_K_OUTDLY, default: 0.0)
Output delay, in seconds. This parameter specifies how long
the solver should delay sending information about the solu-
tion to the standard output. Non-positive value means no
delay.

tolint (LPX_K_TOLINT, default: 10e-5)
Relative tolerance used to check if the current basic solution
is integer feasible. It is not recommended that you change
this parameter unless you have a detailed understanding of
its purpose.

tolobj (LPX_K_TOLOBJ, default: 10e-7)
Relative tolerance used to check if the value of the objective
function is not better than in the best known integer feasible
solution. It is not recommended that you change this param-
eter unless you have a detailed understanding of its purpose.

Output values:

xopt The optimizer (the value of the decision variables at the optimum).

fopt The optimum value of the objective function.

status Status of the optimization.
Simplex Method:

180 (LPX_OPT)
Solution is optimal.

181 (LPX_FEAS)
Solution is feasible.

182 (LPX_INFEAS)
Solution is infeasible.

183 (LPX_NOFEAS)
Problem has no feasible solution.

184 (LPX_UNBND)
Problem has no unbounded solution.

185 (LPX_UNDEF)
Solution status is undefined.

Interior Point Method:

150 (LPX_T_UNDEF)
The interior point method is undefined.

151 (LPX_T_OPT)
The interior point method is optimal.
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Mixed Integer Method:

170 (LPX_I_UNDEF)
The status is undefined.

171 (LPX_I_OPT)
The solution is integer optimal.

172 (LPX_I_FEAS)
Solution integer feasible but its optimality has not been
proven

173 (LPX_I_NOFEAS)
No integer feasible solution.

If an error occurs, status will contain one of the following codes:

204 (LPX_E_FAULT)
Unable to start the search.

205 (LPX_E_OBJLL)
Objective function lower limit reached.

206 (LPX_E_OBJUL)
Objective function upper limit reached.

207 (LPX_E_ITLIM)
Iterations limit exhausted.

208 (LPX_E_TMLIM)
Time limit exhausted.

209 (LPX_E_NOFEAS)
No feasible solution.

210 (LPX_E_INSTAB)
Numerical instability.

211 (LPX_E_SING)
Problems with basis matrix.

212 (LPX_E_NOCONV)
No convergence (interior).

213 (LPX_E_NOPFS)
No primal feasible solution (LP presolver).

214 (LPX_E_NODFS)
No dual feasible solution (LP presolver).

extra A data structure containing the following fields:

lambda Dual variables.

redcosts Reduced Costs.

time Time (in seconds) used for solving LP/MIP problem.
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mem Memory (in bytes) used for solving LP/MIP problem (this is
not available if the version of GLPK is 4.15 or later).

Example:
c = [10, 6, 4]’;
a = [ 1, 1, 1;

10, 4, 5;
2, 2, 6];

b = [100, 600, 300]’;
lb = [0, 0, 0]’;
ub = [];
ctype = "UUU";
vartype = "CCC";
s = -1;

param.msglev = 1;
param.itlim = 100;

[xmin, fmin, status, extra] = ...
glpk (c, a, b, lb, ub, ctype, vartype, s, param);

24.2 Quadratic Programming

Octave can also solve Quadratic Programming problems, this is

min
x

1
2
xTHx+ xT q

subject to
Ax = b lb ≤ x ≤ ub Alb ≤ Ain ≤ Aub

[Function File][x, obj, info, lambda] = qp (x0, H, q, A, b, lb, ub, A_lb,
A_in, A_ub )

Solve the quadratic program

min
x

1
2
xTHx+ xT q

subject to
Ax = b lb ≤ x ≤ ub Alb ≤ Ain ≤ Aub

using a null-space active-set method.
Any bound (A, b, lb, ub, A lb, A ub) may be set to the empty matrix ([]) if not
present. If the initial guess is feasible the algorithm is faster.
The value info is a structure with the following fields:

solveiter
The number of iterations required to find the solution.

info An integer indicating the status of the solution, as follows:



408 GNU Octave

0 The problem is feasible and convex. Global solution found.

1 The problem is not convex. Local solution found.

2 The problem is not convex and unbounded.

3 Maximum number of iterations reached.

6 The problem is infeasible.

24.3 Nonlinear Programming

Octave can also perform general nonlinear minimization using a successive quadratic pro-
gramming solver.

[Function File][x, obj, info, iter, nf, lambda] = sqp (x, phi, g, h, lb,
ub, maxiter, tolerance )

Solve the nonlinear program
min

x
φ(x)

subject to
g(x) = 0 h(x) ≥ 0 lb ≤ x ≤ ub

using a successive quadratic programming method.

The first argument is the initial guess for the vector x.

The second argument is a function handle pointing to the objective function. The
objective function must be of the form

y = phi (x)

in which x is a vector and y is a scalar.

The second argument may also be a 2- or 3-element cell array of function handles.
The first element should point to the objective function, the second should point to
a function that computes the gradient of the objective function, and the third should
point to a function to compute the hessian of the objective function. If the gradient
function is not supplied, the gradient is computed by finite differences. If the hessian
function is not supplied, a BFGS update formula is used to approximate the hessian.

If supplied, the gradient function must be of the form

g = gradient (x)

in which x is a vector and g is a vector.

If supplied, the hessian function must be of the form

h = hessian (x)

in which x is a vector and h is a matrix.

The third and fourth arguments are function handles pointing to functions that com-
pute the equality constraints and the inequality constraints, respectively.

If your problem does not have equality (or inequality) constraints, you may pass an
empty matrix for cef (or cif ).

If supplied, the equality and inequality constraint functions must be of the form
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r = f (x)

in which x is a vector and r is a vector.

The third and fourth arguments may also be 2-element cell arrays of function handles.
The first element should point to the constraint function and the second should point
to a function that computes the gradient of the constraint function:

(
∂f(x)
∂x1

,
∂f(x)
∂x2

, . . . ,
∂f(x)
∂xN

)T

The fifth and sixth arguments are vectors containing lower and upper bounds on x.
These must be consistent with equality and inequality constraints g and h. If the
bounds are not specified, or are empty, they are set to -realmax and realmax by
default.

The seventh argument is max. number of iterations. If not specified, the default value
is 100.

The eighth argument is tolerance for stopping criteria. If not specified, the default
value is eps.

Here is an example of calling sqp:

function r = g (x)
r = [ sumsq(x)-10;

x(2)*x(3)-5*x(4)*x(5);
x(1)^3+x(2)^3+1 ];

endfunction

function obj = phi (x)
obj = exp(prod(x)) - 0.5*(x(1)^3+x(2)^3+1)^2;

endfunction

x0 = [-1.8; 1.7; 1.9; -0.8; -0.8];

[x, obj, info, iter, nf, lambda] = sqp (x0, @phi, @g, [])

x =

-1.71714
1.59571
1.82725

-0.76364
-0.76364

obj = 0.053950
info = 101
iter = 8
nf = 10
lambda =
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-0.0401627
0.0379578
-0.0052227

The value returned in info may be one of the following:

101 The algorithm terminated because the norm of the last step was less than
tol * norm (x)) (the value of tol is currently fixed at sqrt (eps)—edit
‘sqp.m’ to modify this value.

102 The BFGS update failed.

103 The maximum number of iterations was reached (the maximum number
of allowed iterations is currently fixed at 100—edit ‘sqp.m’ to increase
this value).

See also: [qp], page 407.

24.4 Linear Least Squares

Octave also supports linear least squares minimization. That is, Octave can find the param-
eter b such that the model y = xb fits data (x, y) as well as possible, assuming zero-mean
Gaussian noise. If the noise is assumed to be isotropic the problem can be solved using the
‘\’ or ‘/’ operators, or the ols function. In the general case where the noise is assumed to
be anisotropic the gls is needed.

[Function File][beta, sigma, r] = ols (y, x )
Ordinary least squares estimation for the multivariate model y = xb+ e with ē = 0,
and cov(vec(e)) = kron (s, I) where y is a t × p matrix, x is a t × k matrix, b is a
k × p matrix, and e is a t× p matrix.
Each row of y and x is an observation and each column a variable.
The return values beta, sigma, and r are defined as follows.

beta The OLS estimator for b, beta = pinv (x) * y , where pinv (x) denotes
the pseudoinverse of x.

sigma The OLS estimator for the matrix s,
sigma = (y-x*beta)’
* (y-x*beta)
/ (t-rank(x))

r The matrix of OLS residuals, r = y - x * beta .

[Function File][beta, v, r] = gls (y, x, o )
Generalized least squares estimation for the multivariate model y = xb+ e with ē = 0
and cov(vec(e)) = (s2)o, where y is a t × p matrix, x is a t × k matrix, b is a k × p
matrix, e is a t× p matrix, and o is a tp× tp matrix.
Each row of y and x is an observation and each column a variable. The return values
beta, v, and r are defined as follows.

beta The GLS estimator for b.
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v The GLS estimator for s2.

r The matrix of GLS residuals, r = y − xbeta.

[Function File]x = lsqnonneg (c, d )
[Function File]x = lsqnonneg (c, d, x0 )
[Function File][x, resnorm] = lsqnonneg (. . . )
[Function File][x, resnorm, residual] = lsqnonneg (. . . )
[Function File][x, resnorm, residual, exitflag] = lsqnonneg (. . . )
[Function File][x, resnorm, residual, exitflag, output] = lsqnonneg

(. . . )
[Function File][x, resnorm, residual, exitflag, output, lambda] =

lsqnonneg (. . . )
Minimize norm (c*x-d) subject to x >= 0. c and d must be real. x0 is an optional
initial guess for x.
Outputs:
• resnorm

The squared 2-norm of the residual: norm(c*x-d)^2
• residual

The residual: d-c*x

• exitflag
An indicator of convergence. 0 indicates that the iteration count was exceeded,
and therefore convergence was not reached; >0 indicates that the algorithm con-
verged. (The algorithm is stable and will converge given enough iterations.)

• output
A structure with two fields:
• "algorithm": The algorithm used ("nnls")
• "iterations": The number of iterations taken.

• lambda
Not implemented.

See also: [optimset], page 411.

[Function File]optimset ()
[Function File]optimset (par, val, . . . )
[Function File]optimset (old, par, val, . . . )
[Function File]optimset (old, new )

Create options struct for optimization functions.

[Function File]optimget (options, parname )
[Function File]optimget (options, parname, default )

Return a specific option from a structure created by optimset. If parname is not a
field of the options structure, return default if supplied, otherwise return an empty
matrix.
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25 Statistics

Octave has support for various statistical methods. This includes basic descriptive statistics,
statistical tests, random number generation, and much more.

The functions that analyze data all assume that multidimensional data is arranged in
a matrix where each row is an observation, and each column is a variable. So, the matrix
defined by

a = [ 0.9, 0.7;
0.1, 0.1;
0.5, 0.4 ];

contains three observations from a two-dimensional distribution. While this is the default
data arrangement, most functions support different arrangements.

It should be noted that the statistics functions don’t test for data containing NaN, NA,
or Inf. Such values need to be handled explicitly.

25.1 Descriptive Statistics

Octave can compute various statistics such as the moments of a data set.

[Function File]mean (x, dim, opt )
If x is a vector, compute the mean of the elements of x

mean(x) = x̄ =
1
N

N∑
i=1

xi

If x is a matrix, compute the mean for each column and return them in a row vector.
With the optional argument opt, the kind of mean computed can be selected. The
following options are recognized:

"a" Compute the (ordinary) arithmetic mean. This is the default.

"g" Compute the geometric mean.

"h" Compute the harmonic mean.

If the optional argument dim is supplied, work along dimension dim.
Both dim and opt are optional. If both are supplied, either may appear first.

[Function File]median (x, dim )
If x is a vector, compute the median value of the elements of x. If the elements of x
are sorted, the median is defined as

median(x) =
{
x(dN/2e), N odd;
(x(N/2) + x(N/2 + 1))/2, N even.

If x is a matrix, compute the median value for each column and return them in a row
vector. If the optional dim argument is given, operate along this dimension.

See also: [std], page 415, [mean], page 413.
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[Function File]q = quantile (x, p )
[Function File]q = quantile (x, p, dim )
[Function File]q = quantile (x, p, dim, method )

For a sample, x, calculate the quantiles, q, corresponding to the cumulative probability
values in p. All non-numeric values (NaNs) of x are ignored.
If x is a matrix, compute the quantiles for each column and return them in a matrix,
such that the i-th row of q contains the p(i)th quantiles of each column of x.
The optional argument dim determines the dimension along which the percentiles are
calculated. If dim is omitted, and x is a vector or matrix, it defaults to 1 (column wise
quantiles). In the instance that x is a N-d array, dim defaults to the first dimension
whose size greater than unity.
The methods available to calculate sample quantiles are the nine methods used by R
(http://www.r-project.org/). The default value is METHOD = 5.
Discontinuous sample quantile methods 1, 2, and 3
1. Method 1: Inverse of empirical distribution function.
2. Method 2: Similar to method 1 but with averaging at discontinuities.
3. Method 3: SAS definition: nearest even order statistic.

Continuous sample quantile methods 4 through 9, where p(k) is the linear interpola-
tion function respecting each methods’ representative cdf.
4. Method 4: p(k) = k / n. That is, linear interpolation of the empirical cdf.
5. Method 5: p(k) = (k - 0.5) / n. That is a piecewise linear function where the

knots are the values midway through the steps of the empirical cdf.
6. Method 6: p(k) = k / (n + 1).
7. Method 7: p(k) = (k - 1) / (n - 1).
8. Method 8: p(k) = (k - 1/3) / (n + 1/3). The resulting quantile estimates are

approximately median-unbiased regardless of the distribution of x.
9. Method 9: p(k) = (k - 3/8) / (n + 1/4). The resulting quantile estimates are

approximately unbiased for the expected order statistics if x is normally dis-
tributed.

Hyndman and Fan (1996) recommend method 8. Maxima, S, and R (versions prior to
2.0.0) use 7 as their default. Minitab and SPSS use method 6. matlab uses method
5.
References:
• Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language.

Wadsworth & Brooks/Cole.
• Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages,

American Statistician, 50, 361–365.
• R: A Language and Environment for Statistical Computing;

http://cran.r-project.org/doc/manuals/fullrefman.pdf.

[Function File]y = prctile (x, p )
[Function File]q = prctile (x, p, dim )

For a sample x, compute the quantiles, y, corresponding to the cumulative probability
values, P, in percent. All non-numeric values (NaNs) of X are ignored.

http://cran.r-project.org/doc/manuals/fullrefman.pdf
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If x is a matrix, compute the percentiles for each column and return them in a matrix,
such that the i-th row of y contains the p(i)th percentiles of each column of x.

The optional argument dim determines the dimension along which the percentiles are
calculated. If dim is omitted, and x is a vector or matrix, it defaults to 1 (column wise
quantiles). In the instance that x is a N-d array, dim defaults to the first dimension
whose size greater than unity.

[Function File]meansq (x )
[Function File]meansq (x, dim )

For vector arguments, return the mean square of the values. For matrix arguments,
return a row vector containing the mean square of each column. With the optional
dim argument, returns the mean squared of the values along this dimension.

[Function File]std (x )
[Function File]std (x, opt )
[Function File]std (x, opt, dim )

If x is a vector, compute the standard deviation of the elements of x.

std(x) = σ(x) =

√∑N
i=1(xi − x̄)2
N − 1

where x̄ is the mean value of x. If x is a matrix, compute the standard deviation for
each column and return them in a row vector.

The argument opt determines the type of normalization to use. Valid values are

0: normalizes withN−1, provides the square root of best unbiased estimator
of the variance [default]

1: normalizes with N , this provides the square root of the second moment
around the mean

The third argument dim determines the dimension along which the standard deviation
is calculated.

See also: [mean], page 413, [median], page 413.

[Function File]var (x )
For vector arguments, return the (real) variance of the values. For matrix arguments,
return a row vector containing the variance for each column.

The argument opt determines the type of normalization to use. Valid values are

0: Normalizes with N − 1, provides the best unbiased estimator of the vari-
ance [default].

1: Normalizes with N , this provides the second moment around the mean.

The third argument dim determines the dimension along which the variance is calcu-
lated.
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[Function File][m, f, c] = mode (x, dim )
Count the most frequently appearing value. mode counts the frequency along the first
non-singleton dimension and if two or more values have the same frequency returns
the smallest of the two in m. The dimension along which to count can be specified
by the dim parameter.
The variable f counts the frequency of each of the most frequently occurring elements.
The cell array c contains all of the elements with the maximum frequency .

[Function File]cov (x, y )
Compute covariance.
If each row of x and y is an observation and each column is a variable, the (i, j)-th
entry of cov (x, y) is the covariance between the i-th variable in x and the j-th
variable in y.

σij =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ)

where x̄ and ȳ are the mean values of x and y. If called with one argument, compute
cov (x, x).

[Function File]cor (x, y )
Compute correlation.
The (i, j)-th entry of cor (x, y) is the correlation between the i-th variable in x and
the j-th variable in y.

corrcoef(x, y) =
cov(x, y)

std(x)std(y)

For matrices, each row is an observation and each column a variable; vectors are
always observations and may be row or column vectors.
cor (x) is equivalent to cor (x, x).
Note that the corrcoef function does the same as cor.

[Function File]corrcoef (x, y )
Compute correlation.
If each row of x and y is an observation and each column is a variable, the (i, j)-th
entry of corrcoef (x, y) is the correlation between the i-th variable in x and the
j-th variable in y.

corrcoef(x, y) =
cov(x, y)

std(x)std(y)

If called with one argument, compute corrcoef (x, x).

[Function File]kurtosis (x, dim )
If x is a vector of length N , return the kurtosis

kurtosis(x) =
1

Nσ(x)4

N∑
i=1

(xi − x̄)4 − 3
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where x̄ is the mean value of x.
of x. If x is a matrix, return the kurtosis over the first non-singleton dimension.
The optional argument dim can be given to force the kurtosis to be given over that
dimension.

[Function File]skewness (x, dim )
If x is a vector of length n, return the skewness

skewness(x) =
1

Nσ(x)3

N∑
i=1

(xi − x̄)3

where x̄ is the mean value of x.
of x. If x is a matrix, return the skewness along the first non-singleton dimension of
the matrix. If the optional dim argument is given, operate along this dimension.

[Function File]statistics (x )
If x is a matrix, return a matrix with the minimum, first quartile, median, third
quartile, maximum, mean, standard deviation, skewness and kurtosis of the columns
of x as its columns.
If x is a vector, calculate the statistics along the non-singleton dimension.

[Function File]moment (x, p, opt, dim )
If x is a vector, compute the p-th moment of x.
If x is a matrix, return the row vector containing the p-th moment of each column.
With the optional string opt, the kind of moment to be computed can be specified. If
opt contains "c" or "a", central and/or absolute moments are returned. For example,

moment (x, 3, "ac")

computes the third central absolute moment of x.
If the optional argument dim is supplied, work along dimension dim.

25.2 Basic Statistical Functions

Octave also supports various helpful statistical functions.

[Function File]mahalanobis (x, y )
Return the Mahalanobis’ D-square distance between the multivariate samples x and
y, which must have the same number of components (columns), but may have a
different number of observations (rows).

[Function File]center (x )
[Function File]center (x, dim )

If x is a vector, subtract its mean. If x is a matrix, do the above for each column. If
the optional argument dim is given, perform the above operation along this dimension

[Function File]studentize (x, dim )
If x is a vector, subtract its mean and divide by its standard deviation.
If x is a matrix, do the above along the first non-singleton dimension. If the optional
argument dim is given then operate along this dimension.
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[Function File]c = nchoosek (n, k )
Compute the binomial coefficient or all combinations of n. If n is a scalar then,
calculate the binomial coefficient of n and k, defined as

(
n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!
=

n!
k!(n− k)!

If n is a vector generate all combinations of the elements of n, taken k at a time, one
row per combination. The resulting c has size [nchoosek (length (n), k), k].
nchoosek works only for non-negative integer arguments; use bincoeff for non-
integer scalar arguments and for using vector arguments to compute many coefficients
at once.

See also: [bincoeff], page 308.

[Function File]n = histc (y, edges )
[Function File]n = histc (y, edges, dim )
[Function File][n, idx] = histc (. . . )

Produce histogram counts.
When y is a vector, the function counts the number of elements of y that fall in
the histogram bins defined by edges. This must be a vector of monotonically non-
decreasing values that define the edges of the histogram bins. So, n (k) contains the
number of elements in y for which edges (k) <= y < edges (k+1). The final element
of n contains the number of elements of y that was equal to the last element of edges.
When y is a N -dimensional array, the same operation as above is repeated along
dimension dim. If this argument is given, the operation is performed along the first
non-singleton dimension.
If a second output argument is requested an index matrix is also returned. The idx
matrix has same size as y. Each element of idx contains the index of the histogram
bin in which the corresponding element of y was counted.

See also: [hist], page 209.

[Function File]perms (v )
Generate all permutations of v, one row per permutation. The result has size
factorial (n) * n , where n is the length of v.
As an example, perms([1, 2, 3]) returns the matrix

1 2 3
2 1 3
1 3 2
2 3 1
3 1 2
3 2 1

[Function File]values (x )
Return the different values in a column vector, arranged in ascending order.
As an example, values([1, 2, 3, 1]) returns the vector [1, 2, 3].
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[Function File][t, l_x] = table (x )
[Function File][t, l_x, l_y] = table (x, y )

Create a contingency table t from data vectors. The l vectors are the corresponding
levels.
Currently, only 1- and 2-dimensional tables are supported.

[Function File]spearman (x, y )
Compute Spearman’s rank correlation coefficient rho for each of the variables specified
by the input arguments.
For matrices, each row is an observation and each column a variable; vectors are
always observations and may be row or column vectors.
spearman (x) is equivalent to spearman (x, x).
For two data vectors x and y, Spearman’s rho is the correlation of the ranks of x and
y.
If x and y are drawn from independent distributions, rho has zero mean and variance
1 / (n - 1), and is asymptotically normally distributed.

[Function File]run_count (x, n )
Count the upward runs along the first non-singleton dimension of x of length 1, 2,
. . . , n-1 and greater than or equal to n. If the optional argument dim is given operate
along this dimension

[Function File]ranks (x, dim )
Return the ranks of x along the first non-singleton dimension adjust for ties. If the
optional argument dim is given, operate along this dimension.

[Function File]range (x )
[Function File]range (x, dim )

If x is a vector, return the range, i.e., the difference between the maximum and the
minimum, of the input data.
If x is a matrix, do the above for each column of x.
If the optional argument dim is supplied, work along dimension dim.

[Function File]probit (p )
For each component of p, return the probit (the quantile of the standard normal
distribution) of p.

[Function File]logit (p )
For each component of p, return the logit of p defined as

logit(p) = log
( p

1− p

)
[Function File]cloglog (x )

Return the complementary log-log function of x, defined as

cloglog(x) = − log(− log(x))
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[Function File]kendall (x, y )
Compute Kendall’s tau for each of the variables specified by the input arguments.
For matrices, each row is an observation and each column a variable; vectors are
always observations and may be row or column vectors.
kendall (x) is equivalent to kendall (x, x).
For two data vectors x, y of common length n, Kendall’s tau is the correlation of the
signs of all rank differences of x and y ; i.e., if both x and y have distinct entries, then

τ =
1

n(n− 1)

∑
i,j

sign(qi − qj)sign(ri − rj)

in which the qi and ri are the ranks of x and y, respectively.
If x and y are drawn from independent distributions, Kendall’s tau is asymptotically
normal with mean 0 and variance 2(2n+5)

9n(n−1)
.

[Function File]iqr (x, dim )
If x is a vector, return the interquartile range, i.e., the difference between the upper
and lower quartile, of the input data.
If x is a matrix, do the above for first non-singleton dimension of x. If the option dim
argument is given, then operate along this dimension.

[Function File]cut (x, breaks )
Create categorical data out of numerical or continuous data by cutting into intervals.
If breaks is a scalar, the data is cut into that many equal-width intervals. If breaks
is a vector of break points, the category has length (breaks) - 1 groups.
The returned value is a vector of the same size as x telling which group each point in
x belongs to. Groups are labelled from 1 to the number of groups; points outside the
range of breaks are labelled by NaN.

25.3 Statistical Plots

Octave can create Quantile Plots (QQ-Plots), and Probability Plots (PP-Plots). These are
simple graphical tests for determining if a data set comes from a certain distribution.

Note that Octave can also show histograms of data using the hist function as described
in Section 15.1.1 [Two-Dimensional Plots], page 205.

[Function File][q, s] = qqplot (x, dist, params )
Perform a QQ-plot (quantile plot).
If F is the CDF of the distribution dist with parameters params and G its inverse,
and x a sample vector of length n, the QQ-plot graphs ordinate s(i) = i-th largest
element of x versus abscissa q(if) = G((i - 0.5)/n).
If the sample comes from F except for a transformation of location and scale, the
pairs will approximately follow a straight line.
The default for dist is the standard normal distribution. The optional argument
params contains a list of parameters of dist. For example, for a quantile plot of the
uniform distribution on [2,4] and x, use
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qqplot (x, "uniform", 2, 4)

dist can be any string for which a function dist inv that calculates the inverse CDF
of distribution dist exists.

If no output arguments are given, the data are plotted directly.

[Function File][p, y] = ppplot (x, dist, params )
Perform a PP-plot (probability plot).

If F is the CDF of the distribution dist with parameters params and x a sample vector
of length n, the PP-plot graphs ordinate y(i) = F (i-th largest element of x) versus
abscissa p(i) = (i - 0.5)/n. If the sample comes from F, the pairs will approximately
follow a straight line.

The default for dist is the standard normal distribution. The optional argument
params contains a list of parameters of dist. For example, for a probability plot of
the uniform distribution on [2,4] and x, use

ppplot (x, "uniform", 2, 4)

dist can be any string for which a function dist cdf that calculates the CDF of
distribution dist exists.

If no output arguments are given, the data are plotted directly.

25.4 Tests

Octave can perform several different statistical tests. The following table summarizes the
available tests.

Hypothesis Test Functions

Equal mean values anova, hotelling test2, t test 2,
welch test, wilcoxon test, z test 2

Equal medians kruskal wallis test, sign test
Equal variances bartlett test, manova, var test
Equal distributions chisquare test homogeneity,

kolmogorov smirnov test 2, u test
Equal marginal frequencies mcnemar test
Equal success probabilities prop test 2
Independent observations chisquare test independence,

run test
Uncorrelated observations cor test
Given mean value hotelling test, t test, z test
Observations from distribution kolmogorov smirnov test
Regression f test regression, t test regression

The tests return a p-value that describes the outcome of the test. Assuming that the
test hypothesis is true, the p-value is the probability of obtaining a worse result than the
observed one. So large p-values corresponds to a successful test. Usually a test hypothesis
is accepted if the p-value exceeds 0.05.
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[Function File][pval, f, df_b, df_w] = anova (y, g )
Perform a one-way analysis of variance (ANOVA). The goal is to test whether the
population means of data taken from k different groups are all equal.
Data may be given in a single vector y with groups specified by a corresponding
vector of group labels g (e.g., numbers from 1 to k). This is the general form which
does not impose any restriction on the number of data in each group or the group
labels.
If y is a matrix and g is omitted, each column of y is treated as a group. This form
is only appropriate for balanced ANOVA in which the numbers of samples from each
group are all equal.
Under the null of constant means, the statistic f follows an F distribution with df b
and df w degrees of freedom.
The p-value (1 minus the CDF of this distribution at f ) is returned in pval.
If no output argument is given, the standard one-way ANOVA table is printed.

[Function File][pval, chisq, df] = bartlett_test (x1, . . . )
Perform a Bartlett test for the homogeneity of variances in the data vectors x1, x2,
. . . , xk, where k > 1.
Under the null of equal variances, the test statistic chisq approximately follows a
chi-square distribution with df degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.
If no output argument is given, the p-value is displayed.

[Function File][pval, chisq, df] = chisquare_test_homogeneity (x, y, c )
Given two samples x and y, perform a chisquare test for homogeneity of the null
hypothesis that x and y come from the same distribution, based on the partition
induced by the (strictly increasing) entries of c.
For large samples, the test statistic chisq approximately follows a chisquare distribu-
tion with df = length (c) degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.
If no output argument is given, the p-value is displayed.

[Function File][pval, chisq, df] = chisquare_test_independence (x )
Perform a chi-square test for independence based on the contingency table x. Under
the null hypothesis of independence, chisq approximately has a chi-square distribution
with df degrees of freedom.
The p-value (1 minus the CDF of this distribution at chisq) of the test is returned in
pval.
If no output argument is given, the p-value is displayed.

[Function File]cor_test (x, y, alt, method )
Test whether two samples x and y come from uncorrelated populations.
The optional argument string alt describes the alternative hypothesis, and can be
"!=" or "<>" (non-zero), ">" (greater than 0), or "<" (less than 0). The default is
the two-sided case.
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The optional argument string method specifies on which correlation coefficient the test
should be based. If method is "pearson" (default), the (usual) Pearson’s product
moment correlation coefficient is used. In this case, the data should come from a
bivariate normal distribution. Otherwise, the other two methods offer nonparametric
alternatives. If method is "kendall", then Kendall’s rank correlation tau is used. If
method is "spearman", then Spearman’s rank correlation rho is used. Only the first
character is necessary.

The output is a structure with the following elements:

pval The p-value of the test.

stat The value of the test statistic.

dist The distribution of the test statistic.

params The parameters of the null distribution of the test statistic.

alternative
The alternative hypothesis.

method The method used for testing.

If no output argument is given, the p-value is displayed.

[Function File][pval, f, df_num, df_den] = f_test_regression (y, x, rr,
r )

Perform an F test for the null hypothesis rr * b = r in a classical normal regression
model y = X * b + e.

Under the null, the test statistic f follows an F distribution with df num and df den
degrees of freedom.

The p-value (1 minus the CDF of this distribution at f ) is returned in pval.

If not given explicitly, r = 0.

If no output argument is given, the p-value is displayed.

[Function File][pval, tsq] = hotelling_test (x, m )
For a sample x from a multivariate normal distribution with unknown mean and
covariance matrix, test the null hypothesis that mean (x) == m .

Hotelling’s T 2 is returned in tsq. Under the null, (n − p)T 2/(p(n − 1)) has an F
distribution with p and n− p degrees of freedom, where n and p are the numbers of
samples and variables, respectively.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, tsq] = hotelling_test_2 (x, y )
For two samples x from multivariate normal distributions with the same number of
variables (columns), unknown means and unknown equal covariance matrices, test
the null hypothesis mean (x) == mean (y).

Hotelling’s two-sample T 2 is returned in tsq. Under the null,
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nx + ny − p− 1)T 2

p(nx + ny − 2)

has an F distribution with p and nx + ny − p − 1 degrees of freedom, where nx and
ny are the sample sizes and p is the number of variables.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, ks] = kolmogorov_smirnov_test (x, dist, params,
alt )

Perform a Kolmogorov-Smirnov test of the null hypothesis that the sample x comes
from the (continuous) distribution dist. I.e., if F and G are the CDFs corresponding
to the sample and dist, respectively, then the null is that F == G.
The optional argument params contains a list of parameters of dist. For example, to
test whether a sample x comes from a uniform distribution on [2,4], use

kolmogorov_smirnov_test(x, "uniform", 2, 4)

dist can be any string for which a function dist cdf that calculates the CDF of
distribution dist exists.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative F != G. In this
case, the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution. If alt
is ">", the one-sided alternative F > G is considered. Similarly for "<", the one-sided
alternative F > G is considered. In this case, the test statistic ks has a one-sided
Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value is displayed.

[Function File][pval, ks, d] = kolmogorov_smirnov_test_2 (x, y, alt )
Perform a 2-sample Kolmogorov-Smirnov test of the null hypothesis that the samples
x and y come from the same (continuous) distribution. I.e., if F and G are the CDFs
corresponding to the x and y samples, respectively, then the null is that F == G.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative F != G. In this
case, the test statistic ks follows a two-sided Kolmogorov-Smirnov distribution. If alt
is ">", the one-sided alternative F > G is considered. Similarly for "<", the one-sided
alternative F < G is considered. In this case, the test statistic ks has a one-sided
Kolmogorov-Smirnov distribution. The default is the two-sided case.
The p-value of the test is returned in pval.
The third returned value, d, is the test statistic, the maximum vertical distance
between the two cumulative distribution functions.
If no output argument is given, the p-value is displayed.

[Function File][pval, k, df] = kruskal_wallis_test (x1, . . . )
Perform a Kruskal-Wallis one-factor "analysis of variance".
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Suppose a variable is observed for k > 1 different groups, and let x1, . . . , xk be the
corresponding data vectors.
Under the null hypothesis that the ranks in the pooled sample are not affected by the
group memberships, the test statistic k is approximately chi-square with df = k - 1
degrees of freedom.
If the data contains ties (some value appears more than once) k is divided by
1 - sum ties / (n^3 - n)
where sum ties is the sum of t^2 - t over each group of ties where t is the number of
ties in the group and n is the total number of values in the input data. For more info
on this adjustment see "Use of Ranks in One-Criterion Variance Analysis" in Journal
of the American Statistical Association, Vol. 47, No. 260 (Dec 1952) by William H.
Kruskal and W. Allen Wallis.
The p-value (1 minus the CDF of this distribution at k) is returned in pval.
If no output argument is given, the p-value is displayed.

[Function File]manova (y, g )
Perform a one-way multivariate analysis of variance (MANOVA). The goal is to test
whether the p-dimensional population means of data taken from k different groups
are all equal. All data are assumed drawn independently from p-dimensional normal
distributions with the same covariance matrix.
The data matrix is given by y. As usual, rows are observations and columns are
variables. The vector g specifies the corresponding group labels (e.g., numbers from
1 to k).
The LR test statistic (Wilks’ Lambda) and approximate p-values are computed and
displayed.

[Function File][pval, chisq, df] = mcnemar_test (x )
For a square contingency table x of data cross-classified on the row and column
variables, McNemar’s test can be used for testing the null hypothesis of symmetry of
the classification probabilities.
Under the null, chisq is approximately distributed as chisquare with df degrees of
freedom.
The p-value (1 minus the CDF of this distribution at chisq) is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = prop_test_2 (x1, n1, x2, n2, alt )
If x1 and n1 are the counts of successes and trials in one sample, and x2 and n2
those in a second one, test the null hypothesis that the success probabilities p1 and
p2 are the same. Under the null, the test statistic z approximately follows a standard
normal distribution.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative p1 != p2. If
alt is ">", the one-sided alternative p1 > p2 is used. Similarly for "<", the one-sided
alternative p1 < p2 is used. The default is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.
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[Function File][pval, chisq] = run_test (x )
Perform a chi-square test with 6 degrees of freedom based on the upward runs in the
columns of x. Can be used to test whether x contains independent data.

The p-value of the test is returned in pval.

If no output argument is given, the p-value is displayed.

[Function File][pval, b, n] = sign_test (x, y, alt )
For two matched-pair samples x and y, perform a sign test of the null hypothesis
PROB (x > y) == PROB (x < y) == 1/2. Under the null, the test statistic b
roughly follows a binomial distribution with parameters n = sum (x != y) and p =
1/2.

With the optional argument alt, the alternative of interest can be selected. If alt is
"!=" or "<>", the null hypothesis is tested against the two-sided alternative PROB
(x < y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 ("x
is stochastically greater than y") is considered. Similarly for "<", the one-sided
alternative PROB (x > y) < 1/2 ("x is stochastically less than y") is considered. The
default is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = t_test (x, m, alt )
For a sample x from a normal distribution with unknown mean and variance, perform
a t-test of the null hypothesis mean (x) == m . Under the null, the test statistic t
follows a Student distribution with df = length (x) - 1 degrees of freedom.

With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) != m .
If alt is ">", the one-sided alternative mean (x) > m is considered. Similarly for "<",
the one-sided alternative mean (x) < m is considered. The default is the two-sided
case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = t_test_2 (x, y, alt )
For two samples x and y from normal distributions with unknown means and unknown
equal variances, perform a two-sample t-test of the null hypothesis of equal means.
Under the null, the test statistic t follows a Student distribution with df degrees of
freedom.

With the optional argument string alt, the alternative of interest can be selected.
If alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x)
!= mean (y). If alt is ">", the one-sided alternative mean (x) > mean (y) is used.
Similarly for "<", the one-sided alternative mean (x) < mean (y) is used. The default
is the two-sided case.

The p-value of the test is returned in pval.

If no output argument is given, the p-value of the test is displayed.
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[Function File][pval, t, df] = t_test_regression (y, x, rr, r, alt )
Perform an t test for the null hypothesis rr * b = r in a classical normal regression
model y = x * b + e . Under the null, the test statistic t follows a t distribution with
df degrees of freedom.
If r is omitted, a value of 0 is assumed.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative rr * b !=
r . If alt is ">", the one-sided alternative rr * b > r is used. Similarly for "<", the
one-sided alternative rr * b < r is used. The default is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = u_test (x, y, alt )
For two samples x and y, perform a Mann-Whitney U-test of the null hypothesis
PROB (x > y) == 1/2 == PROB (x < y). Under the null, the test statistic z
approximately follows a standard normal distribution. Note that this test is equivalent
to the Wilcoxon rank-sum test.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative PROB (x >
y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered.
Similarly for "<", the one-sided alternative PROB (x > y) < 1/2 is considered. The
default is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, f, df_num, df_den] = var_test (x, y, alt )
For two samples x and y from normal distributions with unknown means and unknown
variances, perform an F-test of the null hypothesis of equal variances. Under the
null, the test statistic f follows an F-distribution with df num and df den degrees of
freedom.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative var (x) !=
var (y). If alt is ">", the one-sided alternative var (x) > var (y) is used. Similarly
for "<", the one-sided alternative var (x) > var (y) is used. The default is the
two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, t, df] = welch_test (x, y, alt )
For two samples x and y from normal distributions with unknown means and unknown
and not necessarily equal variances, perform a Welch test of the null hypothesis of
equal means. Under the null, the test statistic t approximately follows a Student
distribution with df degrees of freedom.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) !=
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m . If alt is ">", the one-sided alternative mean(x) > m is considered. Similarly for
"<", the one-sided alternative mean(x) < m is considered. The default is the two-sided
case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = wilcoxon_test (x, y, alt )
For two matched-pair sample vectors x and y, perform a Wilcoxon signed-rank test
of the null hypothesis PROB (x > y) == 1/2. Under the null, the test statistic z
approximately follows a standard normal distribution when n > 25.
Warning: This function assumes a normal distribution for z and thus is invalid for n
<= 25.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative PROB (x >
y) != 1/2. If alt is ">", the one-sided alternative PROB (x > y) > 1/2 is considered.
Similarly for "<", the one-sided alternative PROB (x > y) < 1/2 is considered. The
default is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed.

[Function File][pval, z] = z_test (x, m, v, alt )
Perform a Z-test of the null hypothesis mean (x) == m for a sample x from a normal
distribution with unknown mean and known variance v. Under the null, the test
statistic z follows a standard normal distribution.
With the optional argument string alt, the alternative of interest can be selected. If
alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x) != m .
If alt is ">", the one-sided alternative mean (x) > m is considered. Similarly for "<",
the one-sided alternative mean (x) < m is considered. The default is the two-sided
case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed along with some
information.

[Function File][pval, z] = z_test_2 (x, y, v_x, v_y, alt )
For two samples x and y from normal distributions with unknown means and known
variances v x and v y, perform a Z-test of the hypothesis of equal means. Under the
null, the test statistic z follows a standard normal distribution.
With the optional argument string alt, the alternative of interest can be selected.
If alt is "!=" or "<>", the null is tested against the two-sided alternative mean (x)
!= mean (y). If alt is ">", the one-sided alternative mean (x) > mean (y) is used.
Similarly for "<", the one-sided alternative mean (x) < mean (y) is used. The default
is the two-sided case.
The p-value of the test is returned in pval.
If no output argument is given, the p-value of the test is displayed along with some
information.
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25.5 Models

[Function File][theta, beta, dev, dl, d2l, p] = logistic_regression
(y, x, print, theta, beta )

Perform ordinal logistic regression.

Suppose y takes values in k ordered categories, and let gamma_i (x) be the cumulative
probability that y falls in one of the first i categories given the covariate x. Then

[theta, beta] = logistic_regression (y, x)

fits the model

logit (gamma_i (x)) = theta_i - beta’ * x, i = 1 ... k-1

The number of ordinal categories, k, is taken to be the number of distinct values of
round (y). If k equals 2, y is binary and the model is ordinary logistic regression.
The matrix x is assumed to have full column rank.

Given y only, theta = logistic_regression (y) fits the model with baseline logit
odds only.

The full form is

[theta, beta, dev, dl, d2l, gamma]
= logistic_regression (y, x, print, theta, beta)

in which all output arguments and all input arguments except y are optional.

Setting print to 1 requests summary information about the fitted model to be dis-
played. Setting print to 2 requests information about convergence at each iteration.
Other values request no information to be displayed. The input arguments theta and
beta give initial estimates for theta and beta.

The returned value dev holds minus twice the log-likelihood.

The returned values dl and d2l are the vector of first and the matrix of second
derivatives of the log-likelihood with respect to theta and beta.

p holds estimates for the conditional distribution of y given x.

25.6 Distributions

Octave has functions for computing the Probability Density Function (PDF), the Cumu-
lative Distribution function (CDF), and the quantile (the inverse of the CDF) of a large
number of distributions.

The following table summarizes the supported distributions (in alphabetical order).
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Distribution PDF CDF Quantile

Beta betapdf betacdf betainv
Binomial binopdf binocdf binoinv
Cauchy cauchy pdf cauchy cdf cauchy inv
Chi-Square chi2pdf chi2cdf chi2inv
Univariate Discrete discrete pdf discrete cdf discrete inv
Empirical empirical pdf empirical cdf empirical inv
Exponential exppdf expcdf expinv
F fpdf fcdf finv
Gamma gampdf gamcdf gaminv
Geometric geopdf geocdf geoinv
Hypergeometric hygepdf hygecdf hygeinv
Kolmogorov Smirnov Not Available kolmogorov Not Available

smirnov cdf
Laplace laplace pdf laplace cdf laplace inv
Logistic logistic pdf logistic cdf logistic inv
Log-Normal lognpdf logncdf logninv
Pascal nbinpdf nbincdf nbininv
Univariate Normal normpdf normcdf norminv
Poisson poisspdf poisscdf poissinv
t (Student) tpdf tcdf tinv
Univariate Discrete unidpdf unidcdf unidinv
Uniform unifpdf unifcdf unifinv
Weibull wblpdf wblcdf wblinv

[Function File]betacdf (x, a, b )
For each element of x, returns the CDF at x of the beta distribution with parameters
a and b, i.e., PROB (beta (a, b) <= x).

[Function File]betainv (x, a, b )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
Beta distribution with parameters a and b.

[Function File]betapdf (x, a, b )
For each element of x, returns the PDF at x of the beta distribution with parameters
a and b.

[Function File]binocdf (x, n, p )
For each element of x, compute the CDF at x of the binomial distribution with
parameters n and p.

[Function File]binoinv (x, n, p )
For each element of x, compute the quantile at x of the binomial distribution with
parameters n and p.

[Function File]binopdf (x, n, p )
For each element of x, compute the probability density function (PDF) at x of the
binomial distribution with parameters n and p.
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[Function File]cauchy_cdf (x, lambda, sigma )
For each element of x, compute the cumulative distribution function (CDF) at x of
the Cauchy distribution with location parameter lambda and scale parameter sigma.
Default values are lambda = 0, sigma = 1.

[Function File]cauchy_inv (x, lambda, sigma )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
Cauchy distribution with location parameter lambda and scale parameter sigma. De-
fault values are lambda = 0, sigma = 1.

[Function File]cauchy_pdf (x, lambda, sigma )
For each element of x, compute the probability density function (PDF) at x of the
Cauchy distribution with location parameter lambda and scale parameter sigma > 0.
Default values are lambda = 0, sigma = 1.

[Function File]chi2cdf (x, n )
For each element of x, compute the cumulative distribution function (CDF) at x of
the chisquare distribution with n degrees of freedom.

[Function File]chi2inv (x, n )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
chisquare distribution with n degrees of freedom.

[Function File]chisquare_pdf (x, n )
For each element of x, compute the probability density function (PDF) at x of the
chisquare distribution with n degrees of freedom.

[Function File]discrete_cdf (x, v, p )
For each element of x, compute the cumulative distribution function (CDF) at x of a
univariate discrete distribution which assumes the values in v with probabilities p.

[Function File]discrete_inv (x, v, p )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
univariate distribution which assumes the values in v with probabilities p.

[Function File]discrete_pdf (x, v, p )
For each element of x, compute the probability density function (PDF) at x of a
univariate discrete distribution which assumes the values in v with probabilities p.

[Function File]empirical_cdf (x, data )
For each element of x, compute the cumulative distribution function (CDF) at x of
the empirical distribution obtained from the univariate sample data.

[Function File]empirical_inv (x, data )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
empirical distribution obtained from the univariate sample data.

[Function File]empirical_pdf (x, data )
For each element of x, compute the probability density function (PDF) at x of the
empirical distribution obtained from the univariate sample data.
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[Function File]expcdf (x, lambda )
For each element of x, compute the cumulative distribution function (CDF) at x of
the exponential distribution with mean lambda.
The arguments can be of common size or scalar.

[Function File]expinv (x, lambda )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
exponential distribution with mean lambda.

[Function File]exppdf (x, lambda )
For each element of x, compute the probability density function (PDF) of the expo-
nential distribution with mean lambda.

[Function File]fcdf (x, m, n )
For each element of x, compute the CDF at x of the F distribution with m and n
degrees of freedom, i.e., PROB (F (m, n) <= x).

[Function File]finv (x, m, n )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
F distribution with parameters m and n.

[Function File]fpdf (x, m, n )
For each element of x, compute the probability density function (PDF) at x of the F
distribution with m and n degrees of freedom.

[Function File]gamcdf (x, a, b )
For each element of x, compute the cumulative distribution function (CDF) at x of
the Gamma distribution with parameters a and b.

See also: [gamma], page 309, [gammaln], page 311, [gammainc], page 309, [gampdf],
page 432, [gaminv], page 432, [gamrnd], page 438.

[Function File]gaminv (x, a, b )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
Gamma distribution with parameters a and b.

See also: [gamma], page 309, [gammaln], page 311, [gammainc], page 309, [gampdf],
page 432, [gamcdf], page 432, [gamrnd], page 438.

[Function File]gampdf (x, a, b )
For each element of x, return the probability density function (PDF) at x of the
Gamma distribution with parameters a and b.

See also: [gamma], page 309, [gammaln], page 311, [gammainc], page 309, [gamcdf],
page 432, [gaminv], page 432, [gamrnd], page 438.

[Function File]geocdf (x, p )
For each element of x, compute the CDF at x of the geometric distribution with
parameter p.

[Function File]geoinv (x, p )
For each element of x, compute the quantile at x of the geometric distribution with
parameter p.
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[Function File]geopdf (x, p )
For each element of x, compute the probability density function (PDF) at x of the
geometric distribution with parameter p.

[Function File]hygecdf (x, t, m, n )
Compute the cumulative distribution function (CDF) at x of the hypergeometric
distribution with parameters t, m, and n. This is the probability of obtaining not more
than x marked items when randomly drawing a sample of size n without replacement
from a population of total size t containing m marked items.

The parameters t, m, and n must positive integers with m and n not greater than t.

[Function File]hygeinv (x, t, m, n )
For each element of x, compute the quantile at x of the hypergeometric distribution
with parameters t, m, and n.

The parameters t, m, and n must positive integers with m and n not greater than t.

[Function File]hygepdf (x, t, m, n )
Compute the probability density function (PDF) at x of the hypergeometric distribu-
tion with parameters t, m, and n. This is the probability of obtaining x marked items
when randomly drawing a sample of size n without replacement from a population of
total size t containing m marked items.

The arguments must be of common size or scalar.

[Function File]kolmogorov_smirnov_cdf (x, tol )
Return the CDF at x of the Kolmogorov-Smirnov distribution,

Q(x) =
∞∑

k=−∞
(−1)k exp(−2k2x2)

for x > 0.

The optional parameter tol specifies the precision up to which the series should be
evaluated; the default is tol = eps.

[Function File]laplace_cdf (x )
For each element of x, compute the cumulative distribution function (CDF) at x of
the Laplace distribution.

[Function File]laplace_inv (x )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
Laplace distribution.

[Function File]laplace_pdf (x )
For each element of x, compute the probability density function (PDF) at x of the
Laplace distribution.

[Function File]logistic_cdf (x )
For each component of x, compute the CDF at x of the logistic distribution.
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[Function File]logistic_inv (x )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
logistic distribution.

[Function File]logistic_pdf (x )
For each component of x, compute the PDF at x of the logistic distribution.

[Function File]logncdf (x, mu, sigma )
For each element of x, compute the cumulative distribution function (CDF) at x of the
lognormal distribution with parameters mu and sigma. If a random variable follows
this distribution, its logarithm is normally distributed with mean mu and standard
deviation sigma.
Default values are mu = 1, sigma = 1.

[Function File]logninv (x, mu, sigma )
For each element of x, compute the quantile (the inverse of the CDF) at x of the log-
normal distribution with parameters mu and sigma. If a random variable follows this
distribution, its logarithm is normally distributed with mean log (mu) and variance
sigma.
Default values are mu = 1, sigma = 1.

[Function File]lognpdf (x, mu, sigma )
For each element of x, compute the probability density function (PDF) at x of the
lognormal distribution with parameters mu and sigma. If a random variable follows
this distribution, its logarithm is normally distributed with mean mu and standard
deviation sigma.
Default values are mu = 1, sigma = 1.

[Function File]nbincdf (x, n, p )
For each element of x, compute the CDF at x of the Pascal (negative binomial)
distribution with parameters n and p.
The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]nbininv (x, n, p )
For each element of x, compute the quantile at x of the Pascal (negative binomial)
distribution with parameters n and p.
The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]nbinpdf (x, n, p )
For each element of x, compute the probability density function (PDF) at x of the
Pascal (negative binomial) distribution with parameters n and p.
The number of failures in a Bernoulli experiment with success probability p before
the n-th success follows this distribution.

[Function File]normcdf (x, m, s )
For each element of x, compute the cumulative distribution function (CDF) at x of
the normal distribution with mean m and standard deviation s.
Default values are m = 0, s = 1.
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[Function File]norminv (x, m, s )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
normal distribution with mean m and standard deviation s.
Default values are m = 0, s = 1.

[Function File]normpdf (x, m, s )
For each element of x, compute the probability density function (PDF) at x of the
normal distribution with mean m and standard deviation s.
Default values are m = 0, s = 1.

[Function File]poisscdf (x, lambda )
For each element of x, compute the cumulative distribution function (CDF) at x of
the Poisson distribution with parameter lambda.

[Function File]poissinv (x, lambda )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
Poisson distribution with parameter lambda.

[Function File]poisspdf (x, lambda )
For each element of x, compute the probability density function (PDF) at x of the
poisson distribution with parameter lambda.

[Function File]tcdf (x, n )
For each element of x, compute the cumulative distribution function (CDF) at x of
the t (Student) distribution with n degrees of freedom, i.e., PROB (t(n) <= x).

[Function File]tinv (x, n )
For each probability value x, compute the inverse of the cumulative distribution func-
tion (CDF) of the t (Student) distribution with degrees of freedom n. This function
is analogous to looking in a table for the t-value of a single-tailed distribution.

[Function File]tpdf (x, n )
For each element of x, compute the probability density function (PDF) at x of the t
(Student) distribution with n degrees of freedom.

[Function File]unidcdf (x, v )
For each element of x, compute the cumulative distribution function (CDF) at x of a
univariate discrete distribution which assumes the values in v with equal probability.

[Function File]unidinv (x, v )
For each component of x, compute the quantile (the inverse of the CDF) at x of the
univariate discrete distribution which assumes the values in v with equal probability

[Function File]unidpdf (x, v )
For each element of x, compute the probability density function (PDF) at x of a
univariate discrete distribution which assumes the values in v with equal probability.

[Function File]unifcdf (x, a, b )
Return the CDF at x of the uniform distribution on [a, b], i.e., PROB (uniform (a,
b) <= x).
Default values are a = 0, b = 1.
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[Function File]unifinv (x, a, b )
For each element of x, compute the quantile (the inverse of the CDF) at x of the
uniform distribution on [a, b].

Default values are a = 0, b = 1.

[Function File]unifpdf (x, a, b )
For each element of x, compute the PDF at x of the uniform distribution on [a, b].

Default values are a = 0, b = 1.

[Function File]wblcdf (x, scale, shape )
Compute the cumulative distribution function (CDF) at x of the Weibull distribution
with shape parameter scale and scale parameter shape, which is

1− exp(−(x/shape)scale)

for x ≥ 0.

[Function File]wblinv (x, scale, shape )
Compute the quantile (the inverse of the CDF) at x of the Weibull distribution with
shape parameter scale and scale parameter shape.

[Function File]wblpdf (x, scale, shape )
Compute the probability density function (PDF) at x of the Weibull distribution with
shape parameter scale and scale parameter shape which is given by

scale · shape−scalexscale−1 exp(−(x/shape)scale)

for x > 0.

25.7 Random Number Generation

Octave can generate random numbers from a large number of distributions. The random
number generators are based on the random number generators described in Section 16.4
[Special Utility Matrices], page 284.

The following table summarizes the available random number generators (in alphabetical
order).
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Distribution Function

Beta Distribution betarnd
Binomial Distribution binornd
Cauchy Distribution cauchy rnd
Chi-Square Distribution chi2rnd
Univariate Discrete Distribution discrete rnd
Empirical Distribution empirical rnd
Exponential Distribution exprnd
F Distribution frnd
Gamma Distribution gamrnd
Geometric Distribution geornd
Hypergeometric Distribution hygernd
Laplace Distribution laplace rnd
Logistic Distribution logistic rnd
Log-Normal Distribution lognrnd
Pascal Distribution nbinrnd
Univariate Normal Distribution normrnd
Poisson Distribution poissrnd
t (Student) Distribution trnd
Univariate Discrete Distribution unidrnd
Uniform Distribution unifrnd
Weibull Distribution wblrnd
Wiener Process wienrnd

[Function File]betarnd (a, b, r, c )
[Function File]betarnd (a, b, sz )

Return an r by c or size (sz) matrix of random samples from the Beta distribution
with parameters a and b. Both a and b must be scalar or of size r by c.

If r and c are omitted, the size of the result matrix is the common size of a and b.

[Function File]binornd (n, p, r, c )
[Function File]binornd (n, p, sz )

Return an r by c or a size (sz) matrix of random samples from the binomial dis-
tribution with parameters n and p. Both n and p must be scalar or of size r by
c.

If r and c are omitted, the size of the result matrix is the common size of n and p.

[Function File]cauchy_rnd (lambda, sigma, r, c )
[Function File]cauchy_rnd (lambda, sigma, sz )

Return an r by c or a size (sz) matrix of random samples from the Cauchy distri-
bution with parameters lambda and sigma which must both be scalar or of size r by
c.

If r and c are omitted, the size of the result matrix is the common size of lambda and
sigma.
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[Function File]chi2rnd (n, r, c )
[Function File]chi2rnd (n, sz )

Return an r by c or a size (sz) matrix of random samples from the chisquare
distribution with n degrees of freedom. n must be a scalar or of size r by c.

If r and c are omitted, the size of the result matrix is the size of n.

[Function File]discrete_rnd (n, v, p )
[Function File]discrete_rnd (v, p, r, c )
[Function File]discrete_rnd (v, p, sz )

Generate a row vector containing a random sample of size n from the univariate
distribution which assumes the values in v with probabilities p. n must be a scalar.

If r and c are given create a matrix with r rows and c columns. Or if sz is a vector,
create a matrix of size sz.

[Function File]empirical_rnd (n, data )
[Function File]empirical_rnd (data, r, c )
[Function File]empirical_rnd (data, sz )

Generate a bootstrap sample of size n from the empirical distribution obtained from
the univariate sample data.

If r and c are given create a matrix with r rows and c columns. Or if sz is a vector,
create a matrix of size sz.

[Function File]exprnd (lambda, r, c )
[Function File]exprnd (lambda, sz )

Return an r by c matrix of random samples from the exponential distribution with
mean lambda, which must be a scalar or of size r by c. Or if sz is a vector, create a
matrix of size sz.

If r and c are omitted, the size of the result matrix is the size of lambda.

[Function File]frnd (m, n, r, c )
[Function File]frnd (m, n, sz )

Return an r by c matrix of random samples from the F distribution with m and n
degrees of freedom. Both m and n must be scalar or of size r by c. If sz is a vector
the random samples are in a matrix of size sz.

If r and c are omitted, the size of the result matrix is the common size of m and n.

[Function File]gamrnd (a, b, r, c )
[Function File]gamrnd (a, b, sz )

Return an r by c or a size (sz) matrix of random samples from the Gamma dis-
tribution with parameters a and b. Both a and b must be scalar or of size r by
c.

If r and c are omitted, the size of the result matrix is the common size of a and b.

See also: [gamma], page 309, [gammaln], page 311, [gammainc], page 309, [gampdf],
page 432, [gamcdf], page 432, [gaminv], page 432.
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[Function File]geornd (p, r, c )
[Function File]geornd (p, sz )

Return an r by c matrix of random samples from the geometric distribution with
parameter p, which must be a scalar or of size r by c.
If r and c are given create a matrix with r rows and c columns. Or if sz is a vector,
create a matrix of size sz.

[Function File]hygernd (t, m, n, r, c )
[Function File]hygernd (t, m, n, sz )
[Function File]hygernd (t, m, n )

Return an r by c matrix of random samples from the hypergeometric distribution
with parameters t, m, and n.
The parameters t, m, and n must positive integers with m and n not greater than t.
The parameter sz must be scalar or a vector of matrix dimensions. If sz is scalar,
then a sz by sz matrix of random samples is generated.

[Function File]laplace_rnd (r, c )
[Function File]laplace_rnd (sz );

Return an r by c matrix of random numbers from the Laplace distribution. Or if sz
is a vector, create a matrix of sz.

[Function File]logistic_rnd (r, c )
[Function File]logistic_rnd (sz )

Return an r by c matrix of random numbers from the logistic distribution. Or if sz
is a vector, create a matrix of sz.

[Function File]lognrnd (mu, sigma, r, c )
[Function File]lognrnd (mu, sigma, sz )

Return an r by c matrix of random samples from the lognormal distribution with
parameters mu and sigma. Both mu and sigma must be scalar or of size r by c. Or
if sz is a vector, create a matrix of size sz.
If r and c are omitted, the size of the result matrix is the common size of mu and
sigma.

[Function File]nbinrnd (n, p, r, c )
[Function File]nbinrnd (n, p, sz )

Return an r by c matrix of random samples from the Pascal (negative binomial)
distribution with parameters n and p. Both n and p must be scalar or of size r by c.
If r and c are omitted, the size of the result matrix is the common size of n and p.
Or if sz is a vector, create a matrix of size sz.

[Function File]normrnd (m, s, r, c )
[Function File]normrnd (m, s, sz )

Return an r by c or size (sz) matrix of random samples from the normal distribution
with parameters mean m and standard deviation s. Both m and s must be scalar or
of size r by c.
If r and c are omitted, the size of the result matrix is the common size of m and s.



440 GNU Octave

[Function File]poissrnd (lambda, r, c )
Return an r by c matrix of random samples from the Poisson distribution with pa-
rameter lambda, which must be a scalar or of size r by c.
If r and c are omitted, the size of the result matrix is the size of lambda.

[Function File]trnd (n, r, c )
[Function File]trnd (n, sz )

Return an r by c matrix of random samples from the t (Student) distribution with n
degrees of freedom. n must be a scalar or of size r by c. Or if sz is a vector create a
matrix of size sz.
If r and c are omitted, the size of the result matrix is the size of n.

[Function File]unidrnd (mx );
[Function File]unidrnd (mx, v );
[Function File]unidrnd (mx, m, n, . . . );

Return random values from discrete uniform distribution, with maximum value(s)
given by the integer mx, which may be a scalar or multidimensional array.
If mx is a scalar, the size of the result is specified by the vector v, or by the optional
arguments m, n, . . . . Otherwise, the size of the result is the same as the size of mx.

[Function File]unifrnd (a, b, r, c )
[Function File]unifrnd (a, b, sz )

Return an r by c or a size (sz) matrix of random samples from the uniform distri-
bution on [a, b]. Both a and b must be scalar or of size r by c.
If r and c are omitted, the size of the result matrix is the common size of a and b.

[Function File]wblrnd (scale, shape, r, c )
[Function File]wblrnd (scale, shape, sz )

Return an r by c matrix of random samples from the Weibull distribution with pa-
rameters scale and shape which must be scalar or of size r by c. Or if sz is a vector
return a matrix of size sz.
If r and c are omitted, the size of the result matrix is the common size of alpha and
sigma.

[Function File]wienrnd (t, d, n )
Return a simulated realization of the d-dimensional Wiener Process on the interval
[0, t]. If d is omitted, d = 1 is used. The first column of the return matrix contains
time, the remaining columns contain the Wiener process.
The optional parameter n gives the number of summands used for simulating the
process over an interval of length 1. If n is omitted, n = 1000 is used.
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26 Sets

Octave has a limited number of functions for managing sets of data, where a set is defined
as a collection of unique elements. In Octave a set is represented as a vector of numbers.

[Function File]unique (x )
[Function File]unique (x, "rows")
[Function File]unique (. . . , "first")
[Function File]unique (. . . , "last")
[Function File][y, i, j] = unique (. . . )

Return the unique elements of x, sorted in ascending order. If x is a row vector,
return a row vector, but if x is a column vector or a matrix return a column vector.
If the optional argument "rows" is supplied, return the unique rows of x, sorted in
ascending order.
If requested, return index vectors i and j such that x(i)==y and y(j)==x.
Additionally, one of "first" or "last" may be given as an argument. If "last" is
specified, return the highest possible indices in i, otherwise, if "first" is specified,
return the lowest. The default is "last".

See also: [union], page 442, [intersect], page 442, [setdiff], page 442, [setxor], page 443,
[ismember], page 441.

26.1 Set Operations

Octave supports the basic set operations. That is, Octave can compute the union, inter-
section, complement, and difference of two sets. Octave also supports the Exclusive Or
set operation, and membership determination. The functions for set operations all work in
pretty much the same way. As an example, assume that x and y contains two sets, then

union(x, y)

computes the union of the two sets.

[Function File][tf = ismember (A, S )
[Function File][tf, S_idx] = ismember (A, S )
[Function File][tf, S_idx] = ismember (A, S, "rows")

Return a matrix tf with the same shape as A which has a 1 if A(i,j) is in S and 0
if it is not. If a second output argument is requested, the index into S of each of the
matching elements is also returned.

a = [3, 10, 1];
s = [0:9];
[tf, s_idx] = ismember (a, s);

⇒ tf = [1, 0, 1]
⇒ s_idx = [4, 0, 2]

The inputs, A and S, may also be cell arrays.
a = {’abc’};
s = {’abc’, ’def’};
[tf, s_idx] = ismember (a, s);

⇒ tf = [1, 0]
⇒ s_idx = [1, 0]
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With the optional third argument "rows", and matrices A and S with the same
number of columns, compare rows in A with the rows in S.

a = [1:3; 5:7; 4:6];
s = [0:2; 1:3; 2:4; 3:5; 4:6];
[tf, s_idx] = ismember(a, s, ’rows’);

⇒ tf = logical ([1; 0; 1])
⇒ s_idx = [2; 0; 5];

See also: [unique], page 441, [union], page 442, [intersect], page 442, [setxor], page 443,
[setdiff], page 442.

[Function File]union (a, b )
[Function File]union (a, b, "rows")

Return the set of elements that are in either of the sets a and b. For example,
union ([1, 2, 4], [2, 3, 5])

⇒ [1, 2, 3, 4, 5]

If the optional third input argument is the string "rows" each row of the matrices a
and b will be considered an element of sets. For example,

union([1, 2; 2, 3], [1, 2; 3, 4], "rows")
⇒ 1 2

2 3
3 4

[Function File][c, ia, ib] = union (a, b )
Return index vectors ia and ib such that a == c(ia) and b == c(ib).

See also: [intersect], page 442, [complement], page 442, [unique], page 441.

[Function File]intersect (a, b )
[Function File][c, ia, ib] = intersect (a, b )

Return the elements in both a and b, sorted in ascending order. If a and b are both
column vectors return a column vector, otherwise return a row vector.
Return index vectors ia and ib such that a(ia)==c and b(ib)==c.

See also: [unique], page 441, [union], page 442, [setxor], page 443, [setdiff], page 442,
[ismember], page 441.

[Function File]complement (x, y )
Return the elements of set y that are not in set x. For example,

complement ([ 1, 2, 3 ], [ 2, 3, 5 ])
⇒ 5

See also: [union], page 442, [intersect], page 442, [unique], page 441.

[Function File]setdiff (a, b )
[Function File]setdiff (a, b, "rows")
[Function File][c, i] = setdiff (a, b )

Return the elements in a that are not in b, sorted in ascending order. If a and b are
both column vectors return a column vector, otherwise return a row vector.
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Given the optional third argument ‘"rows"’, return the rows in a that are not in b,
sorted in ascending order by rows.
If requested, return i such that c = a(i).

See also: [unique], page 441, [union], page 442, [intersect], page 442, [setxor], page 443,
[ismember], page 441.

[Function File]setxor (a, b )
[Function File]setxor (a, b, ’rows’)

Return the elements exclusive to a or b, sorted in ascending order. If a and b are
both column vectors return a column vector, otherwise return a row vector.

[Function File][c, ia, ib] = setxor (a, b )
Return index vectors ia and ib such that a == c(ia) and b == c(ib).

See also: [unique], page 441, [union], page 442, [intersect], page 442, [setdiff], page 442,
[ismember], page 441.
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27 Polynomial Manipulations

In Octave, a polynomial is represented by its coefficients (arranged in descending order).
For example, a vector c of length N +1 corresponds to the following polynomial of order N

p(x) = c1x
N + . . .+ cNx+ cN+1.

27.1 Evaluating Polynomials

The value of a polynomial represented by the vector c can be evaluated at the point x very
easily, as the following example shows:

N = length(c)-1;
val = dot( x.^(N:-1:0), c );

While the above example shows how easy it is to compute the value of a polynomial, it isn’t
the most stable algorithm. With larger polynomials you should use more elegant algorithms,
such as Horner’s Method, which is exactly what the Octave function polyval does.

In the case where x is a square matrix, the polynomial given by c is still well-defined.
As when x is a scalar the obvious implementation is easily expressed in Octave, but also in
this case more elegant algorithms perform better. The polyvalm function provides such an
algorithm.

[Function File]y = polyval (p, x )
[Function File]y = polyval (p, x, [], mu )

Evaluate the polynomial at of the specified values for x. When mu is
present evaluate the polynomial for (x-mu(1))/mu(2). If x is a vector or matrix,
the polynomial is evaluated for each of the elements of x. [Function File][y, dy] =
polyval (p, x, s )

[Function File][y, dy] = polyval (p, x, s, mu )
In addition to evaluating the polynomial, the second output represents the prediction
interval, y +/- dy, which contains at least 50% of the future predictions. To calculate
the prediction interval, the structured variable s, originating form ‘polyfit’, must be
present.

See also: [polyfit], page 450, [polyvalm], page 445, [poly], page 452, [roots], page 446,
[conv], page 447, [deconv], page 447, [residue], page 448, [filter], page 478, [polyderiv],
page 449, [polyinteg], page 450.

[Function File]polyvalm (c, x )
Evaluate a polynomial in the matrix sense.

polyvalm (c, x) will evaluate the polynomial in the matrix sense, i.e., matrix mul-
tiplication is used instead of element by element multiplication as is used in polyval.

The argument x must be a square matrix.

See also: [polyval], page 445, [poly], page 452, [roots], page 446, [conv], page 447,
[deconv], page 447, [residue], page 448, [filter], page 478, [polyderiv], page 449,
[polyinteg], page 450.
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27.2 Finding Roots

Octave can find the roots of a given polynomial. This is done by computing the companion
matrix of the polynomial (see the compan function for a definition), and then finding its
eigenvalues.

[Function File]roots (v )
For a vector v with N components, return the roots of the polynomial

v1z
N−1 + · · ·+ vN−1z + vN .

As an example, the following code finds the roots of the quadratic polynomial

p(x) = x2 − 5.

c = [1, 0, -5];
roots(c)
⇒ 2.2361
⇒ -2.2361

Note that the true result is ±
√

5 which is roughly ±2.2361.

See also: [compan], page 446.

[Function File]compan (c )
Compute the companion matrix corresponding to polynomial coefficient vector c.
The companion matrix is

A =


−c2/c1 −c3/c1 · · · −cN/c1 −cN+1/c1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

The eigenvalues of the companion matrix are equal to the roots of the polynomial.

See also: [poly], page 452, [roots], page 446, [residue], page 448, [conv], page 447,
[deconv], page 447, [polyval], page 445, [polyderiv], page 449, [polyinteg], page 450.

[Function File][multp, indx] = mpoles (p )
[Function File][multp, indx] = mpoles (p, tol )
[Function File][multp, indx] = mpoles (p, tol, reorder )

Identify unique poles in p and associates their multiplicity, ordering them from largest
to smallest.
If the relative difference of the poles is less than tol, then they are considered to be
multiples. The default value for tol is 0.001.
If the optional parameter reorder is zero, poles are not sorted.
The value multp is a vector specifying the multiplicity of the poles. multp(:) refers
to multiplicity of p(indx(:)).
For example,
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p = [2 3 1 1 2];
[m, n] = mpoles(p);
⇒ m = [1; 1; 2; 1; 2]
⇒ n = [2; 5; 1; 4; 3]
⇒ p(n) = [3, 2, 2, 1, 1]

See also: [poly], page 452, [roots], page 446, [conv], page 447, [deconv], page 447,
[polyval], page 445, [polyderiv], page 449, [polyinteg], page 450, [residue], page 448.

27.3 Products of Polynomials

[Function File]conv (a, b )
Convolve two vectors.
y = conv (a, b) returns a vector of length equal to length (a) + length (b) - 1. If
a and b are polynomial coefficient vectors, conv returns the coefficients of the product
polynomial.

See also: [deconv], page 447, [poly], page 452, [roots], page 446, [residue], page 448,
[polyval], page 445, [polyderiv], page 449, [polyinteg], page 450.

[Function File]c = convn (a, b, shape )
N -dimensional convolution of matrices a and b.
The size of the output is determined by the shape argument. This can be any of the
following character strings:

"full" The full convolution result is returned. The size out of the output is size
(a) + size (b)-1. This is the default behavior.

"same" The central part of the convolution result is returned. The size out of the
output is the same as a.

"valid" The valid part of the convolution is returned. The size of the result is
max (size (a) - size (b)+1, 0).

See also: [conv], page 447, [conv2], page 447.

[Function File]deconv (y, a )
Deconvolve two vectors.
[b, r] = deconv (y, a) solves for b and r such that y = conv (a, b) + r.
If y and a are polynomial coefficient vectors, b will contain the coefficients of the
polynomial quotient and r will be a remainder polynomial of lowest order.

See also: [conv], page 447, [poly], page 452, [roots], page 446, [residue], page 448,
[polyval], page 445, [polyderiv], page 449, [polyinteg], page 450.

[Loadable Function]y = conv2 (a, b, shape )
[Loadable Function]y = conv2 (v1, v2, M, shape )

Returns 2D convolution of a and b where the size of c is given by

shape= ’full’
returns full 2-D convolution
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shape= ’same’
same size as a. ’central’ part of convolution

shape= ’valid’
only parts which do not include zero-padded edges

By default shape is ’full’. When the third argument is a matrix returns the convolution
of the matrix M by the vector v1 in the column direction and by vector v2 in the
row direction

[Function File]q = polygcd (b, a, tol )
Find greatest common divisor of two polynomials. This is equivalent to the polynomial
found by multiplying together all the common roots. Together with deconv, you can
reduce a ratio of two polynomials. Tolerance defaults to

sqrt(eps).

Note that this is an unstable algorithm, so don’t try it on large polynomials.
Example

polygcd (poly(1:8), poly(3:12)) - poly(3:8)
⇒ [ 0, 0, 0, 0, 0, 0, 0 ]
deconv (poly(1:8), polygcd (poly(1:8), poly(3:12))) ...

- poly(1:2)
⇒ [ 0, 0, 0 ]

See also: [poly], page 452, [polyinteg], page 450, [polyderiv], page 449, [polyreduce],
page 452, [roots], page 446, [conv], page 447, [deconv], page 447, [residue], page 448,
[filter], page 478, [polyval], page 445, [polyvalm], page 445.

[Function File][r, p, k, e] = residue (b, a )
Compute the partial fraction expansion for the quotient of the polynomials, b and a.

B(s)
A(s)

=
M∑

m=1

rm

(s− pm)e
m

+
N∑

i=1

kis
N−i.

where M is the number of poles (the length of the r, p, and e), the k vector is a
polynomial of order N − 1 representing the direct contribution, and the e vector
specifies the multiplicity of the m-th residue’s pole.
For example,

b = [1, 1, 1];
a = [1, -5, 8, -4];
[r, p, k, e] = residue (b, a);

⇒ r = [-2; 7; 3]
⇒ p = [2; 2; 1]
⇒ k = [](0x0)
⇒ e = [1; 2; 1]

which represents the following partial fraction expansion

s2 + s+ 1
s3 − 5s2 + 8s− 4

=
−2
s− 2

+
7

(s− 2)2
+

3
s− 1
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[Function File][b, a] = residue (r, p, k )
[Function File][b, a] = residue (r, p, k, e )

Compute the reconstituted quotient of polynomials, b(s)/a(s), from the partial frac-
tion expansion; represented by the residues, poles, and a direct polynomial specified
by r, p and k, and the pole multiplicity e.

If the multiplicity, e, is not explicitly specified the multiplicity is determined by the
script mpoles.m.

For example,

r = [-2; 7; 3];
p = [2; 2; 1];
k = [1, 0];
[b, a] = residue (r, p, k);

⇒ b = [1, -5, 9, -3, 1]
⇒ a = [1, -5, 8, -4]

where mpoles.m is used to determine e = [1; 2; 1]

Alternatively the multiplicity may be defined explicitly, for example,

r = [7; 3; -2];
p = [2; 1; 2];
k = [1, 0];
e = [2; 1; 1];
[b, a] = residue (r, p, k, e);

⇒ b = [1, -5, 9, -3, 1]
⇒ a = [1, -5, 8, -4]

which represents the following partial fraction expansion

−2
s− 2

+
7

(s− 2)2
+

3
s− 1

+ s =
s4 − 5s3 + 9s2 − 3s+ 1
s3 − 5s2 + 8s− 4

See also: [poly], page 452, [roots], page 446, [conv], page 447, [deconv], page 447,
[mpoles], page 446, [polyval], page 445, [polyderiv], page 449, [polyinteg], page 450.

27.4 Derivatives and Integrals

Octave comes with functions for computing the derivative and the integral of a polynomial.
The functions polyderiv and polyint both return new polynomials describing the result.
As an example we’ll compute the definite integral of p(x) = x2 + 1 from 0 to 3.

c = [1, 0, 1];
integral = polyint(c);
area = polyval(integral, 3) - polyval(integral, 0)
⇒ 12

[Function File]polyderiv (c )
[Function File][q] = polyderiv (b, a )
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[Function File][q, r] = polyderiv (b, a )
Return the coefficients of the derivative of the polynomial whose coefficients are given
by vector c. If a pair of polynomials is given b and a, the derivative of the product is
returned in q, or the quotient numerator in q and the quotient denominator in r.

See also: [poly], page 452, [polyinteg], page 450, [polyreduce], page 452, [roots],
page 446, [conv], page 447, [deconv], page 447, [residue], page 448, [filter], page 478,
[polygcd], page 448, [polyval], page 445, [polyvalm], page 445.

[Function File]polyder (c )
[Function File][q] = polyder (b, a )
[Function File][q, r] = polyder (b, a )

See polyderiv.

[Function File]polyinteg (c )
Return the coefficients of the integral of the polynomial whose coefficients are repre-
sented by the vector c.
The constant of integration is set to zero.

See also: [polyint], page 450, [poly], page 452, [polyderiv], page 449, [polyreduce],
page 452, [roots], page 446, [conv], page 447, [deconv], page 447, [residue], page 448,
[filter], page 478, [polyval], page 445, [polyvalm], page 445.

[Function File]polyint (c, k )
Return the coefficients of the integral of the polynomial whose coefficients are repre-
sented by the vector c. The variable k is the constant of integration, which by default
is set to zero.

See also: [poly], page 452, [polyderiv], page 449, [polyreduce], page 452, [roots],
page 446, [conv], page 447, [deconv], page 447, [residue], page 448, [filter], page 478,
[polyval], page 445, [polyvalm], page 445.

27.5 Polynomial Interpolation

Octave comes with good support for various kinds of interpolation, most of which are
described in Chapter 28 [Interpolation], page 455. One simple alternative to the functions
described in the aforementioned chapter, is to fit a single polynomial to some given data
points. To avoid a highly fluctuating polynomial, one most often wants to fit a low-order
polynomial to data. This usually means that it is necessary to fit the polynomial in a
least-squares sense, which is what the polyfit function does.

[Function File][p, s, mu] = polyfit (x, y, n )
Return the coefficients of a polynomial p(x) of degree n that minimizes the least-
squares-error of the fit.
The polynomial coefficients are returned in a row vector.
The second output is a structure containing the following fields:

‘R’ Triangular factor R from the QR decomposition.

‘X’ The Vandermonde matrix used to compute the polynomial coefficients.

‘df’ The degrees of freedom.
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‘normr’ The norm of the residuals.

‘yf’ The values of the polynomial for each value of x.

The second output may be used by polyval to calculate the statistical error limits
of the predicted values.
When the third output, mu, is present the coefficients, p, are associated with a poly-
nomial in xhat = (x-mu(1))/mu(2). Where mu(1) = mean (x), and mu(2) = std (x).
This linear transformation of x improves the numerical stability of the fit.

See also: [polyval], page 445, [residue], page 448.

In situations where a single polynomial isn’t good enough, a solution is to use several
polynomials pieced together. The function mkpp creates a piece-wise polynomial, ppval
evaluates the function created by mkpp, and unmkpp returns detailed information about the
function.

The following example shows how to combine two linear functions and a quadratic into
one function. Each of these functions is expressed on adjoined intervals.

x = [-2, -1, 1, 2];
p = [ 0, 1, 0;

1, -2, 1;
0, -1, 1 ];

pp = mkpp(x, p);
xi = linspace(-2, 2, 50);
yi = ppval(pp, xi);
plot(xi, yi);

[Function File]yi = ppval (pp, xi )
Evaluate piece-wise polynomial pp at the points xi. If pp.d is a scalar greater than
1, or an array, then the returned value yi will be an array that is d1, d1, ..., dk,
length (xi)].

See also: [mkpp], page 451, [unmkpp], page 451, [spline], page 458.

[Function File]pp = mkpp (x, p )
[Function File]pp = mkpp (x, p, d )

Construct a piece-wise polynomial structure from sample points x and coefficients p.
The i-th row of p, p (i,:), contains the coefficients for the polynomial over the i-th
interval, ordered from highest to lowest. There must be one row for each interval in
x, so rows (p) == length (x) - 1.
You can concatenate multiple polynomials of the same order over the same set of
intervals using p = [ p1; p2; ...; pd ]. In this case, rows (p) == d * (length (x)
- 1).
d specifies the shape of the matrix p for all except the last dimension. If d is not
specified it will be computed as round (rows (p) / (length (x) - 1)) instead.

See also: [unmkpp], page 451, [ppval], page 451, [spline], page 458.

[Function File][x, p, n, k, d] = unmkpp (pp )
Extract the components of a piece-wise polynomial structure pp. These are as follows:
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x Sample points.

p Polynomial coefficients for points in sample interval. p (i, :) contains
the coefficients for the polynomial over interval i ordered from highest to
lowest. If d > 1, p (r, i, :) contains the coefficients for the r-th poly-
nomial defined on interval i. However, this is stored as a 2-D array such
that c = reshape (p (:, j), n, d) gives c (i, r) is the j-th coefficient
of the r-th polynomial over the i-th interval.

n Number of polynomial pieces.

k Order of the polynomial plus 1.

d Number of polynomials defined for each interval.

See also: [mkpp], page 451, [ppval], page 451, [spline], page 458.

27.6 Miscellaneous Functions

[Function File]poly (a )
If a is a square N -by-N matrix, poly (a) is the row vector of the coefficients of det
(z * eye (N) - a), the characteristic polynomial of a. As an example we can use this
to find the eigenvalues of a as the roots of poly (a).

roots(poly(eye(3)))
⇒ 1.00000 + 0.00000i
⇒ 1.00000 - 0.00000i
⇒ 1.00000 + 0.00000i

In real-life examples you should, however, use the eig function for computing eigen-
values.
If x is a vector, poly (x) is a vector of coefficients of the polynomial whose roots
are the elements of x. That is, of c is a polynomial, then the elements of d = roots
(poly (c)) are contained in c. The vectors c and d are, however, not equal due to
sorting and numerical errors.

See also: [eig], page 316, [roots], page 446.

[Function File]polyout (c, x )
Write formatted polynomial

c(x) = c1x
n + . . .+ cnx+ cn+1

and return it as a string or write it to the screen (if nargout is zero). x defaults to
the string "s".

See also: [polyval], page 445, [polyvalm], page 445, [poly], page 452, [roots], page 446,
[conv], page 447, [deconv], page 447, [residue], page 448, [filter], page 478, [polyderiv],
page 449, [polyinteg], page 450.

[Function File]polyreduce (c )
Reduces a polynomial coefficient vector to a minimum number of terms by stripping
off any leading zeros.
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See also: [poly], page 452, [roots], page 446, [conv], page 447, [deconv], page 447,
[residue], page 448, [filter], page 478, [polyval], page 445, [polyvalm], page 445,
[polyderiv], page 449, [polyinteg], page 450.
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28 Interpolation

28.1 One-dimensional Interpolation

Octave supports several methods for one-dimensional interpolation, most of which are de-
scribed in this section. Section 27.5 [Polynomial Interpolation], page 450 and Section 29.4
[Interpolation on Scattered Data], page 472 describe further methods.

[Function File]yi = interp1 (x, y, xi )
[Function File]yi = interp1 (. . . , method )
[Function File]yi = interp1 (. . . , extrap )
[Function File]pp = interp1 (. . . , ’pp’)

One-dimensional interpolation. Interpolate y, defined at the points x, at the points xi.
The sample points x must be strictly monotonic. If y is an array, treat the columns
of y separately.
Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors

’pchip’ Piece-wise cubic hermite interpolating polynomial

’cubic’ Cubic interpolation from four nearest neighbors

’spline’ Cubic spline interpolation–smooth first and second derivatives through-
out the curve

Appending ’*’ to the start of the above method forces interp1 to assume that x is
uniformly spaced, and only x (1) and x (2) are referenced. This is usually faster,
and is never slower. The default method is ’linear’.
If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If
extrap is a number, replace values beyond the endpoints with that number. If extrap
is missing, assume NA.
If the string argument ’pp’ is specified, then xi should not be supplied and interp1
returns the piece-wise polynomial that can later be used with ppval to evaluate the
interpolation. There is an equivalence, such that ppval (interp1 (x, y, method,
’pp’), xi) == interp1 (x, y, xi, method, ’extrap’).
An example of the use of interp1 is

xf = [0:0.05:10];
yf = sin (2*pi*xf/5);
xp = [0:10];
yp = sin (2*pi*xp/5);
lin = interp1 (xp, yp, xf);
spl = interp1 (xp, yp, xf, "spline");
cub = interp1 (xp, yp, xf, "cubic");
near = interp1 (xp, yp, xf, "nearest");
plot (xf, yf, "r", xf, lin, "g", xf, spl, "b",

xf, cub, "c", xf, near, "m", xp, yp, "r*");
legend ("original", "linear", "spline", "cubic", "nearest")
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See also: [interpft], page 457.

There are some important differences between the various interpolation methods. The
’spline’ method enforces that both the first and second derivatives of the interpolated values
have a continuous derivative, whereas the other methods do not. This means that the results
of the ’spline’ method are generally smoother. If the function to be interpolated is in fact
smooth, then ’spline’ will give excellent results. However, if the function to be evaluated is
in some manner discontinuous, then ’pchip’ interpolation might give better results.

This can be demonstrated by the code

t = -2:2;
dt = 1;
ti =-2:0.025:2;
dti = 0.025;
y = sign(t);
ys = interp1(t,y,ti,’spline’);
yp = interp1(t,y,ti,’pchip’);
ddys = diff(diff(ys)./dti)./dti;
ddyp = diff(diff(yp)./dti)./dti;
figure(1);
plot (ti, ys,’r-’, ti, yp,’g-’);
legend(’spline’,’pchip’,4);
figure(2);
plot (ti, ddys,’r+’, ti, ddyp,’g*’);
legend(’spline’,’pchip’);

The result of which can be seen in Figure 28.1 and Figure 28.2.
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Figure 28.1: Comparison of ’pchip’ and ’spline’ interpolation methods for a step function
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Figure 28.2: Comparison of the second derivative of the ’pchip’ and ’spline’ interpolation
methods for a step function

A simplified version of interp1 that performs only linear interpolation is available in
interp1q. This argument is slightly faster than interp1 as to performs little error checking.

[Function File]yi = interp1q (x, y, xi )
One-dimensional linear interpolation without error checking. Interpolates y, defined
at the points x, at the points xi. The sample points x must be a strictly monotonically
increasing column vector. If y is an array, treat the columns of y separately. If y is
a vector, it must be a column vector of the same length as x.

Values of xi beyond the endpoints of the interpolation result in NA being returned.

Note that the error checking is only a significant portion of the execution time of this
interp1 if the size of the input arguments is relatively small. Therefore, the benefit
of using interp1q is relatively small.

See also: [interp1], page 455.

Fourier interpolation, is a resampling technique where a signal is converted to the fre-
quency domain, padded with zeros and then reconverted to the time domain.

[Function File]interpft (x, n )
[Function File]interpft (x, n, dim )

Fourier interpolation. If x is a vector, then x is resampled with n points. The data
in x is assumed to be equispaced. If x is an array, then operate along each column of
the array separately. If dim is specified, then interpolate along the dimension dim.

interpft assumes that the interpolated function is periodic, and so assumptions are
made about the end points of the interpolation.

See also: [interp1], page 455.



458 GNU Octave

There are two significant limitations on Fourier interpolation. Firstly, the function signal
is assumed to be periodic, and so non-periodic signals will be poorly represented at the edges.
Secondly, both the signal and its interpolation are required to be sampled at equispaced
points. An example of the use of interpft is

t = 0 : 0.3 : pi; dt = t(2)-t(1);
n = length (t); k = 100;
ti = t(1) + [0 : k-1]*dt*n/k;
y = sin (4*t + 0.3) .* cos (3*t - 0.1);
yp = sin (4*ti + 0.3) .* cos (3*ti - 0.1);
plot (ti, yp, ’g’, ti, interp1(t, y, ti, ’spline’), ’b’, ...

ti, interpft (y, k), ’c’, t, y, ’r+’);
legend (’sin(4t+0.3)cos(3t-0.1’,’spline’,’interpft’,’data’);

which demonstrates the poor behavior of Fourier interpolation for non-periodic functions,
as can be seen in Figure 28.3.
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Figure 28.3: Comparison of interp1 and interpft for non-periodic data

In additional the support function spline and lookup that underlie the interp1 function
can be called directly.

[Function File]pp = spline (x, y )
[Function File]yi = spline (x, y, xi )

Return the cubic spline interpolant of y at points x. If called with two arguments,
spline returns the piece-wise polynomial pp that may later be used with ppval to
evaluate the polynomial at specific points. If called with a third input argument,
spline evaluates the spline at the points xi. There is an equivalence between ppval
(spline (x, y), xi) and spline (x, y, xi).

The variable x must be a vector of length n, and y can be either a vector or array. In
the case where y is a vector, it can have a length of either n or n + 2. If the length
of y is n, then the ’not-a-knot’ end condition is used. If the length of y is n + 2, then
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the first and last values of the vector y are the values of the first derivative of the
cubic spline at the end-points.

If y is an array, then the size of y must have the form

[s1, s2, · · · , sk, n]

or
[s1, s2, · · · , sk, n+ 2].

The array is then reshaped internally to a matrix where the leading dimension is given
by

s1s2 · · · sk

and each row of this matrix is then treated separately. Note that this is exactly the
opposite treatment than interp1 and is done for compatibility.

See also: [ppval], page 451, [mkpp], page 451, [unmkpp], page 451.

The lookup function is used by other interpolation functions to identify the points of
the original data that are closest to the current point of interest.

[Loadable Function]idx = lookup (table, y, opt )
Lookup values in a sorted table. Usually used as a prelude to interpolation.

If table is strictly increasing and idx = lookup (table, y), then table(idx(i)) <=
y(i) < table(idx(i+1)) for all y(i) within the table. If y(i) < table (1) then
idx(i) is 0. If y(i) >= table(end) then idx(i) is table(n).

If the table is strictly decreasing, then the tests are reversed. There are no guarantees
for tables which are non-monotonic or are not strictly monotonic.

The algorithm used by lookup is standard binary search, with optimizations to speed
up the case of partially ordered arrays (dense downsampling). In particular, looking
up a single entry is of logarithmic complexity (unless a conversion occurs due to
non-numeric or unequal types).

table and y can also be cell arrays of strings (or y can be a single string). In this
case, string lookup is performed using lexicographical comparison.

If opts is specified, it shall be a string with letters indicating additional options. For
numeric lookup, ’l’ in opts indicates that the leftmost subinterval shall be extended
to infinity (i.e., all indices at least 1), and ’r’ indicates that the rightmost subinterval
shall be extended to infinity (i.e., all indices at most n-1).

For string lookup, ’i’ indicates case-insensitive comparison.

28.2 Multi-dimensional Interpolation

There are three multi-dimensional interpolation functions in Octave, with similar capabil-
ities. Methods using Delaunay tessellation are described in Section 29.4 [Interpolation on
Scattered Data], page 472.
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[Function File]zi = interp2 (x, y, z, xi, yi )
[Function File]zi = interp2 (Z, xi, yi )
[Function File]zi = interp2 (Z, n )
[Function File]zi = interp2 (. . . , method )
[Function File]zi = interp2 (. . . , method, extrapval )

Two-dimensional interpolation. x, y and z describe a surface function. If x and y are
vectors their length must correspondent to the size of z. x and y must be monotonic.
If they are matrices they must have the meshgrid format.

interp2 (x, y, Z, xi, yi, ...)
Returns a matrix corresponding to the points described by the matrices
xi, yi.
If the last argument is a string, the interpolation method can be specified.
The method can be ’linear’, ’nearest’ or ’cubic’. If it is omitted ’linear’
interpolation is assumed.

interp2 (z, xi, yi)
Assumes x = 1:rows (z) and y = 1:columns (z)

interp2 (z, n)
Interleaves the matrix z n-times. If n is omitted a value of n = 1 is
assumed.

The variable method defines the method to use for the interpolation. It can take one
of the following values

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

’pchip’ Piece-wise cubic hermite interpolating polynomial (not implemented yet).

’cubic’ Cubic interpolation from four nearest neighbors.

’spline’ Cubic spline interpolation–smooth first and second derivatives through-
out the curve.

If a scalar value extrapval is defined as the final value, then values outside the mesh as
set to this value. Note that in this case method must be defined as well. If extrapval
is not defined then NA is assumed.

See also: [interp1], page 455.

[Function File]vi = interp3 (x, y,z, v, xi, yi, zi )
[Function File]vi = interp3 (v, xi, yi, zi )
[Function File]vi = interp3 (v, m )
[Function File]vi = interp3 (v )
[Function File]vi = interp3 (. . . , method )
[Function File]vi = interp3 (. . . , method, extrapval )

Perform 3-dimensional interpolation. Each element of the 3-dimensional array v rep-
resents a value at a location given by the parameters x, y, and z. The parameters
x, x, and z are either 3-dimensional arrays of the same size as the array v in the
’meshgrid’ format or vectors. The parameters xi, etc. respect a similar format to x,
etc., and they represent the points at which the array vi is interpolated.
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If x, y, z are omitted, they are assumed to be x = 1 : size (v, 2), y = 1 : size (v,
1) and z = 1 : size (v, 3). If m is specified, then the interpolation adds a point half
way between each of the interpolation points. This process is performed m times. If
only v is specified, then m is assumed to be 1.
Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

’cubic’ Cubic interpolation from four nearest neighbors (not implemented yet).

’spline’ Cubic spline interpolation–smooth first and second derivatives through-
out the curve.

The default method is ’linear’.
If extrap is the string ’extrap’, then extrapolate values beyond the endpoints. If
extrap is a number, replace values beyond the endpoints with that number. If extrap
is missing, assume NA.

See also: [interp1], page 455, [interp2], page 459, [spline], page 458, [meshgrid],
page 229.

[Function File]vi = interpn (x1, x2, . . . , v, y1, y2, . . . )
[Function File]vi = interpn (v, y1, y2, . . . )
[Function File]vi = interpn (v, m )
[Function File]vi = interpn (v )
[Function File]vi = interpn (. . . , method )
[Function File]vi = interpn (. . . , method, extrapval )

Perform n-dimensional interpolation, where n is at least two. Each element of the
n-dimensional array v represents a value at a location given by the parameters x1,
x2, . . . , xn. The parameters x1, x2, . . . , xn are either n-dimensional arrays of the
same size as the array v in the ’ndgrid’ format or vectors. The parameters y1, etc.
respect a similar format to x1, etc., and they represent the points at which the array
vi is interpolated.
If x1, . . . , xn are omitted, they are assumed to be x1 = 1 : size (v, 1), etc. If
m is specified, then the interpolation adds a point half way between each of the
interpolation points. This process is performed m times. If only v is specified, then
m is assumed to be 1.
Method is one of:

’nearest’ Return the nearest neighbor.

’linear’ Linear interpolation from nearest neighbors.

’cubic’ Cubic interpolation from four nearest neighbors (not implemented yet).

’spline’ Cubic spline interpolation–smooth first and second derivatives through-
out the curve.

The default method is ’linear’.
If extrapval is the scalar value, use it to replace the values beyond the endpoints with
that number. If extrapval is missing, assume NA.

See also: [interp1], page 455, [interp2], page 459, [spline], page 458, [ndgrid], page 229.
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A significant difference between interpn and the other two multidimensional interpola-
tion functions is the fashion in which the dimensions are treated. For interp2 and interp3,
the ’y’ axis is considered to be the columns of the matrix, whereas the ’x’ axis corresponds to
the rows of the array. As Octave indexes arrays in column major order, the first dimension
of any array is the columns, and so interpn effectively reverses the ’x’ and ’y’ dimensions.
Consider the example

x = y = z = -1:1;
f = @(x,y,z) x.^2 - y - z.^2;
[xx, yy, zz] = meshgrid (x, y, z);
v = f (xx,yy,zz);
xi = yi = zi = -1:0.1:1;
[xxi, yyi, zzi] = meshgrid (xi, yi, zi);
vi = interp3(x, y, z, v, xxi, yyi, zzi, ’spline’);
[xxi, yyi, zzi] = ndgrid (xi, yi, zi);
vi2 = interpn(x, y, z, v, xxi, yyi, zzi, ’spline’);
mesh (zi, yi, squeeze (vi2(1,:,:)));

where vi and vi2 are identical. The reversal of the dimensions is treated in the meshgrid
and ndgrid functions respectively. The result of this code can be seen in Figure 28.4.
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Figure 28.4: Demonstration of the use of interpn
In additional the support function bicubic that underlies the cubic interpolation of

interp2 function can be called directly.

[Function File]zi = bicubic (x, y, z, xi, yi, extrapval )
Return a matrix zi corresponding to the bicubic interpolations at xi and yi of the
data supplied as x, y and z. Points outside the grid are set to extrapval.
See http://wiki.woodpecker.org.cn/moin/Octave/Bicubic for further informa-
tion.

See also: [interp2], page 459.

http://wiki.woodpecker.org.cn/moin/Octave/Bicubic
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29 Geometry

Much of the geometry code in Octave is based on the Qhull library1. Some of the docu-
mentation for Qhull, particularly for the options that can be passed to delaunay, voronoi
and convhull, etc., is relevant to Octave users.

29.1 Delaunay Triangulation

The Delaunay triangulation is constructed from a set of circum-circles. These circum-circles
are chosen so that there are at least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of points falls within any
of the circum-circles.

In general there are only three points on the circumference of any circum-circle. However,
in some cases, and in particular for the case of a regular grid, 4 or more points can be on a
single circum-circle. In this case the Delaunay triangulation is not unique.

[Function File]tri = delaunay (x, y )
[Function File]tri = delaunay (x, y, opt )

The return matrix of size [n, 3] contains a set triangles which are described by the
indices to the data point x and y vector. The triangulation satisfies the Delaunay
circum-circle criterion. No other data point is in the circum-circle of the defining
triangle.
A third optional argument, which must be a string, contains extra options passed
to the underlying qhull command. See the documentation for the Qhull library for
details.

x = rand (1, 10);
y = rand (size (x));
T = delaunay (x, y);
X = [x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1))];
Y = [y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1))];
axis ([0,1,0,1]);
plot (X, Y, "b", x, y, "r*");

See also: [voronoi], page 468, [delaunay3], page 463, [delaunayn], page 464.

The 3- and N-dimensional extension of the Delaunay triangulation are given by
delaunay3 and delaunayn respectively. delaunay3 returns a set of tetrahedra that satisfy
the Delaunay circum-circle criteria. Similarly, delaunayn returns the N-dimensional
simplex satisfying the Delaunay circum-circle criteria. The N-dimensional extension of a
triangulation is called a tessellation.

[Function File]T = delaunay3 (x, y, z )
[Function File]T = delaunay3 (x, y, z, opt )

A matrix of size [n, 4] is returned. Each row contains a set of tetrahedron which are
described by the indices to the data point vectors (x,y,z).

1 Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull algorithm for convex hulls," ACM
Trans. on Mathematical Software, 22(4):469–483, Dec 1996, http://www.qhull.org

http://www.qhull.org
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A fourth optional argument, which must be a string or cell array of strings, contains
extra options passed to the underlying qhull command. See the documentation for
the Qhull library for details.

See also: [delaunay], page 463, [delaunayn], page 464.

[Function File]T = delaunayn (P )
[Function File]T = delaunayn (P, opt )

Form the Delaunay triangulation for a set of points. The Delaunay triangulation is
a tessellation of the convex hull of the points such that no n-sphere defined by the
n-triangles contains any other points from the set. The input matrix P of size [n,
dim] contains n points in a space of dimension dim. The return matrix T has the size
[m, dim+1]. It contains for each row a set of indices to the points, which describes a
simplex of dimension dim. For example, a 2d simplex is a triangle and 3d simplex is
a tetrahedron.

Extra options for the underlying Qhull command can be specified by the second
argument. This argument is a cell array of strings. The default options depend on
the dimension of the input:

• 2D and 3D: opt = {"Qt", "Qbb", "Qc"}

• 4D and higher: opt = {"Qt", "Qbb", "Qc", "Qz"}

If opt is [], then the default arguments are used. If opt is {""}, then none of the
default arguments are used by Qhull. See the Qhull documentation for the available
options.

All options can also be specified as single string, for example "Qt Qbb Qc Qz".

An example of a Delaunay triangulation of a set of points is

rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
T = delaunay (x, y);
X = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
Y = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0, 1, 0, 1]);
plot(X, Y, "b", x, y, "r*");

The result of which can be seen in Figure 29.1.
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Figure 29.1: Delaunay triangulation of a random set of points

29.1.1 Plotting the Triangulation

Octave has the functions triplot and trimesh to plot the Delaunay triangulation of a
2-dimensional set of points.

[Function File]triplot (tri, x, y )
[Function File]triplot (tri, x, y, linespec )
[Function File]h = triplot (. . . )

Plot a triangular mesh in 2D. The variable tri is the triangular meshing of the points
(x, y) which is returned from delaunay. If given, the linespec determines the prop-
erties to use for the lines. The output argument h is the graphic handle to the plot.

See also: [plot], page 205, [trimesh], page 465, [delaunay], page 463.

[Function File]trimesh (tri, x, y, z )
[Function File]h = trimesh (. . . )

Plot a triangular mesh in 3D. The variable tri is the triangular meshing of the points
(x, y) which is returned from delaunay. The variable z is value at the point (x,
y). The output argument h is the graphic handle to the plot.

See also: [triplot], page 465, [delaunay3], page 463.

The difference between triplot and trimesh is that the former only plots the 2-
dimensional triangulation itself, whereas the second plots the value of some function f
(x, y). An example of the use of the triplot function is

rand ("state", 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
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that plot the Delaunay triangulation of a set of random points in 2-dimensions. The
output of the above can be seen in Figure 29.2.
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Figure 29.2: Delaunay triangulation of a random set of points

29.1.2 Identifying points in Triangulation

It is often necessary to identify whether a particular point in the N-dimensional space
is within the Delaunay tessellation of a set of points in this N-dimensional space, and if
so which N-simplex contains the point and which point in the tessellation is closest to the
desired point. The functions tsearch and dsearch perform this function in a triangulation,
and tsearchn and dsearchn in an N-dimensional tessellation.

To identify whether a particular point represented by a vector p falls within one of the
simplices of an N-simplex, we can write the Cartesian coordinates of the point in a para-
metric form with respect to the N-simplex. This parametric form is called the Barycentric
Coordinates of the point. If the points defining the N-simplex are given by N + 1 vectors
t(i,:), then the Barycentric coordinates defining the point p are given by

p = sum (beta(1:N+1) * t(1:N+1),:)

where there are N + 1 values beta(i) that together as a vector represent the Barycentric
coordinates of the point p. To ensure a unique solution for the values of beta(i) an
additional criteria of

sum (beta(1:N+1)) == 1

is imposed, and we can therefore write the above as
p - t(end, :) = beta(1:end-1) * (t(1:end-1, :)

- ones(N, 1) * t(end, :)

Solving for beta we can then write
beta(1:end-1) = (p - t(end, :)) / (t(1:end-1, :)

- ones(N, 1) * t(end, :))
beta(end) = sum(beta(1:end-1))
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which gives the formula for the conversion of the Cartesian coordinates of the point p to
the Barycentric coordinates beta. An important property of the Barycentric coordinates is
that for all points in the N-simplex

0 <= beta(i) <= 1

Therefore, the test in tsearch and tsearchn essentially only needs to express each point in
terms of the Barycentric coordinates of each of the simplices of the N-simplex and test the
values of beta. This is exactly the implementation used in tsearchn. tsearch is optimized
for 2-dimensions and the Barycentric coordinates are not explicitly formed.

[Loadable Function]idx = tsearch (x, y, t, xi, yi )
Searches for the enclosing Delaunay convex hull. For t = delaunay (x, y), finds the
index in t containing the points (xi, yi). For points outside the convex hull, idx is
NaN.

See also: [delaunay], page 463, [delaunayn], page 464.

[Function File][idx, p] = tsearchn (x, t, xi )
Searches for the enclosing Delaunay convex hull. For t = delaunayn (x), finds the
index in t containing the points xi. For points outside the convex hull, idx is NaN.
If requested tsearchn also returns the Barycentric coordinates p of the enclosing
triangles.

See also: [delaunay], page 463, [delaunayn], page 464.

An example of the use of tsearch can be seen with the simple triangulation
x = [-1; -1; 1; 1];
y = [-1; 1; -1; 1];
tri = [1, 2, 3; 2, 3, 1];

consisting of two triangles defined by tri. We can then identify which triangle a point falls
in like

tsearch (x, y, tri, -0.5, -0.5)
⇒ 1
tsearch (x, y, tri, 0.5, 0.5)
⇒ 2

and we can confirm that a point doesn’t lie within one of the triangles like
tsearch (x, y, tri, 2, 2)
⇒ NaN

The dsearch and dsearchn find the closest point in a tessellation to the desired point.
The desired point does not necessarily have to be in the tessellation, and even if it the
returned point of the tessellation does not have to be one of the vertexes of the N-simplex
within which the desired point is found.

[Function File]idx = dsearch (x, y, tri, xi, yi )
[Function File]idx = dsearch (x, y, tri, xi, yi, s )

Returns the index idx or the closest point in x, y to the elements [xi(:), yi(:)].
The variable s is accepted but ignored for compatibility.

See also: [dsearchn], page 468, [tsearch], page 467.
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[Function File]idx = dsearchn (x, tri, xi )
[Function File]idx = dsearchn (x, tri, xi, outval )
[Function File]idx = dsearchn (x, xi )
[Function File][idx, d] = dsearchn (. . . )

Returns the index idx or the closest point in x to the elements xi. If outval is supplied,
then the values of xi that are not contained within one of the simplicies tri are set to
outval. Generally, tri is returned from delaunayn (x).

See also: [dsearch], page 467, [tsearch], page 467.

An example of the use of dsearch, using the above values of x, y and tri is
dsearch (x, y, tri, -2, -2)
⇒ 1

If you wish the points that are outside the tessellation to be flagged, then dsearchn can
be used as

dsearchn ([x, y], tri, [-2, -2], NaN)
⇒ NaN
dsearchn ([x, y], tri, [-0.5, -0.5], NaN)
⇒ 1

where the point outside the tessellation are then flagged with NaN.

29.2 Voronoi Diagrams

A Voronoi diagram or Voronoi tessellation of a set of points s in an N-dimensional space,
is the tessellation of the N-dimensional space such that all points in v(p), a partitions of
the tessellation where p is a member of s, are closer to p than any other point in s. The
Voronoi diagram is related to the Delaunay triangulation of a set of points, in that the
vertexes of the Voronoi tessellation are the centers of the circum-circles of the simplicies of
the Delaunay tessellation.

[Function File]voronoi (x, y )
[Function File]voronoi (x, y, "plotstyle")
[Function File]voronoi (x, y, "plotstyle", options )
[Function File][vx, vy] = voronoi (. . . )

plots voronoi diagram of points (x, y). The voronoi facets with points at infinity
are not drawn. [vx, vy ] = voronoi(. . . ) returns the vertices instead of plotting the
diagram. plot (vx, vy) shows the voronoi diagram.
A fourth optional argument, which must be a string, contains extra options passed
to the underlying qhull command. See the documentation for the Qhull library for
details.

x = rand (10, 1);
y = rand (size (x));
h = convhull (x, y);
[vx, vy] = voronoi (x, y);
plot (vx, vy, "-b", x, y, "o", x(h), y(h), "-g")
legend ("", "points", "hull");

See also: [voronoin], page 469, [delaunay], page 463, [convhull], page 471.
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[Function File][C, F] = voronoin (pts )
[Function File][C, F] = voronoin (pts, options )

computes n- dimensional voronoi facets. The input matrix pts of size [n, dim] contains
n points of dimension dim. C contains the points of the voronoi facets. The list F
contains for each facet the indices of the voronoi points.

A second optional argument, which must be a string, contains extra options passed
to the underlying qhull command. See the documentation for the Qhull library for
details.

See also: [voronoin], page 469, [delaunay], page 463, [convhull], page 471.

An example of the use of voronoi is

rand("state",9);
x = rand(10,1);
y = rand(10,1);
tri = delaunay (x, y);
[vx, vy] = voronoi (x, y, tri);
triplot (tri, x, y, "b");
hold on;
plot (vx, vy, "r");

The result of which can be seen in Figure 29.3. Note that the circum-circle of one of the
triangles has been added to this figure, to make the relationship between the Delaunay
tessellation and the Voronoi diagram clearer.
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Figure 29.3: Delaunay triangulation and Voronoi diagram of a random set of points

Additional information about the size of the facets of a Voronoi diagram, and which
points of a set of points is in a polygon can be had with the polyarea and inpolygon
functions respectively.
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[Function File]polyarea (x, y )
[Function File]polyarea (x, y, dim )

Determines area of a polygon by triangle method. The variables x and y define the
vertex pairs, and must therefore have the same shape. They can be either vectors or
arrays. If they are arrays then the columns of x and y are treated separately and an
area returned for each.

If the optional dim argument is given, then polyarea works along this dimension of
the arrays x and y.

An example of the use of polyarea might be

rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
[c, f] = voronoin ([x, y]);
af = zeros (size(f));
for i = 1 : length (f)

af(i) = polyarea (c (f {i, :}, 1), c (f {i, :}, 2));
endfor

Facets of the Voronoi diagram with a vertex at infinity have infinity area. A simplified
version of polyarea for rectangles is available with rectint

[Function File]area = rectint (a, b )
Compute the area of intersection of rectangles in a and rectangles in b. Rectangles
are defined as [x y width height] where x and y are the minimum values of the two
orthogonal dimensions.

If a or b are matrices, then the output, area, is a matrix where the i-th row corresponds
to the i-th row of a and the j-th column corresponds to the j-th row of b.

See also: [polyarea], page 469.

[Function File][in, on] = inpolygon (x, y, xv, xy )
For a polygon defined by (xv, yv) points, determine if the points (x, y) are inside
or outside the polygon. The variables x, y, must have the same dimension. The
optional output on gives the points that are on the polygon.

An example of the use of inpolygon might be

randn ("state", 2);
x = randn (100, 1);
y = randn (100, 1);
vx = cos (pi * [-1 : 0.1: 1]);
vy = sin (pi * [-1 : 0.1 : 1]);
in = inpolygon (x, y, vx, vy);
plot(vx, vy, x(in), y(in), "r+", x(!in), y(!in), "bo");
axis ([-2, 2, -2, 2]);

The result of which can be seen in Figure 29.4.
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Figure 29.4: Demonstration of the inpolygon function to determine the points inside a
polygon

29.3 Convex Hull

The convex hull of a set of points is the minimum convex envelope containing all of the
points. Octave has the functions convhull and convhulln to calculate the convex hull of
2-dimensional and N-dimensional sets of points.

[Function File]H = convhull (x, y )
[Function File]H = convhull (x, y, opt )

Returns the index vector to the points of the enclosing convex hull. The data points
are defined by the x and y vectors.

A third optional argument, which must be a string, contains extra options passed
to the underlying qhull command. See the documentation for the Qhull library for
details.

See also: [delaunay], page 463, [convhulln], page 471.

[Loadable Function]h = convhulln (p )
[Loadable Function]h = convhulln (p, opt )
[Loadable Function][h, v] = convhulln (. . . )

Return an index vector to the points of the enclosing convex hull. The input matrix
of size [n, dim] contains n points of dimension dim.

If a second optional argument is given, it must be a string or cell array of strings
containing options for the underlying qhull command. (See the Qhull documentation
for the available options.) The default options are "s Qci Tcv". If the second output
V is requested the volume of the convex hull is calculated.

See also: [convhull], page 471, [delaunayn], page 464.



472 GNU Octave

An example of the use of convhull is

x = -3:0.05:3;
y = abs (sin (x));
k = convhull (x, y);
plot (x(k), y(k), "r-", x, y, "b+");
axis ([-3.05, 3.05, -0.05, 1.05]);

The output of the above can be seen in Figure 29.5.
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Figure 29.5: The convex hull of a simple set of points

29.4 Interpolation on Scattered Data

An important use of the Delaunay tessellation is that it can be used to interpolate from
scattered data to an arbitrary set of points. To do this the N-simplex of the known set of
points is calculated with delaunay, delaunay3 or delaunayn. Then the simplicies in to
which the desired points are found are identified. Finally the vertices of the simplicies are
used to interpolate to the desired points. The functions that perform this interpolation are
griddata, griddata3 and griddatan.

[Function File]zi = griddata (x, y, z, xi, yi, method )
[Function File][xi, yi, zi] = griddata (x, y, z, xi, yi, method )

Generate a regular mesh from irregular data using interpolation. The function is
defined by z = f (x, y). The interpolation points are all (xi, yi). If xi, yi are
vectors then they are made into a 2D mesh.

The interpolation method can be "nearest", "cubic" or "linear". If method is
omitted it defaults to "linear".

See also: [delaunay], page 463.
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[Function File]vi = griddata3 (x, y, z, v xi, yi, zi, method, options )
Generate a regular mesh from irregular data using interpolation. The function is
defined by y = f (x,y,z). The interpolation points are all xi.
The interpolation method can be "nearest" or "linear". If method is omitted it
defaults to "linear".

See also: [griddata], page 472, [delaunayn], page 464.

[Function File]yi = griddatan (x, y, xi, method, options )
Generate a regular mesh from irregular data using interpolation. The function is
defined by y = f (x). The interpolation points are all xi.
The interpolation method can be "nearest" or "linear". If method is omitted it
defaults to "linear".

See also: [griddata], page 472, [delaunayn], page 464.

An example of the use of the griddata function is
rand("state",1);
x=2*rand(1000,1)-1;
y=2*rand(size(x))-1;
z=sin(2*(x.^2+y.^2));
[xx,yy]=meshgrid(linspace(-1,1,32));
griddata(x,y,z,xx,yy);

that interpolates from a random scattering of points, to a uniform grid. The output of the
above can be seen in Figure 29.6.
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Figure 29.6: Interpolation from a scattered data to a regular grid
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30 Signal Processing

This chapter describes the signal processing and fast Fourier transform functions available
in Octave. Fast Fourier transforms are computed with the fftw or fftpack libraries
depending on how Octave is built.

[Function File]detrend (x, p )
If x is a vector, detrend (x, p) removes the best fit of a polynomial of order p from
the data x.

If x is a matrix, detrend (x, p) does the same for each column in x.

The second argument is optional. If it is not specified, a value of 1 is assumed. This
corresponds to removing a linear trend.

[Loadable Function]fft (a, n, dim )
Compute the FFT of a using subroutines from fftw. The FFT is calculated along the
first non-singleton dimension of the array. Thus if a is a matrix, fft (a) computes
the FFT for each column of a.

If called with two arguments, n is expected to be an integer specifying the number of
elements of a to use, or an empty matrix to specify that its value should be ignored.
If n is larger than the dimension along which the FFT is calculated, then a is resized
and padded with zeros. Otherwise, if n is smaller than the dimension along which the
FFT is calculated, then a is truncated.

If called with three arguments, dim is an integer specifying the dimension of the
matrix along which the FFT is performed

See also: [ifft], page 476, [fft2], page 477, [fftn], page 477, [fftw], page 475.

Octave uses the fftw libraries to perform FFT computations. When Octave starts up
and initializes the fftw libraries, they read a system wide file (on a Unix system, it is
typically ‘/etc/fftw/wisdom’) that contains information useful to speed up FFT compu-
tations. This information is called the wisdom. The system-wide file allows wisdom to be
shared between all applications using the fftw libraries.

Use the fftw function to generate and save wisdom. Using the utilities provided to-
gether with the fftw libraries (fftw-wisdom on Unix systems), you can even add wisdom
generated by Octave to the system-wide wisdom file.

[Loadable Function]method = fftw (’planner’)
[Loadable Function]fftw (’planner’, method )
[Loadable Function]wisdom = fftw (’dwisdom’)
[Loadable Function]wisdom = fftw (’dwisdom’, wisdom )

Manage fftw wisdom data. Wisdom data can be used to significantly accelerate
the calculation of the FFTs but implies an initial cost in its calculation. When
the fftw libraries are initialized, they read a system wide wisdom file (typically in
‘/etc/fftw/wisdom’), allowing wisdom to be shared between applications other than
Octave. Alternatively, the fftw function can be used to import wisdom. For example

wisdom = fftw (’dwisdom’)
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will save the existing wisdom used by Octave to the string wisdom. This string can
then be saved to a file and restored using the save and load commands respectively.
This existing wisdom can be reimported as follows

fftw (’dwisdom’, wisdom)

If wisdom is an empty matrix, then the wisdom used is cleared.
During the calculation of Fourier transforms further wisdom is generated. The fashion
in which this wisdom is generated is equally controlled by the fftw function. There
are five different manners in which the wisdom can be treated, these being

’estimate’ This specifies that no run-time measurement of the optimal means of
calculating a particular is performed, and a simple heuristic is used to
pick a (probably sub-optimal) plan. The advantage of this method is
that there is little or no overhead in the generation of the plan, which is
appropriate for a Fourier transform that will be calculated once.

’measure’ In this case a range of algorithms to perform the transform is considered
and the best is selected based on their execution time.

’patient’ This is like ’measure’, but a wider range of algorithms is considered.

’exhaustive’
This is like ’measure’, but all possible algorithms that may be used to
treat the transform are considered.

’hybrid’ As run-time measurement of the algorithm can be expensive, this is a
compromise where ’measure’ is used for transforms up to the size of 8192
and beyond that the ’estimate’ method is used.

The default method is ’estimate’, and the method currently being used can be probed
with

method = fftw (’planner’)

and the method used can be set using
fftw (’planner’, method)

Note that calculated wisdom will be lost when restarting Octave. However, the wis-
dom data can be reloaded if it is saved to a file as described above. Saved wisdom
files should not be used on different platforms since they will not be efficient and the
point of calculating the wisdom is lost.

See also: [fft], page 475, [ifft], page 476, [fft2], page 477, [ifft2], page 477, [fftn],
page 477, [ifftn], page 477.

[Loadable Function]ifft (a, n, dim )
Compute the inverse FFT of a using subroutines from fftw. The inverse FFT is
calculated along the first non-singleton dimension of the array. Thus if a is a matrix,
fft (a) computes the inverse FFT for each column of a.
If called with two arguments, n is expected to be an integer specifying the number of
elements of a to use, or an empty matrix to specify that its value should be ignored.
If n is larger than the dimension along which the inverse FFT is calculated, then a
is resized and padded with zeros. Otherwise, ifn is smaller than the dimension along
which the inverse FFT is calculated, then a is truncated.



Chapter 30: Signal Processing 477

If called with three arguments, dim is an integer specifying the dimension of the
matrix along which the inverse FFT is performed

See also: [fft], page 475, [ifft2], page 477, [ifftn], page 477, [fftw], page 475.

[Loadable Function]fft2 (a, n, m )
Compute the two-dimensional FFT of a using subroutines from fftw. The optional
arguments n and m may be used specify the number of rows and columns of a to use.
If either of these is larger than the size of a, a is resized and padded with zeros.
If a is a multi-dimensional matrix, each two-dimensional sub-matrix of a is treated
separately

See also: ifft2, fft, fftn, fftw.

[Loadable Function]fft2 (a, n, m )
Compute the inverse two-dimensional FFT of a using subroutines from fftw. The
optional arguments n and m may be used specify the number of rows and columns of
a to use. If either of these is larger than the size of a, a is resized and padded with
zeros.
If a is a multi-dimensional matrix, each two-dimensional sub-matrix of a is treated
separately

See also: fft2, ifft, ifftn, fftw.

[Loadable Function]fftn (a, size )
Compute the N-dimensional FFT of a using subroutines from fftw. The optional
vector argument size may be used specify the dimensions of the array to be used. If
an element of size is smaller than the corresponding dimension, then the dimension
is truncated prior to performing the FFT. Otherwise if an element of size is larger
than the corresponding dimension a is resized and padded with zeros.

See also: ifftn, fft, fft2, fftw.

[Loadable Function]ifftn (a, size )
Compute the inverse N-dimensional FFT of a using subroutines from fftw. The
optional vector argument size may be used specify the dimensions of the array to be
used. If an element of size is smaller than the corresponding dimension, then the
dimension is truncated prior to performing the inverse FFT. Otherwise if an element
of size is larger than the corresponding dimension a is resized and padded with zeros.

See also: fftn, ifft, ifft2, fftw.

[Function File]fftconv (a, b, n )
Return the convolution of the vectors a and b, as a vector with length equal to the
length (a) + length (b) - 1. If a and b are the coefficient vectors of two polynomi-
als, the returned value is the coefficient vector of the product polynomial.
The computation uses the FFT by calling the function fftfilt. If the optional
argument n is specified, an N-point FFT is used.

[Function File]fftfilt (b, x, n )
With two arguments, fftfilt filters x with the FIR filter b using the FFT.
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Given the optional third argument, n, fftfilt uses the overlap-add method to filter
x with b using an N-point FFT.
If x is a matrix, filter each column of the matrix.

[Loadable Function]y = filter (b, a, x )
[Loadable Function][y, sf] = filter (b, a, x, si )
[Loadable Function][y, sf] = filter (b, a, x, [], dim )
[Loadable Function][y, sf] = filter (b, a, x, si, dim )

Return the solution to the following linear, time-invariant difference equation:

N∑
k=0

ak+1yn−k =
M∑

k=0

bk+1xn−k, 1 ≤ n ≤ P

where a ∈ <N−1, b ∈ <M−1, and x ∈ <P . over the first non-singleton dimension of x
or over dim if supplied. An equivalent form of this equation is:

yn = −
N∑

k=1

ck+1yn−k +
M∑

k=0

dk+1xn−k, 1 ≤ n ≤ P

where c = a/a1 and d = b/a1.
If the fourth argument si is provided, it is taken as the initial state of the system and
the final state is returned as sf. The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one. If si is not supplied,
the initial state vector is set to all zeros.
In terms of the z-transform, y is the result of passing the discrete- time signal x
through a system characterized by the following rational system function:

H(z) =

M∑
k=0

dk+1z
−k

1 +
N∑

k+1

ck+1z
−k

[Function File]y = filter2 (b, x )
[Function File]y = filter2 (b, x, shape )

Apply the 2-D FIR filter b to x. If the argument shape is specified, return an array
of the desired shape. Possible values are:

’full’ pad x with zeros on all sides before filtering.

’same’ unpadded x (default)

’valid’ trim x after filtering so edge effects are no included.

Note this is just a variation on convolution, with the parameters reversed and b
rotated 180 degrees.

See also: [conv2], page 447.
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[Function File][h, w] = freqz (b, a, n, "whole")
Return the complex frequency response h of the rational IIR filter whose numerator
and denominator coefficients are b and a, respectively. The response is evaluated at
n angular frequencies between 0 and 2π.
The output value w is a vector of the frequencies.
If the fourth argument is omitted, the response is evaluated at frequencies between 0
and π.
If n is omitted, a value of 512 is assumed.
If a is omitted, the denominator is assumed to be 1 (this corresponds to a simple FIR
filter).
For fastest computation, n should factor into a small number of small primes.

[Function File]h = freqz (b, a, w )
Evaluate the response at the specific frequencies in the vector w. The values for w
are measured in radians.

[Function File][...] = freqz (. . . , Fs )
Return frequencies in Hz instead of radians assuming a sampling rate Fs. If you
are evaluating the response at specific frequencies w, those frequencies should be
requested in Hz rather than radians.

[Function File]freqz (. . . )
Plot the pass band, stop band and phase response of h rather than returning them.

[Function File]freqz_plot (w, h )
Plot the pass band, stop band and phase response of h.

[Function File]sinc (x )
Return sin(πx)/(πx).

[Function File]b = unwrap (a, tol, dim )
Unwrap radian phases by adding multiples of 2*pi as appropriate to remove jumps
greater than tol. tol defaults to pi.
Unwrap will unwrap along the first non-singleton dimension of a, unless the optional
argument dim is given, in which case the data will be unwrapped along this dimension

[Function File][a, b] = arch_fit (y, x, p, iter, gamma, a0, b0 )
Fit an ARCH regression model to the time series y using the scoring algorithm in
Engle’s original ARCH paper. The model is

y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(p+1) * e(t-p)^2

in which e(t) is N(0, h(t)), given a time-series vector y up to time t− 1 and a matrix
of (ordinary) regressors x up to t. The order of the regression of the residual variance
is specified by p.
If invoked as arch_fit (y, k, p) with a positive integer k, fit an ARCH(k, p) process,
i.e., do the above with the t-th row of x given by

[1, y(t-1), ..., y(t-k)]

Optionally, one can specify the number of iterations iter, the updating factor gamma,
and initial values a0 and b0 for the scoring algorithm.
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[Function File]arch_rnd (a, b, t )
Simulate an ARCH sequence of length t with AR coefficients b and CH coefficients
a. I.e., the result y(t) follows the model

y(t) = b(1) + b(2) * y(t-1) + ... + b(lb) * y(t-lb+1) + e(t),

where e(t), given y up to time t− 1, is N(0, h(t)), with
h(t) = a(1) + a(2) * e(t-1)^2 + ... + a(la) * e(t-la+1)^2

[Function File][pval, lm] = arch_test (y, x, p )
For a linear regression model

y = x * b + e

perform a Lagrange Multiplier (LM) test of the null hypothesis of no conditional
heteroscedascity against the alternative of CH(p).
I.e., the model is

y(t) = b(1) * x(t,1) + ... + b(k) * x(t,k) + e(t),

given y up to t− 1 and x up to t, e(t) is N(0, h(t)) with
h(t) = v + a(1) * e(t-1)^2 + ... + a(p) * e(t-p)^2,

and the null is a(1) == . . . == a(p) == 0.
If the second argument is a scalar integer, k, perform the same test in a linear au-
toregression model of order k, i.e., with

[1, y(t-1), ..., y(t-k)]

as the t-th row of x.
Under the null, LM approximately has a chisquare distribution with p degrees of
freedom and pval is the p-value (1 minus the CDF of this distribution at LM) of the
test.
If no output argument is given, the p-value is displayed.

[Function File]arma_rnd (a, b, v, t, n )
Return a simulation of the ARMA model

x(n) = a(1) * x(n-1) + ... + a(k) * x(n-k)
+ e(n) + b(1) * e(n-1) + ... + b(l) * e(n-l)

in which k is the length of vector a, l is the length of vector b and e is Gaussian white
noise with variance v. The function returns a vector of length t.
The optional parameter n gives the number of dummy x(i) used for initialization, i.e.,
a sequence of length t+n is generated and x(n+1:t+n) is returned. If n is omitted, n
= 100 is used.

[Function File]autocor (x, h )
Return the autocorrelations from lag 0 to h of vector x. If h is omitted, all auto-
correlations are computed. If x is a matrix, the autocorrelations of each column are
computed.

[Function File]autocov (x, h )
Return the autocovariances from lag 0 to h of vector x. If h is omitted, all auto-
covariances are computed. If x is a matrix, the autocovariances of each column are
computed.
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[Function File]autoreg_matrix (y, k )
Given a time series (vector) y, return a matrix with ones in the first column and
the first k lagged values of y in the other columns. I.e., for t > k, [1, y(t-1), ...,
y(t-k)] is the t-th row of the result. The resulting matrix may be used as a regressor
matrix in autoregressions.

[Function File]bartlett (m )
Return the filter coefficients of a Bartlett (triangular) window of length m.

For a definition of the Bartlett window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]blackman (m )
Return the filter coefficients of a Blackman window of length m.

For a definition of the Blackman window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File][d, dd] = diffpara (x, a, b )
Return the estimator d for the differencing parameter of an integrated time series.

The frequencies from [2 ∗ pi ∗ a/t, 2 ∗ pi ∗ b/T ] are used for the estimation. If b is
omitted, the interval [2 ∗ pi/T, 2 ∗ pi ∗ a/T ] is used. If both b and a are omitted then
a = 0.5 ∗ sqrt(T ) and b = 1.5 ∗ sqrt(T ) is used, where T is the sample size. If x is a
matrix, the differencing parameter of each column is estimated.

The estimators for all frequencies in the intervals described above is returned in dd.
The value of d is simply the mean of dd.

Reference: Brockwell, Peter J. & Davis, Richard A. Time Series: Theory and Methods
Springer 1987.

[Function File]durbinlevinson (c, oldphi, oldv )
Perform one step of the Durbin-Levinson algorithm.

The vector c specifies the autocovariances [gamma_0, ..., gamma_t] from lag 0 to t,
oldphi specifies the coefficients based on c(t-1) and oldv specifies the corresponding
error.

If oldphi and oldv are omitted, all steps from 1 to t of the algorithm are performed.

[Function File]fftshift (v )
[Function File]fftshift (v, dim )

Perform a shift of the vector v, for use with the fft and ifft functions, in order the
move the frequency 0 to the center of the vector or matrix.

If v is a vector of N elements corresponding to N time samples spaced of Dt each,
then fftshift (fft (v)) corresponds to frequencies

f = ((1:N) - ceil(N/2)) / N / Dt

If v is a matrix, the same holds for rows and columns. If v is an array, then the same
holds along each dimension.

The optional dim argument can be used to limit the dimension along which the
permutation occurs.
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[Function File]ifftshift (v )
[Function File]ifftshift (v, dim )

Undo the action of the fftshift function. For even length v, fftshift is its own
inverse, but odd lengths differ slightly.

[Function File]fractdiff (x, d )
Compute the fractional differences (1−L)dx where L denotes the lag-operator and d
is greater than -1.

[Function File]hamming (m )
Return the filter coefficients of a Hamming window of length m.

For a definition of the Hamming window, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]hanning (m )
Return the filter coefficients of a Hanning window of length m.

For a definition of this window type, see e.g., A. V. Oppenheim & R. W. Schafer,
Discrete-Time Signal Processing.

[Function File]hurst (x )
Estimate the Hurst parameter of sample x via the rescaled range statistic. If x is a
matrix, the parameter is estimated for every single column.

[Function File]pp = pchip (x, y )
[Function File]yi = pchip (x, y, xi )

Piecewise Cubic Hermite interpolating polynomial. Called with two arguments, the
piece-wise polynomial pp is returned, that may later be used with ppval to evaluate
the polynomial at specific points.

The variable x must be a strictly monotonic vector (either increasing or decreasing).
While y can be either a vector or array. In the case where y is a vector, it must have
a length of n. If y is an array, then the size of y must have the form

[s1, s2, · · · , sk, n]

The array is then reshaped internally to a matrix where the leading dimension is given
by

s1s2 · · · sk

and each row in this matrix is then treated separately. Note that this is exactly the
opposite treatment than interp1 and is done for compatibility.

Called with a third input argument, pchip evaluates the piece-wise polynomial at the
points xi. There is an equivalence between ppval (pchip (x, y), xi) and pchip
(x, y, xi).

See also: [spline], page 458, [ppval], page 451, [mkpp], page 451, [unmkpp], page 451.

[Function File]periodogram (x )
For a data matrix x from a sample of size n, return the periodogram.
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[Function File]rectangle_lw (n, b )
Rectangular lag window. Subfunction used for spectral density estimation.

[Function File]rectangle_sw (n, b )
Rectangular spectral window. Subfunction used for spectral density estimation.

[Function File]sinetone (freq, rate, sec, ampl )
Return a sinetone of frequency freq with length of sec seconds at sampling rate rate
and with amplitude ampl. The arguments freq and ampl may be vectors of common
size.
Defaults are rate = 8000, sec = 1 and ampl = 64.

[Function File]sinewave (m, n, d )
Return an m-element vector with i-th element given by sin (2 * pi * (i+d-1) / n).
The default value for d is 0 and the default value for n is m.

[Function File]spectral_adf (c, win, b )
Return the spectral density estimator given a vector of autocovariances c, window
name win, and bandwidth, b.
The window name, e.g., "triangle" or "rectangle" is used to search for a function
called win_sw.
If win is omitted, the triangle window is used. If b is omitted, 1 / sqrt (length
(x)) is used.

[Function File]spectral_xdf (x, win, b )
Return the spectral density estimator given a data vector x, window name win, and
bandwidth, b.
The window name, e.g., "triangle" or "rectangle" is used to search for a function
called win_sw.
If win is omitted, the triangle window is used. If b is omitted, 1 / sqrt (length
(x)) is used.

[Function File]spencer (x )
Return Spencer’s 15 point moving average of every single column of x.

[Function File][y, c] = stft (x, win_size, inc, num_coef, w_type )
Compute the short-time Fourier transform of the vector x with num coef coefficients
by applying a window of win size data points and an increment of inc points.
Before computing the Fourier transform, one of the following windows is applied:

hanning w type = 1

hamming w type = 2

rectangle w type = 3

The window names can be passed as strings or by the w type number.
If not all arguments are specified, the following defaults are used: win size = 80, inc
= 24, num coef = 64, and w type = 1.
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y = stft (x, ...) returns the absolute values of the Fourier coefficients according
to the num coef positive frequencies.
[y, c] = stft (x, ...) returns the entire STFT-matrix y and a 3-element vector
c containing the window size, increment, and window type, which is needed by the
synthesis function.

[Function File]synthesis (y, c )
Compute a signal from its short-time Fourier transform y and a 3-element vector c
specifying window size, increment, and window type.
The values y and c can be derived by

[y, c] = stft (x , ...)

[Function File]triangle_lw (n, b )
Triangular lag window. Subfunction used for spectral density estimation.

[Function File]triangle_sw (n, b )
Triangular spectral window. Subfunction used for spectral density estimation.

[Function File][a, v] = yulewalker (c )
Fit an AR (p)-model with Yule-Walker estimates given a vector c of autocovariances
[gamma_0, ..., gamma_p].
Returns the AR coefficients, a, and the variance of white noise, v.
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31 Image Processing

Since an image basically is a matrix Octave is a very powerful environment for processing
and analyzing images. To illustrate how easy it is to do image processing in Octave, the
following example will load an image, smooth it by a 5-by-5 averaging filter, and compute
the gradient of the smoothed image.

I = imread ("myimage.jpg");
S = conv2 (I, ones (5, 5) / 25, "same");
[Dx, Dy] = gradient (S);

In this example S contains the smoothed image, and Dx and Dy contains the partial spatial
derivatives of the image.

31.1 Loading and Saving Images

The first step in most image processing tasks is to load an image into Octave. This is done
using the imread function, which uses the GraphicsMagick library for reading. This means
a vast number of image formats is supported. The imwrite function is the corresponding
function for writing images to the disk.

In summary, most image processing code will follow the structure of this code
I = imread ("my_input_image.img");
J = process_my_image (I);
imwrite ("my_output_image.img", J);

[Function File][img, map, alpha] = imread (filename )
Read images from various file formats.
The size and numeric class of the output depends on the format of the image. A color
image is returned as an MxNx3 matrix. Grey-level and black-and-white images are of
size MxN. The color depth of the image determines the numeric class of the output:
"uint8" or "uint16" for grey and color, and "logical" for black and white.

See also: [imwrite], page 485, [imfinfo], page 486.

[Function File]imwrite (img, filename, fmt, p1, v1, . . . )
[Function File]imwrite (img, map, filename, fmt, p1, v1, . . . )

Write images in various file formats.
If fmt is missing, the file extension (if any) of filename is used to determine the format.
The parameter-value pairs (p1, v1, . . . ) are optional. Currently the following options
are supported for JPEG images

‘Quality’ Sets the quality of the compression. The corresponding value should be
an integer between 0 and 100, with larger values meaning higher visual
quality and less compression.

See also: [imread], page 485, [imfinfo], page 486.

[Built-in Function]val = IMAGE_PATH ()
[Built-in Function]old_val = IMAGE_PATH (new_val )

Query or set the internal variable that specifies a colon separated list of directories in
which to search for image files.
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It is possible to get information about an image file on disk, without actually reading it
into Octave. This is done using the imfinfo function which provides read access to many
of the parameters stored in the header of the image file.

[Function File]info = imfinfo (filename )
[Function File]info = imfinfo (url )

Read image information from a file.

imfinfo returns a structure containing information about the image stored in the file
filename. The output structure contains the following fields.

‘Filename’
The full name of the image file.

‘FileSize’
Number of bytes of the image on disk

‘FileModDate’
Date of last modification to the file.

‘Height’ Image height in pixels.

‘Width’ Image Width in pixels.

‘BitDepth’
Number of bits per channel per pixel.

‘Format’ Image format (e.g., "jpeg").

‘LongFormat’
Long form image format description.

‘XResolution’
X resolution of the image.

‘YResolution’
Y resolution of the image.

‘TotalColors’
Number of unique colors in the image.

‘TileName’
Tile name.

‘AnimationDelay’
Time in 1/100ths of a second (0 to 65535) which must expire before
displaying the next image in an animated sequence.

‘AnimationIterations’
Number of iterations to loop an animation (e.g., Netscape loop extension)
for.

‘ByteOrder’
Endian option for formats that support it. Is either "little-endian",
"big-endian", or "undefined".
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‘Gamma’ Gamma level of the image. The same color image displayed on two dif-
ferent workstations may look different due to differences in the display
monitor.

‘Matte’ true if the image has transparency.

‘ModulusDepth’
Image modulus depth (minimum number of bits required to support
red/green/blue components without loss of accuracy).

‘Quality’ JPEG/MIFF/PNG compression level.

‘QuantizeColors’
Preferred number of colors in the image.

‘ResolutionUnits’
Units of image resolution. Is either "pixels per inch", "pixels per
centimeter", or "undefined".

‘ColorType’
Image type. Is either "grayscale", "indexed", "truecolor", or
"undefined".

‘View’ FlashPix viewing parameters.

See also: [imread], page 485, [imwrite], page 485.

31.2 Displaying Images

A natural part of image processing is visualization of an image. The most basic function
for this is the imshow function that shows the image given in the first input argument. This
function uses an external program to show the image. If gnuplot 4.2 or later is available
it will be used to display the image, otherwise the display, xv, or xloadimage program is
used. The actual program can be selected with the image_viewer function.

[Function File]imshow (im )
[Function File]imshow (im, limits )
[Function File]imshow (im, map )
[Function File]imshow (rgb, . . . )
[Function File]imshow (filename )
[Function File]imshow (. . . , string_param1, value1, . . . )

Display the image im, where im can be a 2-dimensional (gray-scale image) or a 3-
dimensional (RGB image) matrix.
If limits is a 2-element vector [low, high], the image is shown using a display range
between low and high. If an empty matrix is passed for limits, the display range is
computed as the range between the minimal and the maximal value in the image.
If map is a valid color map, the image will be shown as an indexed image using the
supplied color map.
If a file name is given instead of an image, the file will be read and shown.
If given, the parameter string param1 has value value1. string param1 can be any
of the following:



488 GNU Octave

‘"displayrange"’
value1 is the display range as described above.

See also: [image], page 488, [imagesc], page 488, [colormap], page 490, [gray2ind],
page 489, [rgb2ind], page 489.

[Function File]image (img )
[Function File]image (x, y, img )

Display a matrix as a color image. The elements of x are indices into the current
colormap, and the colormap will be scaled so that the extremes of x are mapped to
the extremes of the colormap.
It first tries to use gnuplot, then display from ImageMagick, then xv, and then
xloadimage. The actual program used can be changed using the image_viewer
function.
The axis values corresponding to the matrix elements are specified in x and y. If
you’re not using gnuplot 4.2 or later, these variables are ignored.

See also: [imshow], page 487, [imagesc], page 488, [colormap], page 490,
[image viewer], page 488.

[Function File]imagesc (a )
[Function File]imagesc (x, y, a )
[Function File]imagesc (. . . , limits )
[Function File]imagesc (h, . . . )
[Function File]h = imagesc (. . . )

Display a scaled version of the matrix a as a color image. The colormap is scaled
so that the entries of the matrix occupy the entire colormap. If limits = [lo, hi] are
given, then that range is set to the ’clim’ of the current axes.
The axis values corresponding to the matrix elements are specified in x and y, either
as pairs giving the minimum and maximum values for the respective axes, or as values
for each row and column of the matrix a.

See also: [image], page 488, [imshow], page 487, [caxis], page 222.

[Function File][fcn, default_zoom] = image_viewer (fcn, default_zoom )
Change the program or function used for viewing images and return the previous
values.
When the image or imshow function is called it will launch an external program to
display the image. The default behavior is to use gnuplot if the installed version sup-
ports image viewing, and otherwise try the programs display, xv, and xloadimage.
Using this function it is possible to change that behavior.
When called with one input argument images will be displayed by saving the image
to a file and the system command command will be called to view the image. The
command must be a string containing %s and possibly %f. The %s will be replaced
by the filename of the image, and the %f will (if present) be replaced by the zoom
factor given to the image function. For example,

image_viewer ("eog %s");

changes the image viewer to the eog program.
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With two input arguments, images will be displayed by calling the function func-
tion handle. For example,

image_viewer (data, @my_image_viewer);

sets the image viewer function to my_image_viewer. The image viewer function is
called with

my_image_viewer (x, y, im, zoom, data)

where x and y are the axis of the image, im is the image variable, and data is extra
user-supplied data to be passed to the viewer function.
With three input arguments it is possible to change the zooming. Some programs
(like xloadimage) require the zoom factor to be between 0 and 100, and not 0 and 1
like Octave assumes. This is solved by setting the third argument to 100.

See also: [image], page 488, [imshow], page 487.

31.3 Representing Images

In general Octave supports four different kinds of images, gray-scale images, RGB images,
binary images, and indexed images. A gray-scale image is represented with an M-by-N
matrix in which each element corresponds to the intensity of a pixel. An RGB image is
represented with an M-by-N-by-3 array where each 3-vector corresponds to the red, green,
and blue intensities of each pixel.

The actual meaning of the value of a pixel in a gray-scale or RGB image depends on the
class of the matrix. If the matrix is of class double pixel intensities are between 0 and 1, if
it is of class uint8 intensities are between 0 and 255, and if it is of class uint16 intensities
are between 0 and 65535.

A binary image is an M-by-N matrix of class logical. A pixel in a binary image is black
if it is false and white if it is true.

An indexed image consists of an M-by-N matrix of integers and a C-by-3 color map.
Each integer corresponds to an index in the color map, and each row in the color map
corresponds to an RGB color. The color map must be of class double with values between
0 and 1.

[Function File][img, map] = gray2ind (I, n )
Convert a gray scale intensity image to an Octave indexed image. The indexed image
will consist of n different intensity values. If not given n will default to 64.

[Function File]ind2gray (x, map )
Convert an Octave indexed image to a gray scale intensity image. If map is omitted,
the current colormap is used to determine the intensities.

See also: [gray2ind], page 489, [rgb2ntsc], page 494, [image], page 488, [colormap],
page 490.

[Function File][x, map] = rgb2ind (rgb )
[Function File][x, map] = rgb2ind (r, g, b )

Convert an RGB image to an Octave indexed image.

See also: [ind2rgb], page 490, [rgb2ntsc], page 494.
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[Function File]rgb = ind2rgb (x, map )
[Function File][r, g, b] = ind2rgb (x, map )

Convert an indexed image to red, green, and blue color components. If the colormap
doesn’t contain enough colors, pad it with the last color in the map. If map is omitted,
the current colormap is used for the conversion.

See also: [rgb2ind], page 489, [image], page 488, [imshow], page 487, [ind2gray],
page 489, [gray2ind], page 489.

[Function File]colormap (map )
[Function File]colormap ("default")

Set the current colormap.

colormap (map) sets the current colormap to map. The color map should be an
n row by 3 column matrix. The columns contain red, green, and blue intensities
respectively. All entries should be between 0 and 1 inclusive. The new colormap is
returned.

colormap ("default") restores the default colormap (the jet map with 64 entries).
The default colormap is returned.

With no arguments, colormap returns the current color map.

See also: [jet], page 491.

[Function File]map_out = brighten (map, beta )
[Function File]map_out = brighten (h, beta )
[Function File]map_out = brighten (beta )

Darkens or brightens the given colormap. If the map argument is omitted, the function
is applied to the current colormap. The first argument can also be a valid graphics
handle h, in which case brighten is applied to the colormap associated with this
handle.

Should the resulting colormap map out not be assigned, it will be written to the
current colormap.

The argument beta should be a scalar between -1 and 1, where a negative value
darkens and a positive value brightens the colormap.

See also: [colormap], page 490.

[Function File]autumn (n )
Create color colormap. This colormap is red through orange to yellow. The argument
n should be a scalar. If it is omitted, the length of the current colormap or 64 is
assumed.

See also: [colormap], page 490.

[Function File]bone (n )
Create color colormap. This colormap is a gray colormap with a light blue tone. The
argument n should be a scalar. If it is omitted, the length of the current colormap or
64 is assumed.

See also: [colormap], page 490.
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[Function File]cool (n )
Create color colormap. The colormap is cyan to magenta. The argument n should be
a scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]copper (n )
Create color colormap. This colormap is black to a light copper tone. The argument
n should be a scalar. If it is omitted, the length of the current colormap or 64 is
assumed.

See also: [colormap], page 490.

[Function File]flag (n )
Create color colormap. This colormap cycles through red, white, blue and black. The
argument n should be a scalar. If it is omitted, the length of the current colormap or
64 is assumed.

See also: [colormap], page 490.

[Function File]gray (n )
Return a gray colormap with n entries corresponding to values from 0 to n-1. The
argument n should be a scalar. If it is omitted, the length of the current colormap or
64 is assumed.

[Function File]hot (n )
Create color colormap. This colormap is black through dark red, red, orange, yellow
to white. The argument n should be a scalar. If it is omitted, the length of the
current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]hsv (n )
Create color colormap. This colormap is red through yellow, green, cyan, blue, ma-
genta to red. It is obtained by linearly varying the hue through all possible values
while keeping constant maximum saturation and value and is equivalent to hsv2rgb
([linspace(0,1,N)’, ones(N,2)]).
The argument n should be a scalar. If it is omitted, the length of the current colormap
or 64 is assumed.

See also: [colormap], page 490.

[Function File]jet (n )
Create color colormap. This colormap is dark blue through blue, cyan, green, yellow,
red to dark red. The argument n should be a scalar. If it is omitted, the length of
the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]ocean (n )
Create color colormap. The argument n should be a scalar. If it is omitted, the length
of the current colormap or 64 is assumed.
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[Function File]pink (n )
Create color colormap. This colormap gives a sepia tone on black and white images.
The argument n should be a scalar. If it is omitted, the length of the current colormap
or 64 is assumed.

See also: [colormap], page 490.

[Function File]prism (n )
Create color colormap. This colormap cycles trough red, orange, yellow, green, blue
and violet. The argument n should be a scalar. If it is omitted, the length of the
current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]rainbow (n )
Create color colormap. This colormap is red through orange, yellow, green, blue to
violet. The argument n should be a scalar. If it is omitted, the length of the current
colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]spring (n )
Create color colormap. This colormap is magenta to yellow. The argument n should
be a scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]summer (n )
Create color colormap. This colormap is green to yellow. The argument n should be
a scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]white (n )
Create color colormap. This colormap is completely white. The argument n should
be a scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]winter (n )
Create color colormap. This colormap is blue to green. The argument n should be a
scalar. If it is omitted, the length of the current colormap or 64 is assumed.

See also: [colormap], page 490.

[Function File]contrast (x, n )
Return a gray colormap that maximizes the contrast in an image. The returned
colormap will have n rows. If n is not defined then the size of the current colormap
is used instead.

See also: [colormap], page 490.
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An additional colormap is gmap40. This code map contains only colors with integer
values of the red, green and blue components. This is a workaround for a limitation of
gnuplot 4.0, that does not allow the color of line or patch objects to be set, and so gmap40
is useful for gnuplot 4.0 users, and in particular in conjunction with the bar, barh or contour
functions.

[Function File]gmap40 (n )
Create a color colormap. The colormap is red, green, blue, yellow, magenta and cyan.
These are the colors that are allowed with patch objects using gnuplot 4.0, and so
this colormap function is specially designed for users of gnuplot 4.0. The argument n
should be a scalar. If it is omitted, a length of 6 is assumed. Larger values of n result
in a repetition of the above colors

See also: [colormap], page 490.

You may use the spinmap function to cycle through the colors in the current colormap,
displaying the changes for the current figure.

[Function File]spinmap (t, inc )
Cycle the colormap for t seconds with an increment of inc. Both parameters are
optional. The default cycle time is 5 seconds and the default increment is 2.
A higher value of inc causes a faster cycle through the colormap.

See also: [gca], page 244, [colorbar], page 238.

31.4 Plotting on top of Images

If gnuplot is being used to display images it is possible to plot on top of images. Since an
image is a matrix it is indexed by row and column values. The plotting system is, however,
based on the traditional (x, y) system. To minimize the difference between the two systems
Octave places the origin of the coordinate system in the point corresponding to the pixel
at (1, 1). So, to plot points given by row and column values on top of an image, one should
simply call plot with the column values as the first argument and the row values as the
second. As an example the following code generates an image with random intensities
between 0 and 1, and shows the image with red circles over pixels with an intensity above
0.99.

I = rand (100, 100);
[row, col] = find (I > 0.99);
hold ("on");
imshow (I);
plot (col, row, "ro");
hold ("off");

31.5 Color Conversion

Octave supports conversion from the RGB color system to NTSC and HSV and vice versa.

[Function File]hsv_map = rgb2hsv (rgb_map )
Transform a colormap or image from the rgb space to the hsv space.
A color n the RGB space consists of the red, green and blue intensities.
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In the HSV space each color is represented by their hue, saturation and value (bright-
ness). Value gives the amount of light in the color. Hue describes the dominant
wavelength. Saturation is the amount of Hue mixed into the color.

See also: [hsv2rgb], page 494.

[Function File]rgb_map = hsv2rgb (hsv_map )
Transform a colormap or image from the hsv space to the rgb space.

See also: [rgb2hsv], page 493.

[Function File]rgb2ntsc (rgb )
Transform a colormap or image from RGB to NTSC.

See also: [ntsc2rgb], page 494.

[Function File]ntsc2rgb (yiq )
Transform a colormap or image from NTSC to RGB.

See also: [rgb2ntsc], page 494.
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32 Audio Processing

Octave provides a few functions for dealing with audio data. An audio ‘sample’ is a single
output value from an A/D converter, i.e., a small integer number (usually 8 or 16 bits), and
audio data is just a series of such samples. It can be characterized by three parameters: the
sampling rate (measured in samples per second or Hz, e.g., 8000 or 44100), the number of
bits per sample (e.g., 8 or 16), and the number of channels (1 for mono, 2 for stereo, etc.).

There are many different formats for representing such data. Currently, only the two
most popular, linear encoding and mu-law encoding, are supported by Octave. There is an
excellent FAQ on audio formats by Guido van Rossum <guido@cwi.nl> which can be found at
any FAQ ftp site, in particular in the directory ‘/pub/usenet/news.answers/audio-fmts’
of the archive site rtfm.mit.edu.

Octave simply treats audio data as vectors of samples (non-mono data are not supported
yet). It is assumed that audio files using linear encoding have one of the extensions ‘lin’
or ‘raw’, and that files holding data in mu-law encoding end in ‘au’, ‘mu’, or ‘snd’.

[Function File]lin2mu (x, n )
Converts audio data from linear to mu-law. Mu-law values use 8-bit unsigned integers.
Linear values use n-bit signed integers or floating point values in the range -1<=x<=1
if n is 0. If n is not specified it defaults to 0, 8 or 16 depending on the range values
in x.

See also: [mu2lin], page 495, [loadaudio], page 495, [saveaudio], page 495, [playaudio],
page 496, [setaudio], page 496, [record], page 496.

[Function File]mu2lin (x, bps )
Converts audio data from linear to mu-law. Mu-law values are 8-bit unsigned integers.
Linear values use n-bit signed integers or floating point values in the range -1<=y<=1
if n is 0. If n is not specified it defaults to 8.

See also: [lin2mu], page 495, [loadaudio], page 495, [saveaudio], page 495, [playaudio],
page 496, [setaudio], page 496, [record], page 496.

[Function File]loadaudio (name, ext, bps )
Loads audio data from the file ‘name.ext ’ into the vector x.
The extension ext determines how the data in the audio file is interpreted; the exten-
sions ‘lin’ (default) and ‘raw’ correspond to linear, the extensions ‘au’, ‘mu’, or ‘snd’
to mu-law encoding.
The argument bps can be either 8 (default) or 16, and specifies the number of bits
per sample used in the audio file.

See also: [lin2mu], page 495, [mu2lin], page 495, [saveaudio], page 495, [playaudio],
page 496, [setaudio], page 496, [record], page 496.

[Function File]saveaudio (name, x, ext, bps )
Saves a vector x of audio data to the file ‘name.ext ’. The optional parameters ext
and bps determine the encoding and the number of bits per sample used in the audio
file (see loadaudio); defaults are ‘lin’ and 8, respectively.

See also: [lin2mu], page 495, [mu2lin], page 495, [loadaudio], page 495, [playaudio],
page 496, [setaudio], page 496, [record], page 496.
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The following functions for audio I/O require special A/D hardware and operating system
support. It is assumed that audio data in linear encoding can be played and recorded by
reading from and writing to ‘/dev/dsp’, and that similarly ‘/dev/audio’ is used for mu-law
encoding. These file names are system-dependent. Improvements so that these functions
will work without modification on a wide variety of hardware are welcome.

[Function File]playaudio (name, ext )
[Function File]playaudio (x )

Plays the audio file ‘name.ext ’ or the audio data stored in the vector x.

See also: [lin2mu], page 495, [mu2lin], page 495, [loadaudio], page 495, [saveaudio],
page 495, [setaudio], page 496, [record], page 496.

[Function File]record (sec, sampling_rate )
Records sec seconds of audio input into the vector x. The default value for sam-
pling rate is 8000 samples per second, or 8kHz. The program waits until the user
types RET and then immediately starts to record.

See also: [lin2mu], page 495, [mu2lin], page 495, [loadaudio], page 495, [saveaudio],
page 495, [playaudio], page 496, [setaudio], page 496.

[Function File]setaudio ([w_type [, value ]])
Execute the shell command ‘mixer [w_type [, value]]’

[Function File]y = wavread (filename )
Load the RIFF/WAVE sound file filename, and return the samples in vector y. If the
file contains multichannel data, then y is a matrix with the channels represented as
columns.

[Function File][y, Fs, bits] = wavread (filename )
Additionally return the sample rate (fs) in Hz and the number of bits per sample
(bits).

[Function File][...] = wavread (filename, n )
Read only the first n samples from each channel.

[Function File][...] = wavread (filename,[n1 n2 ])
Read only samples n1 through n2 from each channel.

[Function File][samples, channels] = wavread (filename, "size")
Return the number of samples (n) and channels (ch) instead of the audio data.

See also: [wavwrite], page 496.

[Function File]wavwrite (y, filename )
[Function File]wavwrite (y, fs, filename )
[Function File]wavwrite (y, fs, bits, filename )

Write y to the canonical RIFF/WAVE sound file filename with sample rate fs and
bits per sample bits. The default sample rate is 8000 Hz with 16-bits per sample.
Each column of the data represents a separate channel.

See also: [wavread], page 496.
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33 Object Oriented Programming

Octave includes the capability to include user classes, including the features of operator and
function overloading. Equally a user class can be used to encapsulate certain properties of
the class so that they cannot be altered accidentally and can be set up to address the issue
of class precedence in mixed class operations.

This chapter discussions the means of constructing a user class with the example of a
polynomial class, how to query and set the properties of this class, together with the means
to overload operators and functions.

33.1 Creating a Class

We use in the following text a polynomial class to demonstrate the use of object oriented
programming within Octave. This class was chosen as it is simple, and so doesn’t distract
unnecessarily from the discussion of the programming features of Octave. However, even still
a small understand of the polynomial class itself is necessary to fully grasp the techniques
described.

The polynomial class is used to represent polynomials of the form

a0 + a1 x + a2 x2 + . . . an xn

where a0, a1, etc. are elements of <. Thus the polynomial can be represented by a vector
a = [a0, a1, a2, ..., an];

We therefore now have sufficient information about the requirements of the class con-
structor for our polynomial class to write it. All object oriented classes in Octave, must be
contained with a directory taking the name of the class, prepended with the @ symbol. For
example, with our polynomial class, we would place the methods defining the class in the
@polynomial directory.

The constructor of the class, must have the name of the class itself and so in our example
the constructor with have the name ‘@polynomial/polynomial.m’. Also ideally when the
constructor is called with no arguments to should return a value object. So for example our
polynomial might look like
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## -*- texinfo -*-
## @deftypefn {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Creates a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## from a vector of coefficients [a0 a1 a2 ... an].
## @end deftypefn

function p = polynomial (a)
if (nargin == 0)
p.poly = [0];
p = class (p, "polynomial");

elseif (nargin == 1)
if (strcmp (class (a), "polynomial"))

p = a;
elseif (isvector (a) && isreal (a))

p.poly = a(:).’;
p = class (p, "polynomial");

else
error ("polynomial: expecting real vector");

endif
else
print_usage ();

endif
endfunction

Note that the return value of the constructor must be the output of the class function
called with the first argument being a structure and the second argument being the class
name. An example of the call to this constructor function is then

p = polynomial ([1, 0, 1]);

Note that methods of a class can be documented. The help for the constructor itself
can be obtained with the constructor name, that is for the polynomial constructor help
polynomial will return the help string. Also the help can be obtained by restricting the
search for the help to a particular class, for example help @polynomial/polynomial. This
second method is the only means of getting help for the overloaded methods and functions
of the class.

The same is true for other Octave functions that take a function name as an argument.
For example type @polynomial/display will print the code of the display method of the
polynomial class to the screen, and dbstop @polynomial/display will set a breakpoint at
the first executable line of the display method of the polynomial class.

To check where a variable is a user class, the isobject and isa functions can be used.
for example
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p = polynomial ([1, 0, 1]);
isobject (p)
⇒ 1
isa (p, "polynomial")
⇒ 1

[Built-in Function]isobject (x )
Return true if x is a class object.

The available methods of a class can be displayed with the methods function.

[Built-in Function]methods (x )
[Built-in Function]methods ("classname")

Return a cell array containing the names of the methods for the object x or the named
class.

To inquire whether a particular method is available to a user class, the ismethod function
can be used.

[Built-in Function]ismethod (x, method )
Return true if x is a class object and the string method is a method of this class.

For example

p = polynomial ([1, 0, 1]);
ismethod (p, "roots")
⇒ 1

33.2 Manipulating Classes

There are a number of basic classes methods that can be defined to allow the contents of the
classes to be queried and set. The most basic of these is the display method. The display
method is used by Octave when displaying a class on the screen, due to an expression that
is not terminated with a semicolon. If this method is not defined, then Octave will printed
nothing when displaying the contents of a class.

[Function File]display (a )
Display the contents of an object. If a is an object of the class "myclass", then
display is called in a case like

myclass (...)

where Octave is required to display the contents of a variable of the type "myclass".

See also: [class], page 33, [subsref], page 502, [subsasgn], page 504.

An example of a display method for the polynomial class might be
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function display (p)
a = p.poly;
first = true;
fprintf("%s =", inputname(1));
for i = 1 : length (a);
if (a(i) != 0)

if (first)
first = false;

elseif (a(i) > 0)
fprintf (" +");

endif
if (a(i) < 0)
fprintf (" -");

endif
if (i == 1)
fprintf (" %g", abs (a(i)));

elseif (abs(a(i)) != 1)
fprintf (" %g *", abs (a(i)));

endif
if (i > 1)
fprintf (" X");

endif
if (i > 2)
fprintf (" ^ %d", i - 1);

endif
endif

endfor
if (first)
fprintf(" 0");

endif
fprintf("\n");

endfunction

Note that in the display method, it makes sense to start the method with the line
fprintf("%s =", inputname(1)) to be consistent with the rest of Octave and print the
variable name to be displayed when displaying the class.

To be consistent with the Octave graphic handle classes, a class should also define the
get and set methods. The get method should accept one or two arguments, and given one
argument of the appropriate class it should return a structure with all of the properties of
the class. For example
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function s = get (p, f)
if (nargin == 1)
s.poly = p.poly;

elseif (nargin == 2)
if (ischar (f))

switch (f)
case "poly"

s = p.poly;
otherwise

error ("get: invalid property %s", f);
endswitch

else
error ("get: expecting the property to be a string");

endif
else
print_usage ();

endif
endfunction

Similarly, the set method should taken as its first argument an object to modify, and then
take property/value pairs to be modified.

function s = set (p, varargin)
s = p;
if (length (varargin) < 2 || rem (length (varargin), 2) != 0)
error ("set: expecting property/value pairs");

endif
while (length (varargin) > 1)
prop = varargin{1};
val = varargin{2};
varargin(1:2) = [];
if (ischar (prop) && strcmp (prop, "poly"))

if (isvector (val) && isreal (val))
s.poly = val(:).’;

else
error ("set: expecting the value to be a real vector");

endif
else

error ("set: invalid property of polynomial class");
endif

endwhile
endfunction

Note that as Octave does not implement pass by reference, than the modified object is the
return value of the set method and it must be called like

p = set (p, "a", [1, 0, 0, 0, 1]);

Also the set method makes use of the subsasgn method of the class, and this method must
be defined. The subsasgn method is discussed in the next section.
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Finally, user classes can be considered as a special type of a structure, and so they can
be saved to a file in the same manner as a structure. For example

p = polynomial ([1, 0, 1]);
save userclass.mat p
clear p
load userclass.mat

All of the file formats supported by save and load are supported. In certain circumstances,
a user class might either contain a field that it makes no sense to save or a field that needs
to be initialized before it is saved. This can be done with the saveobj method of the class

[Function File]b = saveobj (a )
Method of a class to manipulate an object prior to saving it to a file. The function
saveobj is called when the object a is saved using the save function. An example of
the use of saveobj might be to remove fields of the object that don’t make sense to
be saved or it might be used to ensure that certain fields of the object are initialized
before the object is saved. For example

function b = saveobj (a)
b = a;
if (isempty (b.field))

b.field = initfield(b);
endif

endfunction

See also: [loadobj], page 502, [class], page 33.

saveobj is called just prior to saving the class to a file. Likely, the loadobj method is
called just after a class is loaded from a file, and can be used to ensure that any removed
fields are reinserted into the user object.

[Function File]b = loadobj (a )
Method of a class to manipulate an object after loading it from a file. The function
loadobj is called when the object a is loaded using the load function. An example
of the use of saveobj might be to add fields to an object that don’t make sense to be
saved. For example

function b = loadobj (a)
b = a;
b.addmissingfield = addfield (b);

endfunction

See also: [saveobj], page 502, [class], page 33.

33.3 Indexing Objects

Objects can be indexed with parentheses, either like a (idx) or like a {idx}, or even like a
(idx).field . However, it is up to the user to decide what this indexing actually means. In
the case of our polynomial class p (n) might mean either the coefficient of the n-th power
of the polynomial, or it might be the evaluation of the polynomial at n. The meaning of
this subscripted referencing is determined by the subsref method.
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[Built-in Function]subsref (val, idx )
Perform the subscripted element selection operation according to the subscript spec-
ified by idx.
The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’.
Valid values for ‘type’ are ‘"()"’, ‘"{}"’, and ‘"."’. The ‘subs’ field may be either
‘":"’ or a cell array of index values.
The following example shows how to extract the two first columns of a matrix

val = magic(3)
⇒ val = [ 8 1 6

3 5 7
4 9 2 ]

idx.type = "()";
idx.subs = {":", 1:2};
subsref(val, idx)

⇒ [ 8 1
3 5
4 9 ]

Note that this is the same as writing val(:,1:2).

See also: [subsasgn], page 504, [substruct], page 84.

For example we might decide that indexing with "()" evaluates the polynomial and
indexing with "{}" returns the n-th coefficient (of n-th power). In this case the subsref
method of our polynomial class might look like
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function b = subsref (a, s)
if (isempty (s))
error ("polynomial: missing index");

endif
switch (s(1).type)
case "()"

ind = s(1).subs;
if (numel (ind) != 1)
error ("polynomial: need exactly one index");

else
b = polyval (fliplr (a.poly), ind{1});

endif
case "{}"

ind = s(1).subs;
if (numel (ind) != 1)
error ("polynomial: need exactly one index");

else
if (isnumeric (ind{1}))

b = a.poly(ind{1}+1);
else

b = a.poly(ind{1});
endif

endif
case "."

fld = s.subs;
if (strcmp (fld, "poly"))
b = a.poly;

else
error ("@polynomial/subsref: invalid property \"%s\"", fld);

endif
otherwise

error ("invalid subscript type");
endswitch
if (numel (s) > 1)
b = subsref (b, s(2:end));

endif
endfunction

The equivalent functionality for subscripted assignments uses the subsasgn method.

[Built-in Function]subsasgn (val, idx, rhs )
Perform the subscripted assignment operation according to the subscript specified by
idx.
The subscript idx is expected to be a structure array with fields ‘type’ and ‘subs’.
Valid values for ‘type’ are ‘"()"’, ‘"{}"’, and ‘"."’. The ‘subs’ field may be either
‘":"’ or a cell array of index values.
The following example shows how to set the two first columns of a 3-by-3 matrix to
zero.
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val = magic(3);
idx.type = "()";
idx.subs = {":", 1:2};
subsasgn (val, idx, 0)

⇒ [ 0 0 6
0 0 7
0 0 2 ]

Note that this is the same as writing val(:,1:2) = 0.

See also: [subsref], page 502, [substruct], page 84.

Note that the subsref and subsasgn methods always receive the whole index chain,
while they usually handle only the first element. It is the responsibility of these methods
to handle the rest of the chain (if needed), usually by forwarding it again to subsref or
subsasgn.

If you wish to use the end keyword in subscripted expressions of an object, then the user
needs to define the end method for the class.

For example the end method for our polynomial class might look like

function r = end (obj, index_pos, num_indices)

if (num_indices != 1)
error ("polynomial object may only have one index")

endif

r = length (obj.poly) - 1;

endfunction

which is a fairly generic end method that has a behavior similar to the end keyword for
Octave Array classes. It can then be used for example like

p = polynomial([1,2,3,4]);
p(end-1)
⇒ 3

Objects can also be used as the index in a subscripted expression themselves and this is
controlled with the subsindex function.

[Function File]idx = subsindex (a )
Convert an object to an index vector. When a is a class object defined with a class
constructor, then subsindex is the overloading method that allows the conversion of
this class object to a valid indexing vector. It is important to note that subsindex
must return a zero-based real integer vector of the class "double". For example, if
the class constructor

function b = myclass (a)
b = myclass (struct ("a", a), "myclass");
endfunction

then the subsindex function
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function idx = subsindex (a)
idx = double (a.a) - 1.0;
endfunction

can then be used as follows
a = myclass (1:4);
b = 1:10;
b(a)
⇒ 1 2 3 4

See also: [class], page 33, [subsref], page 502, [subsasgn], page 504.

Finally, objects can equally be used like ranges, using the colon method

[Function File]r = colon (a, b )
[Function File]r = colon (a, b, c )

Method of a class to construct a range with the : operator. For example.
a = myclass (...)
b = myclass (...)
c = a : b

See also: [class], page 33, [subsref], page 502, [subsasgn], page 504.

33.4 Overloading Objects

33.4.1 Function Overloading

Any Octave function can be overloaded, and allows a object specific version of this function
to be called as needed. A pertinent example for our polynomial class might be to overload
the polyval function like

function [y, dy] = polyval (p, varargin)
if (nargout == 2)
[y, dy] = polyval (fliplr(p.poly), varargin{:});

else
y = polyval (fliplr(p.poly), varargin{:});

endif
endfunction

This function just hands off the work to the normal Octave polyval function. Another
interesting example for an overloaded function for our polynomial class is the plot function.

function h = plot(p, varargin)
n = 128;
rmax = max (abs (roots (p.poly)));
x = [0 : (n - 1)] / (n - 1) * 2.2 * rmax - 1.1 * rmax;
if (nargout > 0)
h = plot(x, p(x), varargin{:});

else
plot(x, p(x), varargin{:});

endif
endfunction
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which allows polynomials to be plotted in the domain near the region of the roots of the
polynomial.

Functions that are of particular interest to be overloaded are the class conversion func-
tions such as double. Overloading these functions allows the cast function to work with
the user class and can aid in the use of methods of other classes with the user class. An
example double function for our polynomial class might look like.

function b = double (a)
b = a.poly;

endfunction
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33.4.2 Operator Overloading

Operation Method Description
a+ b plus (a, b) Binary addition operator
a− b minus (a, b) Binary subtraction operator
+a uplus (a) Unary addition operator
−a uminus (a) Unary subtraction operator
a. ∗ b times (a, b) Element-wise multiplication operator
a ∗ b mtimes (a, b) Matrix multiplication operator
a./b rdivide (a, b) Element-wise right division operator
a/b mrdivide (a, b) Matrix right division operator
a.\b ldivide (a, b) Element-wise left division operator
a\b mldivide (a, b) Matrix left division operator
a.ˆb power (a, b) Element-wise power operator
aˆb mpower (a, b) Matrix power operator
a < b lt (a, b) Less than operator
a <= b le (a, b) Less than or equal to operator
a > b gt (a, b) Greater than operator
a >= b ge (a, b) Greater than or equal to operator
a == b eq (a, b) Equal to operator
a! = b ne (a, b) Not equal to operator
a&b and (a, b) Logical and operator
a|b or (a, b) Logical or operator
!b not (a) Logical not operator
a′ ctranspose (a) Complex conjugate transpose operator
a.′ transpose (a) Transpose operator
a : b colon (a, b) Two element range operator
a : b : c colon (a, b, c) Three element range operator
[a, b] horzcat (a, b) Horizontal concatenation operator
[a; b] vertcat (a, b) Vertical concatenation operator
a(s1, . . . , sn) subsref (a, s) Subscripted reference
a(s1, . . . , sn) = b subsasgn (a, s, b) Subscripted assignment
b(a) subsindex (a) Convert to zero-based index
display display (a) Commandline display function

Table 33.1: Available overloaded operators and their corresponding class method
An example mtimes method for our polynomial class might look like

function y = mtimes (a, b)
y = polynomial (conv (double(a),double(b)));

endfunction

33.4.3 Precedence of Objects

Many functions and operators take two or more arguments and so the case can easily arise
that these functions are called with objects of different classes. It is therefore necessary to
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determine the precedence of which method of which class to call when there are mixed ob-
jects given to a function or operator. To do this the superiorto and inferiorto functions
can be used

[Built-in Function]superiorto (class_name, . . . )
When called from a class constructor, mark the object currently constructed as having
a higher precedence than class name. More that one such class can be specified in a
single call. This function may only be called from a class constructor.

[Built-in Function]inferiorto (class_name, . . . )
When called from a class constructor, mark the object currently constructed as having
a lower precedence than class name. More that one such class can be specified in a
single call. This function may only be called from a class constructor.

For example with our polynomial class consider the case
2 * polynomial ([1, 0, 1]);

That mixes an object of the class "double" with an object of the class "polynomial". In
this case we like to ensure that the return type of the above is of the type "polynomial" and
so we use the superiorto function in the class constructor. In particular our polynomial
class constructor would be modified to be
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## -*- texinfo -*-
## @deftypefn {Function File} {} polynomial ()
## @deftypefnx {Function File} {} polynomial (@var{a})
## Creates a polynomial object representing the polynomial
##
## @example
## a0 + a1 * x + a2 * x^2 + @dots{} + an * x^n
## @end example
##
## from a vector of coefficients [a0 a1 a2 ... an].
## @end deftypefn

function p = polynomial (a)
if (nargin == 0)
p.poly = [0];
p = class (p, "polynomial");

elseif (nargin == 1)
if (strcmp (class (a), "polynomial"))

p = a;
elseif (isvector (a) && isreal (a))

p.poly = a(:).’;
p = class (p, "polynomial");

else
error ("polynomial: expecting real vector");

endif
else
print_usage ();

endif
superiorto ("double");

endfunction

Note that user classes always have higher precedence than built-in Octave types. So in
fact marking our polynomial class higher than the "double" class is in fact not necessary.

33.5 Inheritance and Aggregation

Using classes to build new classes is supported by octave through the use of both inheritance
and aggregation.

Class inheritance is provided by octave using the class function in the class constructor.
As in the case of the polynomial class, the octave programmer will create a struct that
contains the data fields required by the class, and then call the class function to indicate
that an object is to be created from the struct. Creating a child of an existing object is done
by creating an object of the parent class and providing that object as the third argument
of the class function.

This is easily demonstrated by example. Suppose the programmer needs an FIR filter,
i.e. a filter with a numerator polynomial but a unity denominator polynomial. In traditional
octave programming, this would be performed as follows.
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octave:1> x = [some data vector];
octave:2> n = [some coefficient vector];
octave:3> y = filter (n, 1, x);

The equivalent class could be implemented in a class directory @FIRfilter that is on the
octave path. The constructor is a file FIRfilter.m in the class directory.

## -*- texinfo -*-
## @deftypefn {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Creates an FIR filter with polynomial @var{p} as
## coefficient vector.
##
## @end deftypefn

function f = FIRfilter (p)

f.polynomial = [];
if (nargin == 0)
p = @polynomial ([1]);

elseif (nargin == 1)
if (!isa (p, "polynomial"))

error ("FIRfilter: expecting polynomial as input argument");
endif

else
print_usage ();

endif
f = class (f, "FIRfilter", p);

endfunction

As before, the leading comments provide command-line documentation for the class
constructor. This constructor is very similar to the polynomial class constructor, except
that we pass a polynomial object as the third argument to the class function, telling octave
that the FIRfilter class will be derived from the polynomial class. Our FIR filter does
not have any data fields, but we must provide a struct to the class function. The class
function will add an element named polynomial to the object struct, so we simply add a
dummy element named polynomial as the first line of the constructor. This dummy element
will be overwritten by the class function.

Note further that all our examples provide for the case in which no arguments are
supplied. This is important since octave will call the constructor with no arguments when
loading ojects from save files to determine the inheritance structure.

A class may be a child of more than one class (see the documentation for the class
function), and inheritance may be nested. There is no limitation to the number of parents
or the level of nesting other than memory or other physical issues.

As before, we need a display method. A simple example might be
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function display (f)

display(f.polynomial);

endfunction

Note that we have used the polynomial field of the struct to display the filter coefficients.

Once we have the class constructor and display method, we may create an object by
calling the class constructor. We may also check the class type and examine the underlying
structure.

octave:1> f=FIRfilter(polynomial([1 1 1]/3))
f.polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
octave:2> class(f)
ans = FIRfilter
octave:3> isa(f,"FIRfilter")
ans = 1
octave:4> isa(f,"polynomial")
ans = 1
octave:5> struct(f)
ans =
{
polynomial = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2
}

We only need to define a method to actually process data with our filter and our class is
usable. It is also useful to provide a means of changing the data stored in the class. Since
the fields in the underlying struct are private by default, we could provide a mechanism to
access the fields. The subsref method may be used for both.

function out = subsref (f, x)
switch x.type
case "()"

n = f.polynomial;
out = filter(n.poly, 1, x.subs{1});

case "."
fld = x.subs;
if (strcmp (fld, "polynomial"))
out = f.polynomial;

else
error ("@FIRfilter/subsref: invalid property \"%s\"", fld);

endif
otherwise

error ("@FIRfilter/subsref: invalid subscript type for FIR filter");
endswitch

endfunction

The "()" case allows us to filter data using the polynomial provided to the constructor.

octave:2> f=FIRfilter(polynomial([1 1 1]/3));



Chapter 33: Object Oriented Programming 513

octave:3> x=ones(5,1);
octave:4> y=f(x)
y =

0.33333
0.66667
1.00000
1.00000
1.00000

The "." case allows us to view the contents of the polynomial field.

octave:1> f=FIRfilter(polynomial([1 1 1]/3));
octave:2> f.polynomial
ans = 0.333333 + 0.333333 * X + 0.333333 * X ^ 2

In order to change the contents of the object, we need to define a subsasgn method.
For example, we may make the polynomial field publicly writeable.

function out = subsasgn (f, index, val)
switch (index.type)
case "."

fld = index.subs;
if (strcmp (fld, "polynomial"))
out = f;
out.polynomial = val;

else
error ("@FIRfilter/subsref: invalid property \"%s\"", fld);

endif
otherwise

error ("FIRfilter/subsagn: Invalid index type")
endswitch

endfunction

So that

octave:6> f=FIRfilter();
octave:7> f.polynomial = polynomial([1 2 3]);
f.polynomial = 1 + 2 * X + 3 * X ^ 2

Defining the FIRfilter class as a child of the polynomial class implies that and FIRfilter
object may be used any place that a polynomial may be used. This is not a normal use
of a filter, so that aggregation may be a more sensible design approach. In this case, the
polynomial is simply a field in the class structure. A class constructor for this case might
be
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## -*- texinfo -*-
## @deftypefn {Function File} {} FIRfilter ()
## @deftypefnx {Function File} {} FIRfilter (@var{p})
## Creates an FIR filter with polynomial @var{p} as
## coefficient vector.
##
## @end deftypefn

function f = FIRfilter (p)

if (nargin == 0)
f.polynomial = @polynomial ([1]);

elseif (nargin == 1)
if (isa (p, "polynomial"))

f.polynomial = p;
else

error ("FIRfilter: expecting polynomial as input argument");
endif

else
print_usage ();

endif
f = class (f, "FIRfilter");

endfunction

For our example, the remaining class methods remain unchanged.
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34 System Utilities

This chapter describes the functions that are available to allow you to get information about
what is happening outside of Octave, while it is still running, and use this information in
your program. For example, you can get information about environment variables, the
current time, and even start other programs from the Octave prompt.

34.1 Timing Utilities

Octave’s core set of functions for manipulating time values are patterned after the cor-
responding functions from the standard C library. Several of these functions use a data
structure for time that includes the following elements:

usec Microseconds after the second (0-999999).

sec Seconds after the minute (0-61). This number can be 61 to account for leap
seconds.

min Minutes after the hour (0-59).

hour Hours since midnight (0-23).

mday Day of the month (1-31).

mon Months since January (0-11).

year Years since 1900.

wday Days since Sunday (0-6).

yday Days since January 1 (0-365).

isdst Daylight Savings Time flag.

zone Time zone.

In the descriptions of the following functions, this structure is referred to as a tm struct.

[Loadable Function]time ()
Return the current time as the number of seconds since the epoch. The epoch is
referenced to 00:00:00 CUT (Coordinated Universal Time) 1 Jan 1970. For example,
on Monday February 17, 1997 at 07:15:06 CUT, the value returned by time was
856163706.

See also: [strftime], page 517, [strptime], page 519, [localtime], page 516, [gmtime],
page 516, [mktime], page 517, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.

[Function File]t = now ()
Returns the current local time as the number of days since Jan 1, 0000. By this
reckoning, Jan 1, 1970 is day number 719529.
The integral part, floor (now) corresponds to 00:00:00 today.
The fractional part, rem (now, 1) corresponds to the current time on Jan 1, 0000.
The returned value is also called a "serial date number" (see datenum).

See also: [clock], page 519, [date], page 519, [datenum], page 521.
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[Function File]ctime (t )
Convert a value returned from time (or any other non-negative integer), to the local
time and return a string of the same form as asctime. The function ctime (time)
is equivalent to asctime (localtime (time)). For example,

ctime (time ())
⇒ "Mon Feb 17 01:15:06 1997\n"

[Loadable Function]gmtime (t )
Given a value returned from time (or any non-negative integer), return a time struc-
ture corresponding to CUT. For example,

gmtime (time ())
⇒ {

usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 7
isdst = 0
yday = 47

}

See also: [strftime], page 517, [strptime], page 519, [localtime], page 516, [mktime],
page 517, [time], page 515, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.

[Loadable Function]localtime (t )
Given a value returned from time (or any non-negative integer), return a time struc-
ture corresponding to the local time zone.

localtime (time ())
⇒ {

usec = 0
year = 97
mon = 1
mday = 17
sec = 6
zone = CST
min = 15
wday = 1
hour = 1
isdst = 0
yday = 47

}
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See also: [strftime], page 517, [strptime], page 519, [gmtime], page 516, [mktime],
page 517, [time], page 515, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.

[Loadable Function]mktime (tm_struct )
Convert a time structure corresponding to the local time to the number of seconds
since the epoch. For example,

mktime (localtime (time ()))
⇒ 856163706

See also: [strftime], page 517, [strptime], page 519, [localtime], page 516, [gmtime],
page 516, [time], page 515, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.

[Function File]asctime (tm_struct )
Convert a time structure to a string using the following five-field format: Thu Mar
28 08:40:14 1996. For example,

asctime (localtime (time ()))
⇒ "Mon Feb 17 01:15:06 1997\n"

This is equivalent to ctime (time ()).

[Loadable Function]strftime (fmt, tm_struct )
Format the time structure tm struct in a flexible way using the format string fmt that
contains ‘%’ substitutions similar to those in printf. Except where noted, substituted
fields have a fixed size; numeric fields are padded if necessary. Padding is with zeros by
default; for fields that display a single number, padding can be changed or inhibited by
following the ‘%’ with one of the modifiers described below. Unknown field specifiers
are copied as normal characters. All other characters are copied to the output without
change. For example,

strftime ("%r (%Z) %A %e %B %Y", localtime (time ()))
⇒ "01:15:06 AM (CST) Monday 17 February 1997"

Octave’s strftime function supports a superset of the ANSI C field specifiers.
Literal character fields:

% % character.

n Newline character.

t Tab character.

Numeric modifiers (a nonstandard extension):

- (dash) Do not pad the field.

_ (underscore)
Pad the field with spaces.

Time fields:

%H Hour (00-23).
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%I Hour (01-12).

%k Hour (0-23).

%l Hour (1-12).

%M Minute (00-59).

%p Locale’s AM or PM.

%r Time, 12-hour (hh:mm:ss [AP]M).

%R Time, 24-hour (hh:mm).

%s Time in seconds since 00:00:00, Jan 1, 1970 (a nonstandard extension).

%S Second (00-61).

%T Time, 24-hour (hh:mm:ss).

%X Locale’s time representation (%H:%M:%S).

%Z Time zone (EDT), or nothing if no time zone is determinable.

Date fields:

%a Locale’s abbreviated weekday name (Sun-Sat).

%A Locale’s full weekday name, variable length (Sunday-Saturday).

%b Locale’s abbreviated month name (Jan-Dec).

%B Locale’s full month name, variable length (January-December).

%c Locale’s date and time (Sat Nov 04 12:02:33 EST 1989).

%C Century (00-99).

%d Day of month (01-31).

%e Day of month ( 1-31).

%D Date (mm/dd/yy).

%h Same as %b.

%j Day of year (001-366).

%m Month (01-12).

%U Week number of year with Sunday as first day of week (00-53).

%w Day of week (0-6).

%W Week number of year with Monday as first day of week (00-53).

%x Locale’s date representation (mm/dd/yy).

%y Last two digits of year (00-99).

%Y Year (1970-).

See also: [strptime], page 519, [localtime], page 516, [gmtime], page 516, [mktime],
page 517, [time], page 515, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.
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[Loadable Function][tm_struct, nchars] = strptime (str, fmt )
Convert the string str to the time structure tm struct under the control of the format
string fmt.

If fmt fails to match, nchars is 0; otherwise it is set to the position of last matched
character plus 1. Always check for this unless you’re absolutely sure the date string
will be parsed correctly.

See also: [strftime], page 517, [localtime], page 516, [gmtime], page 516, [mktime],
page 517, [time], page 515, [now], page 515, [date], page 519, [clock], page 519,
[datenum], page 521, [datestr], page 521, [datevec], page 523, [calendar], page 523,
[weekday], page 523.

Most of the remaining functions described in this section are not patterned after the
standard C library. Some are available for compatibility with matlab and others are
provided because they are useful.

[Function File]clock ()
Return a vector containing the current year, month (1-12), day (1-31), hour (0-23),
minute (0-59) and second (0-61). For example,

clock ()
⇒ [ 1993, 8, 20, 4, 56, 1 ]

The function clock is more accurate on systems that have the gettimeofday function.

[Function File]date ()
Return the date as a character string in the form DD-MMM-YY. For example,

date ()
⇒ "20-Aug-93"

[Function File]etime (t1, t2 )
Return the difference (in seconds) between two time values returned from clock. For
example:

t0 = clock ();
many computations later...
elapsed_time = etime (clock (), t0);

will set the variable elapsed_time to the number of seconds since the variable t0
was set.

See also: [tic], page 520, [toc], page 520, [clock], page 519, [cputime], page 519.

[Built-in Function][total, user, system] = cputime ();
Return the CPU time used by your Octave session. The first output is the total time
spent executing your process and is equal to the sum of second and third outputs,
which are the number of CPU seconds spent executing in user mode and the number
of CPU seconds spent executing in system mode, respectively. If your system does
not have a way to report CPU time usage, cputime returns 0 for each of its output
values. Note that because Octave used some CPU time to start, it is reasonable to
check to see if cputime works by checking to see if the total CPU time used is nonzero.
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[Function File]is_leap_year (year )
Return 1 if the given year is a leap year and 0 otherwise. If no arguments are provided,
is_leap_year will use the current year. For example,

is_leap_year (2000)
⇒ 1

[Built-in Function]tic ()
[Built-in Function]toc ()

Set or check a wall-clock timer. Calling tic without an output argument sets the
timer. Subsequent calls to toc return the number of seconds since the timer was set.
For example,

tic ();
# many computations later...
elapsed_time = toc ();

will set the variable elapsed_time to the number of seconds since the most recent
call to the function tic.

If called with one output argument then this function returns a scalar of type uint64
and the wall-clock timer is not started.

t = tic; sleep (5); (double (tic ()) - double (t)) * 1e-6
⇒ 5

Nested timing with tic and toc is not supported. Therefore toc will always return
the elapsed time from the most recent call to tic.

If you are more interested in the CPU time that your process used, you should use
the cputime function instead. The tic and toc functions report the actual wall clock
time that elapsed between the calls. This may include time spent processing other
jobs or doing nothing at all. For example,

tic (); sleep (5); toc ()
⇒ 5

t = cputime (); sleep (5); cputime () - t
⇒ 0

(This example also illustrates that the CPU timer may have a fairly coarse resolution.)

[Built-in Function]pause (seconds )
Suspend the execution of the program. If invoked without any arguments, Octave
waits until you type a character. With a numeric argument, it pauses for the given
number of seconds. For example, the following statement prints a message and then
waits 5 seconds before clearing the screen.

fprintf (stderr, "wait please...\n");
pause (5);
clc;

[Built-in Function]sleep (seconds )
Suspend the execution of the program for the given number of seconds.
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[Built-in Function]usleep (microseconds )
Suspend the execution of the program for the given number of microseconds. On
systems where it is not possible to sleep for periods of time less than one second,
usleep will pause the execution for round (microseconds / 1e6) seconds.

[Function File]datenum (year, month, day )
[Function File]datenum (year, month, day, hour )
[Function File]datenum (year, month, day, hour, minute )
[Function File]datenum (year, month, day, hour, minute, second )
[Function File]datenum ("date")
[Function File]datenum ("date", p )

Returns the specified local time as a day number, with Jan 1, 0000 being day 1.
By this reckoning, Jan 1, 1970 is day number 719529. The fractional portion, p,
corresponds to the portion of the specified day.
Notes:
• Years can be negative and/or fractional.
• Months below 1 are considered to be January.
• Days of the month start at 1.
• Days beyond the end of the month go into subsequent months.
• Days before the beginning of the month go to the previous month.
• Days can be fractional.

Warning: this function does not attempt to handle Julian calendars so dates before
Octave 15, 1582 are wrong by as much as eleven days. Also be aware that only
Roman Catholic countries adopted the calendar in 1582. It took until 1924 for it to
be adopted everywhere. See the Wikipedia entry on the Gregorian calendar for more
details.
Warning: leap seconds are ignored. A table of leap seconds is available on the
Wikipedia entry for leap seconds.

See also: [date], page 519, [clock], page 519, [now], page 515, [datestr], page 521,
[datevec], page 523, [calendar], page 523, [weekday], page 523.

[Function File]str = datestr (date, [f, [p ]])
Format the given date/time according to the format f and return the result in str.
date is a serial date number (see datenum) or a date vector (see datevec). The value
of date may also be a string or cell array of strings.
f can be an integer which corresponds to one of the codes in the table below, or a
date format string.
p is the year at the start of the century in which two-digit years are to be interpreted
in. If not specified, it defaults to the current year minus 50.
For example, the date 730736.65149 (2000-09-07 15:38:09.0934) would be formatted
as follows:

Code Format Example
0 dd-mmm-yyyy HH:MM:SS 07-Sep-2000 15:38:09
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1 dd-mmm-yyyy 07-Sep-2000
2 mm/dd/yy 09/07/00
3 mmm Sep
4 m S
5 mm 09
6 mm/dd 09/07
7 dd 07
8 ddd Thu
9 d T
10 yyyy 2000
11 yy 00
12 mmmyy Sep00
13 HH:MM:SS 15:38:09
14 HH:MM:SS PM 03:38:09 PM
15 HH:MM 15:38
16 HH:MM PM 03:38 PM
17 QQ-YY Q3-00
18 QQ Q3
19 dd/mm 13/03
20 dd/mm/yy 13/03/95
21 mmm.dd.yyyy HH:MM:SS Mar.03.1962 13:53:06
22 mmm.dd.yyyy Mar.03.1962
23 mm/dd/yyyy 03/13/1962
24 dd/mm/yyyy 12/03/1962
25 yy/mm/dd 95/03/13
26 yyyy/mm/dd 1995/03/13
27 QQ-YYYY Q4-2132
28 mmmyyyy Mar2047
29 yyyymmdd 20470313
30 yyyymmddTHHMMSS 20470313T132603
31 yyyy-mm-dd HH:MM:SS 1047-03-13 13:26:03

If f is a format string, the following symbols are recognized:

Symbol Meaning Example
yyyy Full year 2005
yy Two-digit year 2005
mmmm Full month name December
mmm Abbreviated month name Dec
mm Numeric month number (padded with zeros) 01, 08, 12
m First letter of month name (capitalized) D
dddd Full weekday name Sunday
ddd Abbreviated weekday name Sun
dd Numeric day of month (padded with zeros) 11
d First letter of weekday name (capitalized) S
HH Hour of day, padded with zeros if PM is set 09:00

and not padded with zeros otherwise 9:00 AM
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MM Minute of hour (padded with zeros) 10:05
SS Second of minute (padded with zeros) 10:05:03
PM Use 12-hour time format 11:30 PM
If f is not specified or is -1, then use 0, 1 or 16, depending on whether the date
portion or the time portion of date is empty.
If p is nor specified, it defaults to the current year minus 50.
If a matrix or cell array of dates is given, a vector of date strings is returned.

See also: [datenum], page 521, [datevec], page 523, [date], page 519, [clock], page 519,
[now], page 515, [datetick], page 524.

[Function File]v = datevec (date )
[Function File]v = datevec (date, f )
[Function File]v = datevec (date, p )
[Function File]v = datevec (date, f, p )
[Function File][y, m, d, h, mi, s] = datevec (. . . )

Convert a serial date number (see datenum) or date string (see datestr) into a date
vector.
A date vector is a row vector with six members, representing the year, month, day,
hour, minute, and seconds respectively.
f is the format string used to interpret date strings (see datestr).
p is the year at the start of the century in which two-digit years are to be interpreted
in. If not specified, it defaults to the current year minus 50.

See also: [datenum], page 521, [datestr], page 521, [date], page 519, [clock], page 519,
[now], page 515.

[Function File]d = addtodate (d, q, f )
Add q amount of time (with units f ) to the datenum, d.
f must be one of "year", "month", "day", "hour", "minute", or "second".

See also: [datenum], page 521, [datevec], page 523.

[Function File]calendar (. . . )
[Function File]c = calendar ()
[Function File]c = calendar (d )
[Function File]c = calendar (y, m )

If called with no arguments, return the current monthly calendar in a 6x7 matrix.
If d is specified, return the calendar for the month containing the day d, which must
be a serial date number or a date string.
If y and m are specified, return the calendar for year y and month m.
If no output arguments are specified, print the calendar on the screen instead of
returning a matrix.

See also: [datenum], page 521.

[Function File][n, s] = weekday (d, [form ])
Return the day of week as a number in n and a string in s, for example [1, "Sun"],
[2, "Mon"], . . . , or [7, "Sat"].
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d is a serial date number or a date string.

If the string form is given and is "long", s will contain the full name of the weekday;
otherwise (or if form is "short"), s will contain the abbreviated name of the weekday.

See also: [datenum], page 521, [datevec], page 523, [eomday], page 524.

[Function File]e = eomday (y, m )
Return the last day of the month m for the year y.

See also: [datenum], page 521, [datevec], page 523, [weekday], page 523.

[Function File]datetick (form )
[Function File]datetick (axis, form )
[Function File]datetick (. . . , "keeplimits")
[Function File]datetick (. . . , "keepticks")
[Function File]datetick (. . . ax, . . . )

Adds date formatted tick labels to an axis. The axis the apply the ticks to is deter-
mined by axis that can take the values "x", "y" or "z". The default value is "x".
The formatting of the labels is determined by the variable form, that can either be a
string in the format needed by dateform, or a positive integer that can be accepted
by datestr.

See also: [datenum], page 521, [datestr], page 521.

34.2 Filesystem Utilities

Octave includes the following functions for renaming and deleting files, creating, deleting,
and reading directories, and for getting information about the status of files.

[Built-in Function][err, msg] = rename (old, new )
Change the name of file old to new.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [ls], page 540, [dir], page 540.

[Built-in Function][err, msg] = link (old, new )
Create a new link (also known as a hard link) to an existing file.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [symlink], page 524.

[Built-in Function][err, msg] = symlink (old, new )
Create a symbolic link new which contains the string old.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [link], page 524, [readlink], page 525.
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[Built-in Function][result, err, msg] = readlink (symlink )
Read the value of the symbolic link symlink.
If successful, result contains the contents of the symbolic link symlink, err is 0 and msg
is an empty string. Otherwise, err is nonzero and msg contains a system-dependent
error message.

See also: [link], page 524, [symlink], page 524.

[Built-in Function][err, msg] = unlink (file )
Delete the file named file.
If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][files, err, msg] = readdir (dir )
Return names of the files in the directory dir as a cell array of strings. If an error
occurs, return an empty cell array in files.
If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

See also: [dir], page 540, [glob], page 528.

[Built-in Function][status, msg, msgid] = mkdir (dir )
[Built-in Function][status, msg, msgid] = mkdir (parent, dir )

Create a directory named dir in the directory parent.
If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.

See also: [rmdir], page 525.

[Built-in Function][status, msg, msgid] = rmdir (dir )
[Built-in Function][status, msg, msgid] = rmdir (dir, "s")

Remove the directory named dir.
If successful, status is 1, with msg and msgid empty character strings. Otherwise,
status is 0, msg contains a system-dependent error message, and msgid contains a
unique message identifier.
If the optional second parameter is supplied with value "s", recursively remove all
subdirectories as well.

See also: [mkdir], page 525, [confirm recursive rmdir], page 525.

[Built-in Function]val = confirm_recursive_rmdir ()
[Built-in Function]old_val = confirm_recursive_rmdir (new_val )

Query or set the internal variable that controls whether Octave will ask for confirma-
tion before recursively removing a directory tree.

[Built-in Function][err, msg] = mkfifo (name, mode )
Create a fifo special file named name with file mode mode

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.
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[Built-in Function]umask (mask )
Set the permission mask for file creation. The parameter mask is an integer, inter-
preted as an octal number. If successful, returns the previous value of the mask (as an
integer to be interpreted as an octal number); otherwise an error message is printed.

[Built-in Function][info, err, msg] = stat (file )
[Built-in Function][info, err, msg] = lstat (file )

Return a structure s containing the following information about file.

dev ID of device containing a directory entry for this file.

ino File number of the file.

mode File mode, as an integer. Use the functions S_ISREG, S_ISDIR, S_ISCHR,
S_ISBLK, S_ISFIFO, S_ISLNK, or S_ISSOCK to extract information from
this value.

modestr File mode, as a string of ten letters or dashes as would be returned by ls

-l.

nlink Number of links.

uid User ID of file’s owner.

gid Group ID of file’s group.

rdev ID of device for block or character special files.

size Size in bytes.

atime Time of last access in the same form as time values returned from time.
See Section 34.1 [Timing Utilities], page 515.

mtime Time of last modification in the same form as time values returned from
time. See Section 34.1 [Timing Utilities], page 515.

ctime Time of last file status change in the same form as time values returned
from time. See Section 34.1 [Timing Utilities], page 515.

blksize Size of blocks in the file.

blocks Number of blocks allocated for file.

If the call is successful err is 0 and msg is an empty string. If the file does not exist,
or some other error occurs, s is an empty matrix, err is −1, and msg contains the
corresponding system error message.
If file is a symbolic link, stat will return information about the actual file that is
referenced by the link. Use lstat if you want information about the symbolic link
itself.
For example,

[s, err, msg] = stat ("/vmlinuz")
⇒ s =
{
atime = 855399756
rdev = 0
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ctime = 847219094
uid = 0
size = 389218
blksize = 4096
mtime = 847219094
gid = 6
nlink = 1
blocks = 768
mode = -rw-r--r--
modestr = -rw-r--r--
ino = 9316
dev = 2049

}
⇒ err = 0
⇒ msg =

[Built-in Function][info, err, msg] = fstat (fid )
Return information about the open file fid. See stat for a description of the contents
of info.

[Function File][status, msg, msgid] = fileattrib (file )
Return information about file.
If successful, status is 1, with result containing a structure with the following fields:

Name Full name of file.

archive True if file is an archive (Windows).

system True if file is a system file (Windows).

hidden True if file is a hidden file (Windows).

directory
True if file is a directory.

UserRead
GroupRead
OtherRead

True if the user (group; other users) has read permission for file.

UserWrite
GroupWrite
OtherWrite

True if the user (group; other users) has write permission for file.

UserExecute
GroupExecute
OtherExecute

True if the user (group; other users) has execute permission for file.

If an attribute does not apply (i.e., archive on a Unix system) then the field is set to
NaN.
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With no input arguments, return information about the current directory.
If file contains globbing characters, return information about all the matching files.

See also: [glob], page 528.

[Function File]isdir (f )
Return true if f is a directory.

[Built-in Function]glob (pattern )
Given an array of strings (as a char array or a cell array) in pattern, return a cell array
of file names that match any of them, or an empty cell array if no patterns match.
Tilde expansion is performed on each of the patterns before looking for matching file
names. For example,

glob ("/vm*")
⇒ "/vmlinuz"

See also: [dir], page 540, [ls], page 540, [stat], page 526, [readdir], page 525.

[Built-in Function]fnmatch (pattern, string )
Return 1 or zero for each element of string that matches any of the elements of the
string array pattern, using the rules of filename pattern matching. For example,

fnmatch ("a*b", {"ab"; "axyzb"; "xyzab"})
⇒ [ 1; 1; 0 ]

[Built-in Function]file_in_path (path, file )
[Built-in Function]file_in_path (path, file, "all")

Return the absolute name of file if it can be found in path. The value of path should
be a colon-separated list of directories in the format described for path. If no file is
found, return an empty matrix. For example,

file_in_path (EXEC_PATH, "sh")
⇒ "/bin/sh"

If the second argument is a cell array of strings, search each directory of the path for
element of the cell array and return the first that matches.
If the third optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file in loadpath], page 149.

[Built-in Function]tilde_expand (string )
Performs tilde expansion on string. If string begins with a tilde character, (‘~’), all
of the characters preceding the first slash (or all characters, if there is no slash) are
treated as a possible user name, and the tilde and the following characters up to the
slash are replaced by the home directory of the named user. If the tilde is followed
immediately by a slash, the tilde is replaced by the home directory of the user running
Octave. For example,

tilde_expand ("~joeuser/bin")
⇒ "/home/joeuser/bin"

tilde_expand ("~/bin")
⇒ "/home/jwe/bin"
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[Built-in Function][cname, status, msg] canonicalize_file_name (name )
Return the canonical name of file name.

[Function File][status, msg, msgid] = movefile (f1, f2 )
Move the file f1 to the new name f2. The name f1 may contain globbing patterns. If
f1 expands to multiple file names, f2 must be a directory.
If successful, status is 1, with msg and msgid empty\n\ character strings. Otherwise,
status is 0, msg contains a\n\ system-dependent error message, and msgid contains
a unique\n\ message identifier.\n\

See also: [glob], page 528.

[Function File][status, msg, msgid] = copyfile (f1, f2, force )
Copy the file f1 to the new name f2. The name f1 may contain globbing patterns. If
f1 expands to multiple file names, f2 must be a directory. If force is given and equals
the string "f" the copy operation will be forced.
If successful, status is 1, with msg and msgid empty\n\ character strings. Otherwise,
status is 0, msg contains a\n\ system-dependent error message, and msgid contains
a unique\n\ message identifier.\n\

See also: [glob], page 528, [movefile], page 529.

[Function File][dir, name, ext, ver] = fileparts (filename )
Return the directory, name, extension, and version components of filename.

See also: [fullfile], page 529.

[Built-in Function]filesep ()
[Built-in Function]filesep (’all’)

Return the system-dependent character used to separate directory names.
If ’all’ is given, the function return all valid file separators in the form of a string.
The list of file separators is system-dependent. It is / (forward slash) under UNIX or
Mac OS X, / and \ (forward and backward slashes) under Windows.

See also: [pathsep], page 149, [dir], page 540, [ls], page 540.

[Built-in Function]filemarker ()
Returns or sets the character used to separate filename from the the subfunction
names contained within the file. This can be used in a generic manner to interact
with subfunctions. For example

help (["myfunc", filemarker, "mysubfunc"])

returns the help string associated with the sub-function mysubfunc of the function
myfunc. Another use of filemarker is when debugging it allows easier placement of
breakpoints within sub-functions. For example

dbstop (["myfunc", filemarker, "mysubfunc"])

will set a breakpoint at the first line of the subfunction mysubfunc.

[Function File]filename = fullfile (dir1, dir2, . . . , file )
Return a complete filename constructed from the given components.

See also: [fileparts], page 529.
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[Function File]dir = tempdir ()
Return the name of the system’s directory for temporary files.

[Function File]filename = tempname ()
This function is an alias for tmpnam.

[Built-in Function]P_tmpdir ()
Return the default name of the directory for temporary files on this system. The
name of this directory is system dependent.

[Built-in Function]is_absolute_filename (file )
Return true if file is an absolute filename.

[Built-in Function]is_rooted_relative_filename (file )
Return true if file is a rooted-relative filename.

[Built-in Function]make_absolute_filename (file )
Return the full name of file, relative to the current directory.

34.3 File Archiving Utilities

[Function File]bunzip2 (bzfile, dir )
Unpack the bzip2 archive bzfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [unpack], page 531, [bzip2], page 531, [tar], page 530, [untar], page 531,
[gzip], page 530, [gunzip], page 530, [zip], page 531, [unzip], page 531.

[Function File]entries = gzip (files )
[Function File]entries = gzip (files, outdir )

Compress the list of files and/or directories specified in files. Each file is compressed
separately and a new file with a ’.gz’ extension is created. The original files are not
touched. Existing compressed files are silently overwritten. If outdir is defined the
compressed versions of the files are placed in this directory.

See also: [gunzip], page 530, [bzip2], page 531, [zip], page 531, [tar], page 530.

[Function File]gunzip (gzfile, dir )
Unpack the gzip archive gzfile to the directory dir. If dir is not specified, it defaults
to the current directory. If the gzfile is a directory, all files in the directory will be
recursively gunzipped.

See also: [unpack], page 531, [bunzip2], page 530, [tar], page 530, [untar], page 531,
[gzip], page 530, [gunzip], page 530, [zip], page 531, [unzip], page 531.

[Function File]entries = tar (tarfile, files, root )
Pack files files into the TAR archive tarfile. The list of files must be a string or a cell
array of strings.

The optional argument root changes the relative path of files from the current direc-
tory.
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If an output argument is requested the entries in the archive are returned in a cell
array.

See also: [untar], page 531, [gzip], page 530, [gunzip], page 530, [zip], page 531,
[unzip], page 531.

[Function File]untar (tarfile, dir )
Unpack the TAR archive tarfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [unpack], page 531, [bunzip2], page 530, [tar], page 530, [gzip], page 530,
[gunzip], page 530, [zip], page 531, [unzip], page 531.

[Function File]entries = zip (zipfile, files )
[Function File]entries = zip (zipfile, files, rootdir )

Compress the list of files and/or directories specified in files into the archive zipfiles in
the same directory. If rootdir is defined the files is located relative to rootdir rather
than the current directory

See also: [unzip], page 531, [tar], page 530.

[Function File]unzip (zipfile, dir )
Unpack the ZIP archive zipfile to the directory dir. If dir is not specified, it defaults
to the current directory.

See also: [unpack], page 531, [bunzip2], page 530, [tar], page 530, [untar], page 531,
[gzip], page 530, [gunzip], page 530, [zip], page 531.

[Function File]pack ()
This function is provided for compatibility with matlab, but it doesn’t actually do
anything.

[Function File]files = unpack (file, dir )
[Function File]files = unpack (file, dir, filetype )

Unpack the archive file based on its extension to the directory dir. If file is a cellstr,
then all files will be handled individually. If dir is not specified, it defaults to the
current directory. It returns a list of files unpacked. If a directory is in the file list,
then the filetype to unpack must also be specified.

The files includes the entire path to the output files.

See also: [bunzip2], page 530, [tar], page 530, [untar], page 531, [gzip], page 530,
[gunzip], page 530, [zip], page 531, [unzip], page 531.

[Function File]entries = bzip2 (files )
[Function File]entries = bzip2 (files, outdir )

Compress the list of files specified in files. Each file is compressed separately and a
new file with a ’.bz2’ extension is created. The original files are not touched. Existing
compressed files are silently overwritten.If outdir is defined the compressed versions
of the files are placed in this directory.

See also: [bunzip2], page 530, [gzip], page 530, [zip], page 531, [tar], page 530.
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34.4 Networking Utilities

[Loadable Function]s = urlread (url )
[Loadable Function][s, success] = urlread (url )
[Loadable Function][s, success, message] = urlread (url )
[Loadable Function][...] = urlread (url, method, param )

Download a remote file specified by its URL and return its content in string s. For
example,

s = urlread ("ftp://ftp.octave.org/pub/octave/README");

The variable success is 1 if the download was successful, otherwise it is 0 in which
case message contains an error message. If no output argument is specified and if an
error occurs, then the error is signaled through Octave’s error handling mechanism.

This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE
protocols. Username and password may be specified in the URL. For example,

s = urlread ("http://user:password@example.com/file.txt");

GET and POST requests can be specified by method and param. The parameter
method is either ‘get’ or ‘post’ and param is a cell array of parameter and value
pairs. For example,

s = urlread ("http://www.google.com/search", "get",
{"query", "octave"});

See also: [urlwrite], page 532.

[Loadable Function]urlwrite (URL, localfile )
[Loadable Function]f = urlwrite (url, localfile )
[Loadable Function][f, success] = urlwrite (url, localfile )
[Loadable Function][f, success, message] = urlwrite (url, localfile )

Download a remote file specified by its URL and save it as localfile. For example,

urlwrite ("ftp://ftp.octave.org/pub/octave/README",
"README.txt");

The full path of the downloaded file is returned in f. The variable success is 1 if the
download was successful, otherwise it is 0 in which case message contains an error
message. If no output argument is specified and if an error occurs, then the error is
signaled through Octave’s error handling mechanism.

This function uses libcurl. Curl supports, among others, the HTTP, FTP and FILE
protocols. Username and password may be specified in the URL, for example:

urlwrite ("http://username:password@example.com/file.txt",
"file.txt");

GET and POST requests can be specified by method and param. The parameter
method is either ‘get’ or ‘post’ and param is a cell array of parameter and value
pairs. For example:

urlwrite ("http://www.google.com/search", "search.html",
"get", {"query", "octave"});

See also: [urlread], page 532.
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34.5 Controlling Subprocesses

Octave includes some high-level commands like system and popen for starting subprocesses.
If you want to run another program to perform some task and then look at its output, you
will probably want to use these functions.

Octave also provides several very low-level Unix-like functions which can also be used
for starting subprocesses, but you should probably only use them if you can’t find any way
to do what you need with the higher-level functions.

[Built-in Function]system (string, return_output, type )
Execute a shell command specified by string. The second argument is optional. If
type is "async", the process is started in the background and the process id of the
child process is returned immediately. Otherwise, the process is started, and Octave
waits until it exits. If the type argument is omitted, a value of "sync" is assumed.

If two input arguments are given (the actual value of return output is irrelevant) and
the subprocess is started synchronously, or if system is called with one input argument
and one or more output arguments, the output from the command is returned. Oth-
erwise, if the subprocess is executed synchronously, its output is sent to the standard
output. To send the output of a command executed with system through the pager,
use a command like

disp (system (cmd, 1));

or

printf ("%s\n", system (cmd, 1));

The system function can return two values. The first is the exit status of the command
and the second is any output from the command that was written to the standard
output stream. For example,

[status, output] = system ("echo foo; exit 2");

will set the variable output to the string ‘foo’, and the variable status to the integer
‘2’.

[Function File][status, text] unix (command )
[Function File][status, text] unix (command, "-echo")

Execute a system command if running under a Unix-like operating system, otherwise
do nothing. Return the exit status of the program in status and any output sent to
the standard output in text. If the optional second argument "-echo" is given, then
also send the output from the command to the standard output.

See also: [isunix], page 543, [ispc], page 543, [system], page 533.

[Function File][status, text] = dos (command )
[Function File][status, text] = dos (command, "-echo")

Execute a system command if running under a Windows-like operating system, other-
wise do nothing. Return the exit status of the program in status and any output sent
to the standard output in text. If the optional second argument "-echo" is given,
then also send the output from the command to the standard output.

See also: [unix], page 533, [isunix], page 543, [ispc], page 543, [system], page 533.
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[Function File][output, status] = perl (scriptfile )
[Function File][output, status] = perl (scriptfile, argument1,

argument2, . . . )
Invoke perl script scriptfile with possibly a list of command line arguments. Returns
output in output and status in status.

See also: [system], page 533.

[Built-in Function]fid = popen (command, mode )
Start a process and create a pipe. The name of the command to run is given by
command. The file identifier corresponding to the input or output stream of the
process is returned in fid. The argument mode may be

"r" The pipe will be connected to the standard output of the process, and
open for reading.

"w" The pipe will be connected to the standard input of the process, and open
for writing.

For example,

fid = popen ("ls -ltr / | tail -3", "r");
while (ischar (s = fgets (fid)))

fputs (stdout, s);
endwhile

a drwxr-xr-x 33 root root 3072 Feb 15 13:28 etc
a drwxr-xr-x 3 root root 1024 Feb 15 13:28 lib
a drwxrwxrwt 15 root root 2048 Feb 17 14:53 tmp

[Built-in Function]pclose (fid )
Close a file identifier that was opened by popen. You may also use fclose for the
same purpose.

[Built-in Function][in, out, pid] = popen2 (command, args )
Start a subprocess with two-way communication. The name of the process is given
by command, and args is an array of strings containing options for the command.
The file identifiers for the input and output streams of the subprocess are returned
in in and out. If execution of the command is successful, pid contains the process ID
of the subprocess. Otherwise, pid is −1.

For example,

[in, out, pid] = popen2 ("sort", "-r");
fputs (in, "these\nare\nsome\nstrings\n");
fclose (in);
EAGAIN = errno ("EAGAIN");
done = false;
do

s = fgets (out);
if (ischar (s))
fputs (stdout, s);

elseif (errno () == EAGAIN)
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sleep (0.1);
fclear (out);

else
done = true;

endif
until (done)
fclose (out);

a are
a some
a strings
a these

[Built-in Function]val = EXEC_PATH ()
[Built-in Function]old_val = EXEC_PATH (new_val )

Query or set the internal variable that specifies a colon separated list of directories
to search when executing external programs. Its initial value is taken from the en-
vironment variable OCTAVE_EXEC_PATH (if it exists) or PATH, but that value can be
overridden by the command line argument --exec-path PATH. At startup, an addi-
tional set of directories (including the shell PATH) is appended to the path specified
in the environment or on the command line. If you use the EXEC_PATH function to
modify the path, you should take care to preserve these additional directories.

In most cases, the following functions simply decode their arguments and make the
corresponding Unix system calls. For a complete example of how they can be used, look at
the definition of the function popen2.

[Built-in Function][pid, msg] = fork ()
Create a copy of the current process.

Fork can return one of the following values:

> 0 You are in the parent process. The value returned from fork is the
process id of the child process. You should probably arrange to wait for
any child processes to exit.

0 You are in the child process. You can call exec to start another process.
If that fails, you should probably call exit.

< 0 The call to fork failed for some reason. You must take evasive action. A
system dependent error message will be waiting in msg.

[Built-in Function][err, msg] = exec (file, args )
Replace current process with a new process. Calling exec without first calling fork
will terminate your current Octave process and replace it with the program named
by file. For example,

exec ("ls" "-l")

will run ls and return you to your shell prompt.

If successful, exec does not return. If exec does return, err will be nonzero, and msg
will contain a system-dependent error message.
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[Built-in Function][read_fd, write_fd, err, msg] = pipe ()
Create a pipe and return the reading and writing ends of the pipe into read fd and
write fd respectively.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][fid, msg] = dup2 (old, new )
Duplicate a file descriptor.

If successful, fid is greater than zero and contains the new file ID. Otherwise, fid is
negative and msg contains a system-dependent error message.

[Built-in Function][pid, status, msg] = waitpid (pid, options )
Wait for process pid to terminate. The pid argument can be:

−1 Wait for any child process.

0 Wait for any child process whose process group ID is equal to that of the
Octave interpreter process.

> 0 Wait for termination of the child process with ID pid.

The options argument can be a bitwise OR of zero or more of the following constants:

0 Wait until signal is received or a child process exits (this is the default if
the options argument is missing).

WNOHANG Do not hang if status is not immediately available.

WUNTRACED
Report the status of any child processes that are stopped, and whose
status has not yet been reported since they stopped.

WCONTINUE
Return if a stopped child has been resumed by delivery of SIGCONT. This
value may not be meaningful on all systems.

If the returned value of pid is greater than 0, it is the process ID of the child process
that exited. If an error occurs, pid will be less than zero and msg will contain a
system-dependent error message. The value of status contains additional system-
dependent information about the subprocess that exited.

See also: [WCONTINUE], page 536, [WCOREDUMP], page 537, [WEXITSTATUS],
page 537, [WIFCONTINUED], page 537, [WIFSIGNALED], page 537,
[WIFSTOPPED], page 537, [WNOHANG], page 537, [WSTOPSIG], page 538,
[WTERMSIG], page 538, [WUNTRACED], page 538.

[Built-in Function]WCONINTUE ()
Return the numerical value of the option argument that may be passed to waitpid
to indicate that it should also return if a stopped child has been resumed by delivery
of a SIGCONT signal.

See also: [waitpid], page 536, [WNOHANG], page 537, [WUNTRACED], page 538.
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[Built-in Function]WCOREDUMP (status )
Given status from a call to waitpid, return true if the child produced a core dump.
This function should only be employed if WIFSIGNALED returned true. The macro
used to implement this function is not specified in POSIX.1-2001 and is not available
on some Unix implementations (e.g., AIX, SunOS).

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WIFSIGNALED], page 537, [WTERMSIG], page 538, [WIFSTOPPED], page 537,
[WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WEXITSTATUS (status )
Given status from a call to waitpid, return the exit status of the child. This function
should only be employed if WIFEXITED returned true.

See also: [waitpid], page 536, [WIFEXITED], page 537, [WIFSIGNALED], page 537,
[WTERMSIG], page 538, [WCOREDUMP], page 537, [WIFSTOPPED], page 537,
[WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WIFCONTINUED (status )
Given status from a call to waitpid, return true if the child process was resumed by
delivery of SIGCONT.

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WIFSIGNALED], page 537, [WTERMSIG], page 538, [WCOREDUMP], page 537,
[WIFSTOPPED], page 537, [WSTOPSIG], page 538.

[Built-in Function]WIFSIGNALED (status )
Given status from a call to waitpid, return true if the child process was terminated
by a signal.

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WTERMSIG], page 538, [WCOREDUMP], page 537, [WIFSTOPPED], page 537,
[WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WIFSTOPPED (status )
Given status from a call to waitpid, return true if the child process was stopped by
delivery of a signal; this is only possible if the call was done using WUNTRACED or when
the child is being traced (see ptrace(2)).

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WIFSIGNALED], page 537, [WTERMSIG], page 538, [WCOREDUMP], page 537,
[WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WIFEXITED (status )
Given status from a call to waitpid, return true if the child terminated normally.

See also: [waitpid], page 536, [WEXITSTATUS], page 537, [WIFSIGNALED],
page 537, [WTERMSIG], page 538, [WCOREDUMP], page 537, [WIFSTOPPED],
page 537, [WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WNOHANG ()
Return the numerical value of the option argument that may be passed to waitpid to
indicate that it should return its status immediately instead of waiting for a process
to exit.
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See also: [waitpid], page 536, [WUNTRACED], page 538, [WCONTINUE], page 536.

[Built-in Function]WSTOPSIG (status )
Given status from a call to waitpid, return the number of the signal which caused
the child to stop. This function should only be employed if WIFSTOPPED returned
true.

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WIFSIGNALED], page 537, [WTERMSIG], page 538, [WCOREDUMP], page 537,
[WIFSTOPPED], page 537, [WIFCONTINUED], page 537.

[Built-in Function]WTERMSIG (status )
Given status from a call to waitpid, return the number of the signal that caused the
child process to terminate. This function should only be employed if WIFSIGNALED
returned true.

See also: [waitpid], page 536, [WIFEXITED], page 537, [WEXITSTATUS], page 537,
[WIFSIGNALED], page 537, [WCOREDUMP], page 537, [WIFSTOPPED], page 537,
[WSTOPSIG], page 538, [WIFCONTINUED], page 537.

[Built-in Function]WUNTRACED ()
Return the numerical value of the option argument that may be passed to waitpid
to indicate that it should also return if the child process has stopped but is not traced
via the ptrace system call

See also: [waitpid], page 536, [WNOHANG], page 537, [WCONTINUE], page 536.

[Built-in Function][err, msg] = fcntl (fid, request, arg )
Change the properties of the open file fid. The following values may be passed as
request:

F_DUPFD Return a duplicate file descriptor.

F_GETFD Return the file descriptor flags for fid.

F_SETFD Set the file descriptor flags for fid.

F_GETFL Return the file status flags for fid. The following codes may be returned
(some of the flags may be undefined on some systems).

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

O_APPEND Append on each write.

O_CREAT Create the file if it does not exist.

O_NONBLOCK
Nonblocking mode.

O_SYNC Wait for writes to complete.

O_ASYNC Asynchronous I/O.
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F_SETFL Set the file status flags for fid to the value specified by arg. The only
flags that can be changed are O_APPEND and O_NONBLOCK.

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Built-in Function][err, msg] = kill (pid, sig )
Send signal sig to process pid.

If pid is positive, then signal sig is sent to pid.

If pid is 0, then signal sig is sent to every process in the process group of the current
process.

If pid is -1, then signal sig is sent to every process except process 1.

If pid is less than -1, then signal sig is sent to every process in the process group -pid.

If sig is 0, then no signal is sent, but error checking is still performed.

Return 0 if successful, otherwise return -1.

[Built-in Function]SIG ()
Return a structure containing Unix signal names and their defined values.

34.6 Process, Group, and User IDs

[Built-in Function]pgid = getpgrp ()
Return the process group id of the current process.

[Built-in Function]pid = getpid ()
Return the process id of the current process.

[Built-in Function]pid = getppid ()
Return the process id of the parent process.

[Built-in Function]euid = geteuid ()
Return the effective user id of the current process.

[Built-in Function]uid = getuid ()
Return the real user id of the current process.

[Built-in Function]egid = getegid ()
Return the effective group id of the current process.

[Built-in Function]gid = getgid ()
Return the real group id of the current process.
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34.7 Environment Variables

[Built-in Function]getenv (var )
Return the value of the environment variable var. For example,

getenv ("PATH")

returns a string containing the value of your path.

[Built-in Function]putenv (var, value )
[Built-in Function]setenv (var, value )

Set the value of the environment variable var to value.

34.8 Current Working Directory

[Command]cd dir
[Command]chdir dir

Change the current working directory to dir. If dir is omitted, the current directory
is changed to the user’s home directory. For example,

cd ~/octave

Changes the current working directory to ‘~/octave’. If the directory does not exist,
an error message is printed and the working directory is not changed.

See also: [mkdir], page 525, [rmdir], page 525, [dir], page 540.

[Command]ls options
List directory contents. For example,

ls -l
a total 12
a -rw-r--r-- 1 jwe users 4488 Aug 19 04:02 foo.m
a -rw-r--r-- 1 jwe users 1315 Aug 17 23:14 bar.m

The dir and ls commands are implemented by calling your system’s directory listing
command, so the available options may vary from system to system.

See also: [dir], page 540, [stat], page 526, [readdir], page 525, [glob], page 528, [filesep],
page 529, [ls command], page 540.

[Function File][old_cmd = ls_command (cmd )
Set or return the shell command used by Octave’s ls command. The value of cmd
must be a character string. With no arguments, simply return the previous value.

See also: [ls], page 540.

[Function File]dir (directory )
[Function File][list] = dir (directory )

Display file listing for directory directory. If a return value is requested, return a
structure array with the fields

name
bytes
date
isdir
statinfo
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in which statinfo is the structure returned from stat.
If directory is not a directory, return information about the named filename. directory
may be a list of directories specified either by name or with wildcard characters (like
* and ?) which will be expanded with glob.
Note that for symbolic links, dir returns information about the file that a symbolic
link points to instead of the link itself. However, if the link points to a nonexistent
file, dir returns information about the link.

See also: [ls], page 540, [stat], page 526, [lstat], page 526, [readdir], page 525, [glob],
page 528, [filesep], page 529.

[Built-in Function]pwd ()
Return the current working directory.

See also: [dir], page 540, [ls], page 540.

34.9 Password Database Functions

Octave’s password database functions return information in a structure with the following
fields.

name The user name.

passwd The encrypted password, if available.

uid The numeric user id.

gid The numeric group id.

gecos The GECOS field.

dir The home directory.

shell The initial shell.

In the descriptions of the following functions, this data structure is referred to as a
pw struct.

[Loadable Function]pw_struct = getpwent ()
Return a structure containing an entry from the password database, opening it if
necessary. Once the end of the data has been reached, getpwent returns 0.

[Loadable Function]pw_struct = getpwuid (uid ).
Return a structure containing the first entry from the password database with the
user ID uid. If the user ID does not exist in the database, getpwuid returns 0.

[Loadable Function]pw_struct = getpwnam (name )
Return a structure containing the first entry from the password database with the
user name name. If the user name does not exist in the database, getpwname returns
0.

[Loadable Function]setpwent ()
Return the internal pointer to the beginning of the password database.

[Loadable Function]endpwent ()
Close the password database.
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34.10 Group Database Functions

Octave’s group database functions return information in a structure with the following
fields.

name The user name.

passwd The encrypted password, if available.

gid The numeric group id.

mem The members of the group.

In the descriptions of the following functions, this data structure is referred to as a
grp struct.

[Loadable Function]grp_struct = getgrent ()
Return an entry from the group database, opening it if necessary. Once the end of
the data has been reached, getgrent returns 0.

[Loadable Function]grp_struct = getgrgid (gid ).
Return the first entry from the group database with the group ID gid. If the group
ID does not exist in the database, getgrgid returns 0.

[Loadable Function]grp_struct = getgrnam (name )
Return the first entry from the group database with the group name name. If the
group name does not exist in the database, getgrnam returns 0.

[Loadable Function]setgrent ()
Return the internal pointer to the beginning of the group database.

[Loadable Function]endgrent ()
Close the group database.

34.11 System Information

[Function File][c, maxsize, endian] = computer ()
Print or return a string of the form cpu-vendor-os that identifies the kind of computer
Octave is running on. If invoked with an output argument, the value is returned
instead of printed. For example,

computer ()
a i586-pc-linux-gnu

x = computer ()
⇒ x = "i586-pc-linux-gnu"

If two output arguments are requested, also return the maximum number of elements
for an array.

If three output arguments are requested, also return the byte order of the current
system as a character ("B" for big-endian or "L" for little-endian).
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[Built-in Function][uts, err, msg] = uname ()
Return system information in the structure. For example,

uname ()
⇒ {

sysname = x86_64
nodename = segfault
release = 2.6.15-1-amd64-k8-smp
version = Linux
machine = #2 SMP Thu Feb 23 04:57:49 UTC 2006

}

If successful, err is 0 and msg is an empty string. Otherwise, err is nonzero and msg
contains a system-dependent error message.

[Function File]ispc ()
Return 1 if Octave is running on a Windows system and 0 otherwise.

See also: [ismac], page 543, [isunix], page 543.

[Function File]isunix ()
Return 1 if Octave is running on a Unix-like system and 0 otherwise.

See also: [ismac], page 543, [ispc], page 543.

[Function File]ismac ()
Return 1 if Octave is running on a Mac OS X system and 0 otherwise.

See also: [ispc], page 543, [isunix], page 543.

[Built-in Function]isieee ()
Return 1 if your computer claims to conform to the IEEE standard for floating point
calculations.

[Built-in Function]OCTAVE_HOME ()
Return the name of the top-level Octave installation directory.

[Built-in Function]OCTAVE_VERSION ()
Return the version number of Octave, as a string.

[Function File]license
Display the license of Octave.

[Function File]license ("inuse")
Display a list of packages currently being used.

[Function File]retval = license ("inuse")
Return a structure containing the fields feature and user.

[Function File]retval = license ("test", feature )
Return 1 if a license exists for the product identified by the string feature and 0
otherwise. The argument feature is case insensitive and only the first 27 characters
are checked.

[Function File]license ("test", feature, toggle )
Enable or disable license testing for feature, depending on toggle, which may be one
of:
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‘"enable"’
Future tests for the specified license of feature are conducted as usual.

‘"disable"’
Future tests for the specified license of feature return 0.

[Function File]retval = license ("checkout", feature )
Check out a license for feature, returning 1 on success and 0 on failure.
This function is provided for compatibility with matlab.

See also: [ver], page 544, [version], page 544.

[Function File]version ()
Return Octave’s version number as a string. This is also the value of the built-in
variable OCTAVE_VERSION.

[Function File]ver ()
Display a header containing the current Octave version number, license

string and operating system, followed by the installed package names, versions,
and installation directories. [Function File]v = ver ()

Return a vector of structures, respecting Octave and each installed package. The
structure includes the following fields.

Name Package name.

Version Version of the package.

Revision Revision of the package.

Date Date respecting the version/revision.

[Function File]v = ver ("Octave")
Return version information for Octave only.. [Function File]v = ver (pkg )

Return version information for the specified package pkg.

See also: [license], page 543, [version], page 544.

[Built-in Function]octave_config_info (option )
Return a structure containing configuration and installation information for Octave.
if option is a string, return the configuration information for the specified option.

[Loadable Function]getrusage ()
Return a structure containing a number of statistics about the current Octave process.
Not all fields are available on all systems. If it is not possible to get CPU time
statistics, the CPU time slots are set to zero. Other missing data are replaced by
NaN. Here is a list of all the possible fields that can be present in the structure
returned by getrusage:

idrss Unshared data size.

inblock Number of block input operations.

isrss Unshared stack size.

ixrss Shared memory size.
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majflt Number of major page faults.

maxrss Maximum data size.

minflt Number of minor page faults.

msgrcv Number of messages received.

msgsnd Number of messages sent.

nivcsw Number of involuntary context switches.

nsignals Number of signals received.

nswap Number of swaps.

nvcsw Number of voluntary context switches.

oublock Number of block output operations.

stime A structure containing the system CPU time used. The structure has the
elements sec (seconds) usec (microseconds).

utime A structure containing the user CPU time used. The structure has the
elements sec (seconds) usec (microseconds).

34.12 Hashing Functions

It is often necessary to find if two strings or files are identical. This might be done by
comparing them character by character and looking for differences. However, this can be
slow, and so comparing a hash of the string or file can be a rapid way of finding if the files
differ.

Another use of the hashing function is to check for file integrity. The user can check the
hash of the file against a known value and find if the file they have is the same as the one
that the original hash was produced with.

Octave supplies the md5sum function to perform MD5 hashes on strings and files. An
example of the use of md5sum function might be

if exist (file, "file")
hash = md5sum (file);

else
# Treat the variable "file" as a string
hash = md5sum (file, true);

endif

[Loadable Function]md5sum (file )
[Loadable Function]md5sum (str, opt )

Calculates the MD5 sum of the file file. If the second parameter opt exists and is
true, then calculate the MD5 sum of the string str.
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35 Packages

Since Octave is Free Software users are encouraged to share their programs amongst each
other. To aid this sharing Octave supports the installation of extra packages. The ‘Octave-
Forge’ project is a community-maintained set of packages that can be downloaded and
installed in Octave. At the time of writing the ‘Octave-Forge’ project can be found on-line
at http://octave.sourceforge.net, but since the Internet is an ever-changing place this
may not be true at the time of reading. Therefore it is recommended to see the Octave
website for an updated reference.

35.1 Installing and Removing Packages

Assuming a package is available in the file ‘image-1.0.0.tar.gz’ it can be installed from
the Octave prompt with the command

pkg install image-1.0.0.tar.gz

If the package is installed successfully nothing will be printed on the prompt, but if an error
occurred during installation it will be reported. It is possible to install several packages
at once by writing several package files after the pkg install command. If a different
version of the package is already installed it will be removed prior to installing the new
package. This makes it easy to upgrade and downgrade the version of a package, but makes
it impossible to have several versions of the same package installed at once.

To see which packages are installed type

pkg list
a Package Name | Version | Installation directory
a --------------+---------+-----------------------
a image *| 1.0.0 | /home/jwe/octave/image-1.0.0

In this case only version 1.0.0 of the image package is installed. The ’*’ character next to
the package name shows that the image package is loaded and ready for use.

It is possible to remove a package from the system using the pkg uninstall command
like this

pkg uninstall image

If the package is removed successfully nothing will be printed in the prompt, but if an error
occurred it will be reported. It should be noted that the package file used for installation is
not needed for removal, and that only the package name as reported by pkg list should be
used when removing a package. It is possible to remove several packages at once by writing
several package names after the pkg uninstall command.

To minimize the amount of code duplication between packages it is possible that one
package depends on another one. If a package depends on another, it will check if that
package is installed during installation. If it is not, an error will be reported and the
package will not be installed. This behavior can be disabled by passing the -nodeps flag to
the pkg install command

pkg install -nodeps my_package_with_dependencies.tar.gz

Since the installed package expects its dependencies to be installed it may not function
correctly. Because of this it is not recommended to disable dependency checking.

http://octave.sourceforge.net
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[Command]pkg command pkg_name
[Command]pkg command option pkg_name

This command interacts with the package manager. Different actions will be taken
depending on the value of command.

‘install’ Install named packages. For example,
pkg install image-1.0.0.tar.gz

installs the package found in the file ‘image-1.0.0.tar.gz’.
The option variable can contain options that affect the manner in which
a package is installed. These options can be one or more of

-nodeps The package manager will disable the dependency checking.
That way it is possible to install a package even if it depends
on another package that’s not installed on the system. Use
this option with care.

-noauto The package manager will not automatically load the in-
stalled package when starting Octave, even if the package
requests that it is.

-auto The package manager will automatically load the installed
package when starting Octave, even if the package requests
that it isn’t.

-local A local installation is forced, even if the user has system
privileges.

-global A global installation is forced, even if the user doesn’t nor-
mally have system privileges

-verbose The package manager will print the output of all of the com-
mands that are performed.

‘uninstall’
Uninstall named packages. For example,

pkg uninstall image

removes the image package from the system. If another installed package
depends on the image package an error will be issued. The package can
be uninstalled anyway by using the -nodeps option.

‘load’ Add named packages to the path. After loading a package it is possible
to use the functions provided by the package. For example,

pkg load image

adds the image package to the path. It is possible to load all installed
packages at once with the command

pkg load all

‘unload’ Removes named packages from the path. After unloading a package it
is no longer possible to use the functions provided by the package. This
command behaves like the load command.
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‘list’ Show a list of the currently installed packages. By requesting one or
two output argument it is possible to get a list of the currently installed
packages. For example,

installed_packages = pkg list;

returns a cell array containing a structure for each installed package. The
command

[user_packages, system_packages] = pkg list

splits the list of installed packages into those who are installed by the
current user, and those installed by the system administrator.

‘describe’
Show a short description of the named installed packages, with the option
’-verbose’ also list functions provided by the package, e.g.:

pkg describe -verbose all

will describe all installed packages and the functions they provide. If one
output is requested a cell of structure containing the description and list
of functions of each package is returned as output rather than printed on
screen:

desc = pkg ("describe", "secs1d", "image")

If any of the requested packages is not installed, pkg returns an error,
unless a second output is requested:

[ desc, flag] = pkg ("describe", "secs1d", "image")

flag will take one of the values "Not installed", "Loaded" or "Not loaded"
for each of the named packages.

‘prefix’ Set the installation prefix directory. For example,

pkg prefix ~/my_octave_packages

sets the installation prefix to ‘~/my_octave_packages’. Packages will be
installed in this directory.

It is possible to get the current installation prefix by requesting an output
argument. For example,

p = pkg prefix

The location in which to install the architecture dependent files can be
independent specified with an addition argument. For example

pkg prefix ~/my_octave_packages ~/my_arch_dep_pkgs

‘local_list’
Set the file in which to look for information on the locally installed pack-
ages. Locally installed packages are those that are typically available only
to the current user. For example

pkg local_list ~/.octave_packages

It is possible to get the current value of local list with the following

pkg local_list
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‘global_list’
Set the file in which to look for, for information on the globally installed
packages. Globally installed packages are those that are typically avail-
able to all users. For example

pkg global_list /usr/share/octave/octave_packages

It is possible to get the current value of global list with the following
pkg global_list

‘rebuild’ Rebuilds the package database from the installed directories. This can be
used in cases where for some reason the package database is corrupted.
It can also take the -auto and -noauto options to allow the autoloading
state of a package to be changed. For example

pkg rebuild -noauto image

will remove the autoloading status of the image package.

‘build’ Builds a binary form of a package or packages. The binary file produced
will itself be an Octave package that can be installed normally with pkg.
The form of the command to build a binary package is

pkg build builddir image-1.0.0.tar.gz ...

where builddir is the name of a directory where the temporary installa-
tion will be produced and the binary packages will be found. The options
-verbose and -nodeps are respected, while the other options are ignored.

35.2 Using Packages

By default installed packages are available from the Octave prompt, but it is possible to
control this using the pkg load and pkg unload commands. The functions from a package
can be removed from the Octave path by typing

pkg unload package_name

where package_name is the name of the package to be removed from the path.
In much the same way a package can be added to the Octave path by typing

pkg load package_name

35.3 Administrating Packages

On UNIX-like systems it is possible to make both per-user and system-wide installations of
a package. If the user performing the installation is root the packages will be installed in
a system-wide directory that defaults to ‘OCTAVE_HOME/share/octave/packages/’. If the
user is not root the default installation directory is ‘~/octave/’. Packages will be installed
in a subdirectory of the installation directory that will be named after the package. It is
possible to change the installation directory by using the pkg prefix command

pkg prefix new_installation_directory

The current installation directory can be retrieved by typing
current_installation_directory = pkg prefix

To function properly the package manager needs to keep some information about
the installed packages. For per-user packages this information is by default stored
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in the file ‘~/.octave_packages’ and for system-wide installations it is stored in
‘OCTAVE_HOME/share/octave/octave_packages’. The path to the per-user file can be
changed with the pkg local_list command

pkg local_list /path/to/new_file

For system-wide installations this can be changed in the same way using the pkg global_
list command. If these commands are called without a new path, the current path will be
returned.

35.4 Creating Packages

Internally a package is simply a gzipped tar file that contains a top level directory of any
given name. This directory will in the following be referred to as package and may contain
the following files

package/DESCRIPTION
This is a required file containing information about the package. See
Section 35.4.1 [The DESCRIPTION File], page 552, for details on this file.

package/COPYING
This is a required file containing the license of the package. No restrictions is
made on the license in general. If however the package contains dynamically
linked functions the license must be compatible with the GNU General Public
License.

package/INDEX
This is an optional file describing the functions provided by the package. If
this file is not given then one with be created automatically from the functions
in the package and the Categories keyword in the DESCRIPTION file. See
Section 35.4.2 [The INDEX file], page 554, for details on this file.

package/PKG_ADD
An optional file that includes commands that are run when the package is
added to the users path. Note that PKG_ADD directives in the source code of the
package will also be added to this file by the Octave package manager. Note
that symbolic links are to be avoided in packages, as symbolic links do not exist
on some file systems, and so a typical use for this file is the replacement of the
symbolic link

ln -s foo.oct bar.oct

with an autoload directive like
autoload (’bar’, which (’foo’));

See Section 35.4.3 [PKG ADD and PKG DEL directives], page 555, for details
on PKG_ADD directives.

package/PKG_DEL
An optional file that includes commands that are run when the package is
removed from the users path. Note that PKG_DEL directives in the source code
of the package will also be added to this file by the Octave package manager.
See Section 35.4.3 [PKG ADD and PKG DEL directives], page 555, for details
on PKG_DEL directives.



552 GNU Octave

package/pre_install.m
This is an optional script that is run prior to the installation of a package.

package/post_install.m
This is an optional script that is run after the installation of a package.

package/on_uninstall.m
This is an optional script that is run prior to the removal of a package.

Besides the above mentioned files, a package can also contain on or more of the following
directories

package/inst
An optional directory containing any files that are directly installed by the
package. Typically this will include any m-files.

package/src
An optional directory containing code that must be built prior to the packages
installation. The Octave package manager will execute ‘./configure’ in this
directory if this script exists, and will then call make if a file ‘Makefile’ exists
in this directory. make install will however not be called. If a file called FILES
exists all files listed there will be copied to the inst directory, so they also will
be installed. If the FILES file doesn’t exist, ‘src/*.m’ and ‘src/*.oct’ will be
copied to the inst directory.

package/doc
An optional directory containing documentation for the package. The files in
this directory will be directly installed in a sub-directory of the installed package
for future reference.

package/bin
An optional directory containing files that will be added to the Octave
EXEC_PATH when the package is loaded. This might contain external scripts,
etc., called by functions within the package.

35.4.1 The DESCRIPTION File

The DESCRIPTION file contains various information about the package, such as its name,
author, and version. This file has a very simple format

• Lines starting with ‘#’ are comments.

• Lines starting with a blank character are continuations from the previous line.

• Everything else is of the form NameOfOption: ValueOfOption.

The following is a simple example of a DESCRIPTION file
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Name: The name of my package
Version: 1.0.0
Date: 2007-18-04
Author: The name (and possibly email) of the package author.
Maintainer: The name (and possibly email) of the current
package maintainer.
Title: The title of the package
Description: A short description of the package. If this
description gets too long for one line it can continue
on the next by adding a space to the beginning of the
following lines.
License: GPL version 3 or later

The package manager currently recognizes the following keywords

Name Name of the package.

Version Version of the package.

Date Date of last update.

Author Original author of the package.

Maintainer
Maintainer of the package.

Title A one line description of the package.

Description
A one paragraph description of the package.

Categories
Optional keyword describing the package (if no INDEX file is given this is manda-
tory).

Problems Optional list of known problems.

Url Optional list of homepages related to the package.

Autoload Optional field that sets the default loading behavior for the package. If set to
yes, true or on, then Octave will automatically load the package when starting.
Otherwise the package must be manually loaded with the pkg load command.
This default behavior can be overridden when the package is installed.

Depends A list of other Octave packages that this package depends on. This can include
dependencies on particular versions, with a format

Depends: package (>= 1.0.0)

Possible operators are <, <=, ==, >= or >. If the part of the dependency in ()
is missing, any version of the package is acceptable. Multiple dependencies can
be defined either as a comma separated list or on separate Depends lines.

License An optional short description of the used license (e.g., GPL version 3 or newer).
This is optional since the file COPYING is mandatory.
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SystemRequirements
These are the external install dependencies of the package and are not checked
by the package manager. This is here as a hint to the distribution packager.
They follow the same conventions as the Depends keyword.

BuildRequires
These are the external build dependencies of the package and are not checked by
the package manager. This is here as a hint to the distribution packager. They
follow the same conventions as the Depends keyword. Note that in general,
packaging systems such as rpm or deb and autoprobe the install dependencies
from the build dependencies, and therefore the often a BuildRequires depen-
dency removes the need for a SystemRequirements dependency.

The developer is free to add additional arguments to the DESCRIPTION file for their own
purposes. One further detail to aid the packager is that the SystemRequirements and
BuildRequires keywords can have a distribution dependent section, and the automatic
build process will use these. An example of the format of this is

BuildRequires: libtermcap-devel [Mandriva] libtermcap2-devel

where the first package name will be used as a default and if the RPMs are built on a
Mandriva distribution, then the second package name will be used instead.

35.4.2 The INDEX file

The optional INDEX file provides a categorical view of the functions in the package. This
file has a very simple format
• Lines beginning with ‘#’ are comments.
• The first non-comment line should look like this

toolbox >> Toolbox name

• Lines beginning with an alphabetical character indicates a new category of functions.
• Lines starting with a white space character indicate that the function names on the

line belong to the last mentioned category.

The format can be summarized with the following example
# A comment
toolbox >> Toolbox name
Category Name 1
function1 function2 function3
function4
Category Name 2
function2 function5

If you wish to refer to a function that users might expect to find in your package but is
not there, providing a work around or pointing out that the function is available elsewhere,
you can use:

fn = workaround description

This workaround description will not appear when listing functions in the package with
pkg describe but they will be published in the html documentation online. Workaround
descriptions can use any html markup, but keep in mind that it will be enclosed in a
bold-italic environment. For the special case of:
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fn = use <code>alternate expression</code>

the bold-italic is automatically suppressed. You will need to use <code> even in references:
fn = use <a href="someothersite.html"><code>fn</code></a>

Sometimes functions are only partially compatible, in which case you can list the non-
compatible cases separately. To refer to another function in the package, use <f>fn</f>.
For example,

eig (a, b) = use <f>qz</f>

Since sites may have many missing functions, you can define a macro rather than typing
the same link over and again.

$id = expansion

defines the macro id. You can use $id anywhere in the description and it will be expanded.
For example,

$TSA = see <a href="link_to_spctools">SPC Tools</a>
arcov = $TSA <code>armcv</code>

id is any string of letters, numbers and _.

35.4.3 PKG ADD and PKG DEL directives

If the package contains files called PKG_ADD or PKG_DEL the commands in these files will be
executed when the package is added or removed from the users path. In some situations
such files are a bit cumbersome to maintain, so the package manager supports automatic
creation of such files. If a source file in the package contains a PKG_ADD or PKG_DEL directive
they will be added to either the PKG_ADD or PKG_DEL files.

In m-files a PKG_ADD directive looks like this
## PKG_ADD: some_octave_command

Such lines should be added before the function keyword. In C++ files a PKG_ADD directive
looks like this

// PKG_ADD: some_octave_command

In both cases some_octave_command should be replaced by the command that should be
placed in the PKG_ADD file. PKG_DEL directives work in the same way, except the PKG_ADD
keyword is replaced with PKG_DEL and the commands get added to the PKG_DEL file.
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Appendix A Dynamically Linked Functions

Octave has the possibility of including compiled code as dynamically linked extensions and
then using these extensions as if they were part of Octave itself. Octave can call C++ code
through its native oct-file interface or C code through its mex interface. It can also indirectly
call functions written in any other language through a simple wrapper. The reasons to write
code in a compiled language might be either to link to an existing piece of code and allow
it to be used within Octave, or to allow improved performance for key pieces of code.

Before going further, you should first determine if you really need to use dynamically
linked functions at all. Before proceeding with writing any dynamically linked function to
improve performance you should address ask yourself

• Can I get the same functionality using the Octave scripting language only?

• Is it thoroughly optimized Octave code? Vectorization of Octave code, doesn’t just
make it concise, it generally significantly improves its performance. Above all, if loops
must be used, make sure that the allocation of space for variables takes place outside
the loops using an assignment to a matrix of the right size, or zeros.

• Does it make as much use as possible of existing built-in library routines? These are
highly optimized and many do not carry the overhead of being interpreted.

• Does writing a dynamically linked function represent useful investment of your time,
relative to staying in Octave?

Also, as oct- and mex-files are dynamically linked to Octave, they introduce the possibil-
ity of Octave crashing due to errors in the user code. For example a segmentation violation
in the user’s code will cause Octave to abort.

A.1 Oct-Files

A.1.1 Getting Started with Oct-Files

The basic command to build oct-files is mkoctfile and it can be call from within octave or
from the command line.

[Function File]mkoctfile [-options] file . . .
The mkoctfile function compiles source code written in C, C++, or Fortran. De-
pending on the options used with mkoctfile, the compiled code can be called within
Octave or can be used as a stand-alone application.

mkoctfile can be called from the shell prompt or from the Octave prompt.

mkoctfile accepts the following options, all of which are optional except for the file
name of the code you wish to compile:

‘-I DIR’ Add the include directory DIR to compile commands.

‘-D DEF’ Add the definition DEF to the compiler call.

‘-l LIB’ Add the library LIB to the link command.

‘-L DIR’ Add the library directory DIR to the link command.
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‘-M’
‘--depend’

Generate dependency files (.d) for C and C++ source files.

‘-c’ Compile but do not link.

‘-g’ Enable debugging options for compilers.

‘-o FILE’
‘--output FILE’

Output file name. Default extension is .oct (or .mex if –mex is specified)
unless linking a stand-alone executable.

‘-p VAR’
‘--print VAR’

Print the configuration variable VAR. Recognized variables are:
ALL_CFLAGS FFTW_LIBS
ALL_CXXFLAGS FLIBS
ALL_FFLAGS FPICFLAG
ALL_LDFLAGS INCFLAGS
BLAS_LIBS LDFLAGS
CC LD_CXX
CFLAGS LD_STATIC_FLAG
CPICFLAG LFLAGS
CPPFLAGS LIBCRUFT
CXX LIBOCTAVE
CXXFLAGS LIBOCTINTERP
CXXPICFLAG LIBREADLINE
DEPEND_EXTRA_SED_PATTERN LIBS
DEPEND_FLAGS OCTAVE_LIBS
DL_LD RDYNAMIC_FLAG
DL_LDFLAGS RLD_FLAG
F2C SED
F2CFLAGS XTRA_CFLAGS
F77 XTRA_CXXFLAGS
FFLAGS

‘--link-stand-alone’
Link a stand-alone executable file.

‘--mex’ Assume we are creating a MEX file. Set the default output extension to
".mex".

‘-s’
‘--strip’ Strip the output file.

‘-v’
‘--verbose’

Echo commands as they are executed.

‘file’ The file to compile or link. Recognized file types are
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.c C source

.cc C++ source

.C C++ source

.cpp C++ source

.f Fortran source

.F Fortran source

.o object file

Consider the short example

#include <octave/oct.h>

DEFUN_DLD (helloworld, args, nargout,
"Hello World Help String")

{
int nargin = args.length ();
octave_stdout << "Hello World has " << nargin

<< " input arguments and "
<< nargout << " output arguments.\n";

return octave_value_list ();
}

This example although short introduces the basics of writing a C++ function that can
be dynamically linked to Octave. The easiest way to make available most of the definitions
that might be necessary for an oct-file in Octave is to use the #include <octave/oct.h>
header.

The macro that defines the entry point into the dynamically loaded function is
DEFUN_DLD. This macro takes four arguments, these being

1. The function name as it will be seen in Octave,

2. The list of arguments to the function of type octave_value_list,

3. The number of output arguments, which can and often is omitted if not used, and

4. The string that will be seen as the help text of the function.

The return type of functions defined with DEFUN_DLD is always octave_value_list.

There are a couple of important considerations in the choice of function name. Firstly,
it must be a valid Octave function name and so must be a sequence of letters, digits and
underscores, not starting with a digit. Secondly, as Octave uses the function name to define
the filename it attempts to find the function in, the function name in the DEFUN_DLD macro
must match the filename of the oct-file. Therefore, the above function should be in a file
‘helloworld.cc’, and it should be compiled to an oct-file using the command

mkoctfile helloworld.cc

This will create a file called ‘helloworld.oct’, that is the compiled version of the func-
tion. It should be noted that it is perfectly acceptable to have more than one DEFUN_DLD
function in a source file. However, there must either be a symbolic link to the oct-file for
each of the functions defined in the source code with the DEFUN_DLD macro or the autoload
(Section 11.7 [Function Files], page 145) function should be used.
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The rest of this function then shows how to find the number of input arguments, how to
print through the octave pager, and return from the function. After compiling this function
as above, an example of its use is

helloworld (1, 2, 3)
a Hello World has 3 input arguments and 0 output arguments.

A.1.2 Matrices and Arrays in Oct-Files

Octave supports a number of different array and matrix classes, the majority of which are
based on the Array class. The exception is the sparse matrix types discussed separately
below. There are three basic matrix types

Matrix A double precision matrix class defined in dMatrix.h,

ComplexMatrix
A complex matrix class defined in CMatrix.h, and

BoolMatrix
A boolean matrix class defined in boolMatrix.h.

These are the basic two-dimensional matrix types of octave. In additional there are a
number of multi-dimensional array types, these being

NDArray A double precision array class defined in ‘dNDArray.h’

ComplexNDarray
A complex array class defined in ‘CNDArray.h’

boolNDArray
A boolean array class defined in ‘boolNDArray.h’

int8NDArray
int16NDArray
int32NDArray
int64NDArray

8, 16, 32 and 64-bit signed array classes defined in ‘int8NDArray.h’,
‘int16NDArray.h’, etc.

uint8NDArray
uint16NDArray
uint32NDArray
uint64NDArray

8, 16, 32 and 64-bit unsigned array classes defined in ‘uint8NDArray.h’,
‘uint16NDArray.h’, etc.

There are several basic means of constructing matrices of multi-dimensional arrays. Con-
sidering the Matrix type as an example

• We can create an empty matrix or array with the empty constructor. For example
Matrix a;

This can be used on all matrix and array types
• Define the dimensions of the matrix or array with a dim vector. For example
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dim_vector dv (2);
dv(0) = 2; dv(1) = 2;
Matrix a (dv);

This can be used on all matrix and array types

• Define the number of rows and columns in the matrix. For example

Matrix a (2, 2)

However, this constructor can only be used with the matrix types.

These types all share a number of basic methods and operators, a selection of which
include

[Method]T& operator () (octave idx type)
[Method]T& elem (octave idx type)

The () operator or elem method allow the values of the matrix or array to be read or
set. These can take a single argument, which is of type octave_idx_type, that is the
index into the matrix or array. Additionally, the matrix type allows two argument
versions of the () operator and elem method, giving the row and column index of the
value to obtain or set.

Note that these functions do significant error checking and so in some circumstances the
user might prefer to access the data of the array or matrix directly through the fortran vec
method discussed below.

[Method]octave_idx_type nelem (void) const
The total number of elements in the matrix or array.

[Method]size_t byte_size (void) const
The number of bytes used to store the matrix or array.

[Method]dim_vector dims (void) const
The dimensions of the matrix or array in value of type dim vector.

[Method]void resize (const dim vector&)
A method taking either an argument of type dim_vector, or in the case of a matrix
two arguments of type octave_idx_type defining the number of rows and columns
in the matrix.

[Method]T* fortran_vec (void)
This method returns a pointer to the underlying data of the matrix or a array so that
it can be manipulated directly, either within Octave or by an external library.

Operators such an +, -, or * can be used on the majority of the above types. In addition
there are a number of methods that are of interest only for matrices such as transpose,
hermitian, solve, etc.

The typical way to extract a matrix or array from the input arguments of DEFUN_DLD
function is as follows



562 GNU Octave

#include <octave/oct.h>

DEFUN_DLD (addtwomatrices, args, , "Add A to B")
{
int nargin = args.length ();
if (nargin != 2)
print_usage ();

else
{

NDArray A = args(0).array_value ();
NDArray B = args(1).array_value ();
if (! error_state)
return octave_value (A + B);

}
return octave_value_list ();

}

To avoid segmentation faults causing Octave to abort, this function explicitly checks
that there are sufficient arguments available before accessing these arguments. It then
obtains two multi-dimensional arrays of type NDArray and adds these together. Note that
the array value method is called without using the is_matrix_type type, and instead the
error state is checked before returning A + B. The reason to prefer this is that the arguments
might be a type that is not an NDArray, but it would make sense to convert it to one. The
array_value method allows this conversion to be performed transparently if possible, and
sets error_state if it is not.

A + B, operating on two NDArray’s returns an NDArray, which is cast to an octave_value
on the return from the function. An example of the use of this demonstration function is

addtwomatrices (ones (2, 2), ones (2, 2))
⇒ 2 2

2 2

A list of the basic Matrix and Array types, the methods to extract these from an
octave_value and the associated header is listed below.
RowVector row_vector_value ‘dRowVector.h’
ComplexRowVector complex_row_vector_value ‘CRowVector.h’
ColumnVector column_vector_value ‘dColVector.h’
ComplexColumnVector complex_column_vector_value ‘CColVector.h’
Matrix matrix_value ‘dMatrix.h’
ComplexMatrix complex_matrix_value ‘CMatrix.h’
boolMatrix bool_matrix_value ‘boolMatrix.h’
charMatrix char_matrix_value ‘chMatrix.h’
NDArray array_value ‘dNDArray.h’
ComplexNDArray complex_array_value ‘CNDArray.h’
boolNDArray bool_array_value ‘boolNDArray.h’
charNDArray char_array_value ‘charNDArray.h’
int8NDArray int8_array_value ‘int8NDArray.h’
int16NDArray int16_array_value ‘int16NDArray.h’
int32NDArray int32_array_value ‘int32NDArray.h’
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int64NDArray int64_array_value ‘int64NDArray.h’
uint8NDArray uint8_array_value ‘uint8NDArray.h’
uint16NDArray uint16_array_value ‘uint16NDArray.h’
uint32NDArray uint32_array_value ‘uint32NDArray.h’
uint64NDArray uint64_array_value ‘uint64NDArray.h’

A.1.3 Character Strings in Oct-Files

In Octave a character string is just a special Array class. Consider the example

#include <octave/oct.h>

DEFUN_DLD (stringdemo, args, , "String Demo")
{
int nargin = args.length();
octave_value_list retval;

if (nargin != 1)
print_usage ();

else
{

charMatrix ch = args(0).char_matrix_value ();

if (! error_state)
{

if (args(0).is_sq_string ())
retval(1) = octave_value (ch, true);

else
retval(1) = octave_value (ch, true, ’\’’);

octave_idx_type nr = ch.rows();
for (octave_idx_type i = 0; i < nr / 2; i++)
{
std::string tmp = ch.row_as_string (i);
ch.insert (ch.row_as_string(nr-i-1).c_str(),

i, 0);
ch.insert (tmp.c_str(), nr-i-1, 0);

}
retval(0) = octave_value (ch, true);

}
}

return retval;
}

An example of the use of this function is
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s0 = ["First String"; "Second String"];
[s1,s2] = stringdemo (s0)
⇒ s1 = Second String

First String

⇒ s2 = First String
Second String

typeinfo (s2)
⇒ sq_string
typeinfo (s1)
⇒ string

One additional complication of strings in Octave is the difference between single quoted
and double quoted strings. To find out if an octave_value contains a single or double
quoted string an example is

if (args(0).is_sq_string ())
octave_stdout <<
"First argument is a singularly quoted string\n";

else if (args(0).is_dq_string ())
octave_stdout <<
"First argument is a doubly quoted string\n";

Note however, that both types of strings are represented by the charNDArray type, and
so when assigning to an octave_value, the type of string should be specified. For example

octave_value_list retval;
charNDArray c;
...
// Create single quoted string
retval(1) = octave_value (ch, true, ’\’’);

// Create a double quoted string
retval(0) = octave_value (ch, true);

A.1.4 Cell Arrays in Oct-Files

Octave’s cell type is equally accessible within oct-files. A cell array is just an array of
octave_values, and so each element of the cell array can then be treated just like any
other octave_value. A simple example is
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#include <octave/oct.h>
#include <octave/Cell.h>

DEFUN_DLD (celldemo, args, , "Cell Demo")
{
octave_value_list retval;
int nargin = args.length ();

if (nargin != 1)
print_usage ();

else
{

Cell c = args (0).cell_value ();
if (! error_state)
for (octave_idx_type i = 0; i < c.nelem (); i++)

retval(i) = c.elem (i);
}

return retval;
}

Note that cell arrays are used less often in standard oct-files and so the ‘Cell.h’ header
file must be explicitly included. The rest of this example extracts the octave_values one
by one from the cell array and returns be as individual return arguments. For example
consider

[b1, b2, b3] = celldemo ({1, [1, 2], "test"})
⇒
b1 = 1
b2 =

1 2

b3 = test

A.1.5 Structures in Oct-Files

A structure in Octave is map between a number of fields represented and their values. The
Standard Template Library map class is used, with the pair consisting of a std::string
and an octave Cell variable.

A simple example demonstrating the use of structures within oct-files is
#include <octave/oct.h>
#include <octave/ov-struct.h>

DEFUN_DLD (structdemo, args, , "Struct demo.")
{
int nargin = args.length ();
octave_value retval;
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if (nargin != 2)
print_usage ();

else
{

Octave_map arg0 = args(0).map_value ();
std::string arg1 = args(1).string_value ();

if (! error_state && arg0.contains (arg1))
{

// The following two lines might be written as
// octave_value tmp;
// for (Octave_map::iterator p0 =
// arg0.begin();
// p0 != arg0.end(); p0++ )
// if (arg0.key (p0) == arg1)
// {
// tmp = arg0.contents (p0) (0);
// break;
// }
// though using seek is more concise.
Octave_map::const_iterator p1 = arg0.seek (arg1);
octave_value tmp = arg0.contents(p1)(0);
Octave_map st;
st.assign ("selected", tmp);
retval = octave_value (st);

}
}

return retval;
}

An example of its use is
x.a = 1; x.b = "test"; x.c = [1, 2];
structdemo (x, "b")
⇒ selected = test

The commented code above demonstrates how to iterate over all of the fields of the
structure, where as the following code demonstrates finding a particular field in a more
concise manner.

As can be seen the contents method of the Octave_map class returns a Cell which allows
structure arrays to be represented. Therefore, to obtain the underlying octave_value we
write

octave_value tmp = arg0.contents (p1) (0);

where the trailing (0) is the () operator on the Cell object. We can equally iterate of
the elements of the Cell array to address the elements of the structure array.

A.1.6 Sparse Matrices in Oct-Files

There are three classes of sparse objects that are of interest to the user.
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SparseMatrix
A double precision sparse matrix class

SparseComplexMatrix
A complex sparse matrix class

SparseBoolMatrix
A boolean sparse matrix class

All of these classes inherit from the Sparse<T> template class, and so all have similar
capabilities and usage. The Sparse<T> class was based on Octave Array<T> class, and so
users familiar with Octave’s Array classes will be comfortable with the use of the sparse
classes.

The sparse classes will not be entirely described in this section, due to their similarity
with the existing Array classes. However, there are a few differences due the different nature
of sparse objects, and these will be described. Firstly, although it is fundamentally possible
to have N-dimensional sparse objects, the Octave sparse classes do not allow them at this
time. So all operations of the sparse classes must be 2-dimensional. This means that in fact
SparseMatrix is similar to Octave’s Matrix class rather than its NDArray class.

A.1.6.1 The Differences between the Array and Sparse Classes

The number of elements in a sparse matrix is considered to be the number of non-zero
elements rather than the product of the dimensions. Therefore

SparseMatrix sm;
...
int nel = sm.nelem ();

returns the number of non-zero elements. If the user really requires the number of
elements in the matrix, including the non-zero elements, they should use numel rather than
nelem. Note that for very large matrices, where the product of the two dimensions is
larger than the representation of an unsigned int, then numel can overflow. An example is
speye(1e6) which will create a matrix with a million rows and columns, but only a million
non-zero elements. Therefore the number of rows by the number of columns in this case is
more than two hundred times the maximum value that can be represented by an unsigned
int. The use of numel should therefore be avoided useless it is known it won’t overflow.

Extreme care must be take with the elem method and the "()" operator, which perform
basically the same function. The reason is that if a sparse object is non-const, then Octave
will assume that a request for a zero element in a sparse matrix is in fact a request to create
this element so it can be filled. Therefore a piece of code like

SparseMatrix sm;
...
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << sm(i,j)

<< std::endl;

is a great way of turning the sparse matrix into a dense one, and a very slow way at that
since it reallocates the sparse object at each zero element in the matrix.
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An easy way of preventing the above from happening is to create a temporary constant
version of the sparse matrix. Note that only the container for the sparse matrix will be
copied, while the actual representation of the data will be shared between the two versions
of the sparse matrix. So this is not a costly operation. For example, the above would
become

SparseMatrix sm;
...
const SparseMatrix tmp (sm);
for (int j = 0; j < nc; j++)
for (int i = 0; i < nr; i++)
std::cerr << " (" << i << "," << j << "): " << tmp(i,j)

<< std::endl;

Finally, as the sparse types aren’t just represented as a contiguous block of memory,
the fortran_vec method of the Array<T> is not available. It is however replaced by three
separate methods ridx, cidx and data, that access the raw compressed column format
that the Octave sparse matrices are stored in. Additionally, these methods can be used in
a manner similar to elem, to allow the matrix to be accessed or filled. However, in that
case it is up to the user to respect the sparse matrix compressed column format discussed
previous.

A.1.6.2 Creating Sparse Matrices in Oct-Files

You have several alternatives for creating a sparse matrix. You can first create the data as
three vectors representing the row and column indexes and the data, and from those create
the matrix. Or alternatively, you can create a sparse matrix with the appropriate amount of
space and then fill in the values. Both techniques have their advantages and disadvantages.

Here is an example of how to create a small sparse matrix with the first technique

int nz = 4, nr = 3, nc = 4;

ColumnVector ridx (nz);
ColumnVector cidx (nz);
ColumnVector data (nz);

ridx(0) = 0; ridx(1) = 0; ridx(2) = 1; ridx(3) = 2;
cidx(0) = 0; cidx(1) = 1; cidx(2) = 3; cidx(3) = 3;
data(0) = 1; data(1) = 2; data(2) = 3; data(3) = 4;

SparseMatrix sm (data, ridx, cidx, nr, nc);

which creates the matrix given in section Section 21.1.1 [Storage of Sparse Matrices],
page 343. Note that the compressed matrix format is not used at the time of the cre-
ation of the matrix itself, however it is used internally.

As previously mentioned, the values of the sparse matrix are stored in increasing column-
major ordering. Although the data passed by the user does not need to respect this require-
ment, the pre-sorting the data significantly speeds up the creation of the sparse matrix.
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The disadvantage of this technique of creating a sparse matrix is that there is a brief time
where two copies of the data exists. Therefore for extremely memory constrained problems
this might not be the right technique to create the sparse matrix.

The alternative is to first create the sparse matrix with the desired number of non-zero
elements and then later fill those elements in. The easiest way to do this is

int nz = 4, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, nz);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;

That creates the same matrix as previously. Again, although it is not strictly necessary,
it is significantly faster if the sparse matrix is created in this manner that the elements are
added in column-major ordering. The reason for this is that if the elements are inserted
at the end of the current list of known elements then no element in the matrix needs to
be moved to allow the new element to be inserted. Only the column indexes need to be
updated.

There are a few further points to note about this technique of creating a sparse matrix.
Firstly, it is possible to create a sparse matrix with fewer elements than are actually inserted
in the matrix. Therefore

int nz = 4, nr = 3, nc = 4;
SparseMatrix sm (nr, nc, 0);
sm(0,0) = 1; sm(0,1) = 2; sm(1,3) = 3; sm(2,3) = 4;

is perfectly valid. However it is a very bad idea. The reason is that as each new element is
added to the sparse matrix the space allocated to it is increased by reallocating the memory.
This is an expensive operation, that will significantly slow this means of creating a sparse
matrix. Furthermore, it is possible to create a sparse matrix with too much storage, so
having nz above equaling 6 is also valid. The disadvantage is that the matrix occupies more
memory than strictly needed.

It is not always easy to know the number of non-zero elements prior to filling a matrix.
For this reason the additional storage for the sparse matrix can be removed after its creation
with the maybe compress function. Furthermore, the maybe compress can deallocate the
unused storage, but it can equally remove zero elements from the matrix. The removal of
zero elements from the matrix is controlled by setting the argument of the maybe compress
function to be ‘true’. However, the cost of removing the zeros is high because it implies
resorting the elements. Therefore, if possible it is better is the user doesn’t add the zeros
in the first place. An example of the use of maybe compress is

int nz = 6, nr = 3, nc = 4;

SparseMatrix sm1 (nr, nc, nz);
sm1(0,0) = 1; sm1(0,1) = 2; sm1(1,3) = 3; sm1(2,3) = 4;
sm1.maybe_compress (); // No zero elements were added

SparseMatrix sm2 (nr, nc, nz);
sm2(0,0) = 1; sm2(0,1) = 2; sm(0,2) = 0; sm(1,2) = 0;
sm1(1,3) = 3; sm1(2,3) = 4;
sm2.maybe_compress (true); // Zero elements were added
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The use of the maybe compress function should be avoided if possible, as it will slow
the creation of the matrices.

A third means of creating a sparse matrix is to work directly with the data in compressed
row format. An example of this technique might be

octave_value arg;
...
int nz = 6, nr = 3, nc = 4; // Assume we know the max no nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();

int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
{
for (int i = 0; i < nr; i++)

{
double tmp = foo (m(i,j));
if (tmp != 0.)

{
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;

}
}

sm.cidx(j+1) = ii;
}
sm.maybe_compress (); // If don’t know a-priori

// the final no of nz.

which is probably the most efficient means of creating the sparse matrix.
Finally, it might sometimes arise that the amount of storage initially created is insuffi-

cient to completely store the sparse matrix. Therefore, the method change_capacity exists
to reallocate the sparse memory. The above example would then be modified as

octave_value arg;
...
int nz = 6, nr = 3, nc = 4; // Assume we know the max no nz
SparseMatrix sm (nr, nc, nz);
Matrix m = arg.matrix_value ();

int ii = 0;
sm.cidx (0) = 0;
for (int j = 1; j < nc; j++)
{
for (int i = 0; i < nr; i++)

{
double tmp = foo (m(i,j));
if (tmp != 0.)
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{
if (ii == nz)
{

nz += 2; // Add 2 more elements
sm.change_capacity (nz);

}
sm.data(ii) = tmp;
sm.ridx(ii) = i;
ii++;

}
}

sm.cidx(j+1) = ii;
}
sm.maybe_mutate (); // If don’t know a-priori

// the final no of nz.

Note that both increasing and decreasing the number of non-zero elements in a sparse
matrix is expensive, as it involves memory reallocation. Also as parts of the matrix, though
not its entirety, exist as the old and new copy at the same time, additional memory is
needed. Therefore if possible this should be avoided.

A.1.6.3 Using Sparse Matrices in Oct-Files

Most of the same operators and functions on sparse matrices that are available from the
Octave are equally available with oct-files. The basic means of extracting a sparse matrix
from an octave_value and returning them as an octave_value, can be seen in the following
example

octave_value_list retval;

SparseMatrix sm = args(0).sparse_matrix_value ();
SparseComplexMatrix scm =

args(1).sparse_complex_matrix_value ();
SparseBoolMatrix sbm = args(2).sparse_bool_matrix_value ();
...
retval(2) = sbm;
retval(1) = scm;
retval(0) = sm;

The conversion to an octave-value is handled by the sparse octave_value constructors,
and so no special care is needed.

A.1.7 Accessing Global Variables in Oct-Files

Global variables allow variables in the global scope to be accessed. Global variables can
easily be accessed with oct-files using the support functions get_global_value and set_
global_value. get_global_value takes two arguments, the first is a string representing
the variable name to obtain. The second argument is a boolean argument specifying what
to do in the case that no global variable of the desired name is found. An example of the
use of these two functions is

#include <octave/oct.h>
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DEFUN_DLD (globaldemo, args, , "Global demo.")
{
int nargin = args.length ();
octave_value retval;

if (nargin != 1)
print_usage ();

else
{

std::string s = args(0).string_value ();
if (! error_state)
{

octave_value tmp = get_global_value (s, true);
if (tmp.is_defined ())
retval = tmp;

else
retval = "Global variable not found";

set_global_value ("a", 42.0);
}

}
return retval;

}

An example of its use is

global a b
b = 10;
globaldemo ("b")
⇒ 10
globaldemo ("c")
⇒ "Global variable not found"
num2str (a)
⇒ 42

A.1.8 Calling Octave Functions from Oct-Files

There is often a need to be able to call another octave function from within an oct-file, and
there are many examples of such within octave itself. For example the quad function is an
oct-file that calculates the definite integral by quadrature over a user supplied function.

There are also many ways in which a function might be passed. It might be passed as
one of

1. Function Handle

2. Anonymous Function Handle

3. Inline Function

4. String
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The example below demonstrates an example that accepts all four means of passing a
function to an oct-file.

#include <octave/oct.h>
#include <octave/parse.h>

DEFUN_DLD (funcdemo, args, nargout, "Function Demo")
{
int nargin = args.length();
octave_value_list retval;

if (nargin < 2)
print_usage ();

else
{

octave_value_list newargs;
for (octave_idx_type i = nargin - 1; i > 0; i--)
newargs (i - 1) = args(i);

if (args(0).is_function_handle ()
|| args(0).is_inline_function ())

{
octave_function *fcn = args(0).function_value ();
if (! error_state)
retval = feval (fcn, newargs, nargout);

}
else if (args(0).is_string ())
{

std::string fcn = args (0).string_value ();
if (! error_state)
retval = feval (fcn, newargs, nargout);

}
else
error ("funcdemo: expected string,",

" inline or function handle");
}

return retval;
}

The first argument to this demonstration is the user supplied function and the following
arguments are all passed to the user function.
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funcdemo (@sin,1)
⇒ 0.84147
funcdemo (@(x) sin(x), 1)
⇒ 0.84147
funcdemo (inline ("sin(x)"), 1)
⇒ 0.84147
funcdemo ("sin",1)
⇒ 0.84147
funcdemo (@atan2, 1, 1)
⇒ 0.78540

When the user function is passed as a string, the treatment of the function is different. In
some cases it is necessary to always have the user supplied function as an octave_function
object. In that case the string argument can be used to create a temporary function like

std::octave fcn_name = unique_symbol_name ("__fcn__");
std::string fname = "function y = ";
fname.append (fcn_name);
fname.append ("(x) y = ");
fcn = extract_function (args(0), "funcdemo", fcn_name,

fname, "; endfunction");
...
if (fcn_name.length ())
clear_function (fcn_name);

There are two important things to know in this case. The number of input arguments
to the user function is fixed, and in the above is a single argument, and secondly to avoid
leaving the temporary function in the Octave symbol table it should be cleared after use.

A.1.9 Calling External Code from Oct-Files

Linking external C code to Octave is relatively simple, as the C functions can easily be
called directly from C++. One possible issue is the declarations of the external C functions
might need to be explicitly defined as C functions to the compiler. If the declarations of
the external C functions are in the header foo.h, then the manner in which to ensure that
the C++ compiler treats these declarations as C code is

#ifdef __cplusplus
extern "C"
{
#endif
#include "foo.h"
#ifdef __cplusplus
} /* end extern "C" */
#endif

Calling Fortran code however can pose some difficulties. This is due to differences in the
manner in compilers treat the linking of Fortran code with C or C++ code. Octave supplies
a number of macros that allow consistent behavior across a number of compilers.

The underlying Fortran code should use the XSTOPX function to replace the Fortran STOP
function. XSTOPX uses the Octave exception handler to treat failing cases in the fortran code
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explicitly. Note that Octave supplies its own replacement blas XERBLA function, which uses
XSTOPX.

If the underlying code calls XSTOPX, then the F77_XFCN macro should be used to call
the underlying fortran function. The Fortran exception state can then be checked with
the global variable f77_exception_encountered. If XSTOPX will not be called, then the
F77_FCN macro should be used instead to call the Fortran code.

There is no harm in using F77_XFCN in all cases, except that for Fortran code that is
short running and executes a large number of times, there is potentially an overhead in
doing so. However, if F77_FCN is used with code that calls XSTOP, Octave can generate a
segmentation fault.

An example of the inclusion of a Fortran function in an oct-file is given in the following
example, where the C++ wrapper is

#include <octave/oct.h>
#include <octave/f77-fcn.h>

extern "C"
{
F77_RET_T
F77_FUNC (fortsub, FORTSUB)

(const int&, double*, F77_CHAR_ARG_DECL
F77_CHAR_ARG_LEN_DECL);

}

DEFUN_DLD (fortdemo , args , , "Fortran Demo.")
{
octave_value_list retval;
int nargin = args.length();
if (nargin != 1)
print_usage ();

else
{

NDArray a = args(0).array_value ();
if (! error_state)
{

double *av = a.fortran_vec ();
octave_idx_type na = a.nelem ();
OCTAVE_LOCAL_BUFFER (char, ctmp, 128);

F77_XFCN (fortsub, FORTSUB, (na, av, ctmp
F77_CHAR_ARG_LEN (128)));

retval(1) = std::string (ctmp);
retval(0) = a;

}
}

return retval;
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}

and the fortran function is

subroutine fortsub (n, a, s)
implicit none
character*(*) s
real*8 a(*)
integer*4 i, n, ioerr
do i = 1, n
if (a(i) .eq. 0d0) then

call xstopx (’fortsub: divide by zero’)
else

a(i) = 1d0 / a(i)
endif

enddo
write (unit = s, fmt = ’(a,i3,a,a)’, iostat = ioerr)
$ ’There are ’, n,
$ ’ values in the input vector’, char(0)
if (ioerr .ne. 0) then
call xstopx (’fortsub: error writing string’)

endif
return
end

This example demonstrates most of the features needed to link to an external Fortran
function, including passing arrays and strings, as well as exception handling. An example
of the behavior of this function is

[b, s] = fortdemo (1:3)
⇒
b = 1.00000 0.50000 0.33333
s = There are 3 values in the input vector

[b, s] = fortdemo(0:3)
error: fortsub:divide by zero
error: exception encountered in Fortran subroutine fortsub_
error: fortdemo: error in fortran

A.1.10 Allocating Local Memory in Oct-Files

Allocating memory within an oct-file might seem easy as the C++ new/delete operators can
be used. However, in that case care must be taken to avoid memory leaks. The preferred
manner in which to allocate memory for use locally is to use the OCTAVE_LOCAL_BUFFER
macro. An example of its use is

OCTAVE_LOCAL_BUFFER (double, tmp, len)

that returns a pointer tmp of type double * of length len.
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A.1.11 Input Parameter Checking in Oct-Files

As oct-files are compiled functions they have the possibility of causing Octave to abort
abnormally. It is therefore important that each and every function has the minimum of
parameter checking needed to ensure that Octave behaves well.

The minimum requirement, as previously discussed, is to check the number of input
arguments before using them to avoid referencing a non existent argument. However, it
some case this might not be sufficient as the underlying code imposes further constraints.
For example an external function call might be undefined if the input arguments are not
integers, or if one of the arguments is zero. Therefore, oct-files often need additional input
parameter checking.

There are several functions within Octave that might be useful for the purposes of
parameter checking. These include the methods of the octave value class like is_real_
matrix, etc., but equally include more specialized functions. Some of the more common
ones are demonstrated in the following example

#include <octave/oct.h>

DEFUN_DLD (paramdemo, args, nargout,
"Parameter Check Demo.")

{
int nargin = args.length ();
octave_value retval;

if (nargin != 1)
print_usage();

else if (nargout != 0)
error ("paramdemo: function has no output arguments");

else
{

NDArray m = args(0).array_value();
double min_val = -10.0;
double max_val = 10.0;
octave_stdout << "Properties of input array:\n";
if (m.any_element_is_negative ())
octave_stdout << " includes negative values\n";

if (m.any_element_is_inf_or_nan())
octave_stdout << " includes Inf or NaN values\n";

if (m.any_element_not_one_or_zero())
octave_stdout <<

" includes other values than 1 and 0\n";
if (m.all_elements_are_int_or_inf_or_nan())
octave_stdout <<

" includes only int, Inf or NaN values\n";
if (m.all_integers (min_val, max_val))
octave_stdout <<

" includes only integers in [-10,10]\n";
}
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return retval;
}

and an example of its use is

paramdemo ([1, 2, NaN, Inf])
⇒ Properties of input array:

includes Inf or NaN values
includes other values than 1 and 0
includes only int, Inf or NaN values

A.1.12 Exception and Error Handling in Oct-Files

Another important feature of Octave is its ability to react to the user typing Control-C

even during calculations. This ability is based on the C++ exception handler, where memory
allocated by the C++ new/delete methods are automatically released when the exception is
treated. When writing an oct-file, to allow Octave to treat the user typing Control-C, the
OCTAVE_QUIT macro is supplied. For example

for (octave_idx_type i = 0; i < a.nelem (); i++)
{
OCTAVE_QUIT;
b.elem(i) = 2. * a.elem(i);

}

The presence of the OCTAVE_QUIT macro in the inner loop allows Octave to treat the
user request with the Control-C. Without this macro, the user must either wait for the
function to return before the interrupt is processed, or press Control-C three times to force
Octave to exit.

The OCTAVE_QUIT macro does impose a very small speed penalty, and so for loops that
are known to be small it might not make sense to include OCTAVE_QUIT.

When creating an oct-file that uses an external libraries, the function might spend a
significant portion of its time in the external library. It is not generally possible to use the
OCTAVE_QUIT macro in this case. The alternative in this case is

BEGIN_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;
... some code that calls a "foreign" function ...
END_INTERRUPT_IMMEDIATELY_IN_FOREIGN_CODE;

The disadvantage of this is that if the foreign code allocates any memory internally,
then this memory might be lost during an interrupt, without being deallocated. Therefore,
ideally Octave itself should allocate any memory that is needed by the foreign code, with
either the fortran vec method or the OCTAVE_LOCAL_BUFFER macro.

The Octave unwind protect mechanism (Section 10.8 [The unwind_protect Statement],
page 134) can also be used in oct-files. In conjunction with the exception handling of Octave,
it is important to enforce that certain code is run to allow variables, etc. to be restored
even if an exception occurs. An example of the use of this mechanism is

#include <octave/oct.h>
#include <octave/unwind-prot.h>

void
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err_hand (const char *fmt, ...)
{
// Do nothing!!

}

DEFUN_DLD (unwinddemo, args, nargout, "Unwind Demo")
{
int nargin = args.length();
octave_value retval;
if (nargin < 2)
print_usage ();

else
{

NDArray a = args(0).array_value ();
NDArray b = args(1).array_value ();

if (! error_state)
{

unwind_protect::begin_frame ("Funwinddemo");
unwind_protect_ptr
(current_liboctave_warning_handler);

set_liboctave_warning_handler(err_hand);
retval = octave_value (quotient (a, b));
unwind_protect::run_frame ("Funwinddemo");

}
}

return retval;
}

As can be seen in the example

unwinddemo (1, 0)
⇒ Inf
1 / 0
⇒ warning: division by zero

Inf

The division by zero (and in fact all warnings) is disabled in the unwinddemo function.

A.1.13 Documentation and Test of Oct-Files

The documentation of an oct-file is the fourth string parameter of the DEFUN_DLD macro.
This string can be formatted in the same manner as the help strings for user functions
(Section C.5 [Documentation Tips], page 610), however there are some issue that are par-
ticular to the formatting of help strings within oct-files.

The major issue is that the help string will typically be longer than a single line of text,
and so the formatting of long help strings need to be taken into account. There are several
manners in which to treat this issue, but the most common is illustrated in the following
example
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DEFUN_DLD (do_what_i_want, args, nargout,
"-*- texinfo -*-\n\

@deftypefn {Function File} {} do_what_i_say (@var{n})\n\
A function that does what the user actually wants rather\n\
than what they requested.\n\
@end deftypefn")
{
...
}

where, as can be seen, end line of text within the help string is terminated by \n\ which
is an embedded new-line in the string together with a C++ string continuation character.
Note that the final \ must be the last character on the line.

Octave also includes the ability to embed the test and demonstration code for a function
within the code itself (Appendix B [Test and Demo Functions], page 597). This can be used
from within oct-files (or in fact any file) with certain provisos. Firstly, the test and demo
functions of Octave look for a %! as the first characters on a new-line to identify test and
demonstration code. This is equally a requirement for oct-files. Furthermore the test and
demonstration code must be included in a comment block of the compiled code to avoid it
being interpreted by the compiler. Finally, the Octave test and demonstration code must
have access to the source code of the oct-file and not just the compiled code as the tests
are stripped from the compiled code. An example in an oct-file might be

/*

%!error (sin())
%!error (sin(1,1))
%!assert (sin([1,2]),[sin(1),sin(2)])

*/

A.2 Mex-Files

Octave includes an interface to allow legacy mex-files to be compiled and used with Oc-
tave. This interface can also be used to share code between Octave and non Octave users.
However, as mex-files expose the internal API of an alternative product to Octave, and the
internal structure of Octave is different to this product, a mex-file can never have the same
performance in Octave as the equivalent oct-file. In particular to support the manner in
which mex-files access the variables passed to mex functions, there are a significant number
of additional copies of memory when calling or returning from a mex function. For this
reason, new code should be written using the oct-file interface discussed above if possible.

A.2.1 Getting Started with Mex-Files

The basic command to build a mex-file is either mkoctfile --mex or mex. The first can
either be used from within Octave or from the command line. However, to avoid issues with
the installation of other products, the use of the command mex is limited to within Octave.
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[Function File]mex [options] file . . .
Compile source code written in C, C++, or Fortran, to a MEX file. This is equivalent
to mkoctfile --mex [options] file.

See also: [mkoctfile], page 557.

[Function File]mexext ()
Return the filename extension used for MEX files.

One important difference between the use of mex with other products and with Octave is
that the header file "matrix.h" is implicitly included through the inclusion of "mex.h". This
is to avoid a conflict with the Octave file "Matrix.h" with operating systems and compilers
that don’t distinguish between filenames in upper and lower case

Consider the short example

#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])
{
mxArray *v = mxCreateDoubleMatrix (1, 1, mxREAL);
double *data = mxGetPr (v);
*data = 1.23456789;
plhs[0] = v;

}

This simple example demonstrates the basics of writing a mex-file. The entry point
into the mex-file is defined by mexFunction. Note that the function name is not explicitly
included in the mexFunction and so there can only be a single mexFunction entry point
per-file. Also the name of the function is determined by the name of the mex-file itself.
Therefore if the above function is in the file ‘firstmexdemo.c’, it can be compiled with

mkoctfile --mex firstmexdemo.c

which creates a file ‘firstmexdemo.mex’. The function can then be run from Octave as

firstmexdemo()
⇒ 1.2346

It should be noted that the mex-file contains no help string for the functions it contains.
To document mex-files, there should exist an m-file in the same directory as the mex-file
itself. Taking the above as an example, we would therefore have a file ‘firstmexdemo.m’
that might contain the text

%FIRSTMEXDEMO Simple test of the functionality of a mex-file.

In this case, the function that will be executed within Octave will be given by the mex-
file, while the help string will come from the m-file. This can also be useful to allow a sample
implementation of the mex-file within the Octave language itself for testing purposes.

Although we cannot have multiple entry points into a single mex-file, we can use the
mexFunctionName function to determine what name the mex-file was called with. This can
be used to alter the behavior of the mex-file based on the function name. For example if
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#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])
{
const char *nm;
nm = mexFunctionName ();
mexPrintf ("You called function: %s\n", nm);
if (strcmp (nm, "myfunc") == 0)
mexPrintf ("This is the principal function\n", nm);

return;
}

is in file ‘myfunc.c’, and it is compiled with

mkoctfile --mex myfunc.c
ln -s myfunc.mex myfunc2.mex

Then as can be seen by

myfunc()
⇒ You called function: myfunc

This is the principal function
myfunc2()
⇒ You called function: myfunc2

the behavior of the mex-file can be altered depending on the functions name.

Allow the user should only include mex.h in their code, Octave declares additional func-
tions, typedefs, etc., available to the user to write mex-files in the headers mexproto.h and
mxarray.h.

A.2.2 Working with Matrices and Arrays in Mex-Files

The basic mex type of all variables is mxArray. All variables, such as matrices, cell arrays or
structures are all stored in this basic type, and this type serves basically the same purpose
as the octave value class in oct-files. That is it acts as a container for the more specialized
types.

The mxArray structure contains at a minimum, the variable it represents name, its
dimensions, its type and whether the variable is real or complex. It can however contain
a number of additional fields depending on the type of the mxArray. There are a number
of functions to create mxArray structures, including mxCreateCellArray, mxCreateSparse
and the generic mxCreateNumericArray.

The basic functions to access the data contained in an array is mxGetPr. As the mex
interface assumes that the real and imaginary parts of a complex array are stored separately,
there is an equivalent function mxGetPi that get the imaginary part. Both of these functions
are for use only with double precision matrices. There also exists the generic function
mxGetData and mxGetImagData that perform the same operation on all matrix types. For
example
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mxArray *m;
mwSize *dims;
UINT32_T *pr;

dims = (mwSize *) mxMalloc (2 * sizeof(mwSize));
dims[0] = 2;
dims[1] = 2;
m = mxCreateNumericArray (2, dims, mxUINT32_CLASS, mxREAL);
pr = = (UINT32_T *) mxGetData (m);

There are also the functions mxSetPr, etc., that perform the inverse, and set the data of
an Array to use the block of memory pointed to by the argument of mxSetPr.

Note the type mwSize used above, and mwIndex are defined as the native precision of
the indexing in Octave on the platform on which the mex-file is built. This allows both 32-
and 64-bit platforms to support mex-files. mwSize is used to define array dimension and
maximum number or elements, while mwIndex is used to define indexing into arrays.

An example that demonstration how to work with arbitrary real or complex double
precision arrays is given by the file ‘mypow2.c’ as given below.

#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])
{
mwIndex i;
mwSize n;
double *vri, *vro;

if (nrhs != 1 || ! mxIsNumeric (prhs[0]))
mexErrMsgTxt ("expects matrix");

n = mxGetNumberOfElements (prhs[0]);
plhs[0] = (mxArray *) mxCreateNumericArray
(mxGetNumberOfDimensions (prhs[0]),
mxGetDimensions (prhs[0]), mxGetClassID (prhs[0]),
mxIsComplex (prhs[0]));

vri = mxGetPr (prhs[0]);
vro = mxGetPr (plhs[0]);

if (mxIsComplex (prhs[0]))
{

double *vii, *vio;
vii = mxGetPi (prhs[0]);
vio = mxGetPi (plhs[0]);

for (i = 0; i < n; i++)
{



584 GNU Octave

vro [i] = vri [i] * vri [i] - vii [i] * vii [i];
vio [i] = 2 * vri [i] * vii [i];

}
}

else
{

for (i = 0; i < n; i++)
vro [i] = vri [i] * vri [i];

}
}

with an example of its use
b = randn(4,1) + 1i * randn(4,1);
all(b.^2 == mypow2(b))
⇒ 1

The example above uses the functions mxGetDimensions, mxGetNumberOfElements, and
mxGetNumberOfDimensions to work with the dimensions of multi-dimensional arrays. The
functions mxGetM, and mxGetN are also available to find the number of rows and columns in
a matrix.

A.2.3 Character Strings in Mex-Files

As mex-files do not make the distinction between single and double quoted strings within
Octave, there is perhaps less complexity in the use of strings and character matrices in
mex-files. An example of their use, that parallels the demo in ‘stringdemo.cc’, is given in
the file ‘mystring.c’, as seen below.

#include <string.h>
#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])
{
mwIndex i, j;
mwSize m, n;
mxChar *pi, *po;

if (nrhs != 1 || ! mxIsChar (prhs[0]) ||
mxGetNumberOfDimensions (prhs[0]) > 2)

mexErrMsgTxt ("expecting char matrix");

m = mxGetM (prhs[0]);
n = mxGetN (prhs[0]);
pi = mxGetChars (prhs[0]);
plhs[0] = mxCreateNumericMatrix (m, n, mxCHAR_CLASS,

mxREAL);
po = mxGetChars (plhs[0]);
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for (j = 0; j < n; j++)
for (i = 0; i < m; i++)

po [j*m + m - 1 - i] = pi [j*m + i];
}

An example of its expected output is

mystring(["First String"; "Second String"])
⇒ s1 = Second String

First String

Other functions in the mex interface for handling character strings are mxCreateString,
mxArrayToString, and mxCreateCharMatrixFromStrings. In a mex-file, a character string
is considered to be a vector rather than a matrix. This is perhaps an arbitrary distinction
as the data in the mxArray for the matrix is consecutive in any case.

A.2.4 Cell Arrays with Mex-Files

We can perform exactly the same operations in Cell arrays in mex-files as we can in oct-files.
An example that reduplicates the functional of the ‘celldemo.cc’ oct-file in a mex-file is
given by ‘mycell.c’ as below

#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])
{
mwSize n;
mwIndex i;

if (nrhs != 1 || ! mxIsCell (prhs[0]))
mexErrMsgTxt ("expects cell");

n = mxGetNumberOfElements (prhs[0]);
n = (n > nlhs ? nlhs : n);

for (i = 0; i < n; i++)
plhs[i] = mxDuplicateArray (mxGetCell (prhs[0], i));

}

which as can be seen below has exactly the same behavior as the oct-file version.

[b1, b2, b3] = mycell ({1, [1, 2], "test"})
⇒
b1 = 1
b2 =

1 2

b3 = test
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Note in the example the use of the mxDuplicateArray function. This is needed as the
mxArray pointer returned by mxGetCell might be deallocated. The inverse function to
mxGetCell is mcSetCell and is defined as

void mxSetCell (mxArray *ptr, int idx, mxArray *val);

Finally, to create a cell array or matrix, the appropriate functions are
mxArray *mxCreateCellArray (int ndims, const int *dims);
mxArray *mxCreateCellMatrix (int m, int n);

A.2.5 Structures with Mex-Files

The basic function to create a structure in a mex-file is mxCreateStructMatrix, which
creates a structure array with a two dimensional matrix, or mxCreateStructArray.

mxArray *mxCreateStructArray (int ndims, int *dims,
int num_keys,
const char **keys);

mxArray *mxCreateStructMatrix (int rows, int cols,
int num_keys,
const char **keys);

Accessing the fields of the structure can then be performed with the mxGetField and
mxSetField or alternatively with the mxGetFieldByNumber and mxSetFieldByNumber func-
tions.

mxArray *mxGetField (const mxArray *ptr, mwIndex index,
const char *key);

mxArray *mxGetFieldByNumber (const mxArray *ptr,
mwIndex index, int key_num);

void mxSetField (mxArray *ptr, mwIndex index,
const char *key, mxArray *val);

void mxSetFieldByNumber (mxArray *ptr, mwIndex index,
int key_num, mxArray *val);

A difference between the oct-file interface to structures and the mex-file version is that
the functions to operate on structures in mex-files directly include an index over the ele-
ments of the arrays of elements per field. Whereas the oct-file structure includes a Cell
Array per field of the structure.

An example that demonstrates the use of structures in mex-file can be found in the file
‘mystruct.c’, as seen below

#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])
{
int i;
mwIndex j;
mxArray *v;
const char *keys[] = { "this", "that" };
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if (nrhs != 1 || ! mxIsStruct (prhs[0]))
mexErrMsgTxt ("expects struct");

for (i = 0; i < mxGetNumberOfFields (prhs[0]); i++)
for (j = 0; j < mxGetNumberOfElements (prhs[0]); j++)

{
mexPrintf ("field %s(%d) = ",

mxGetFieldNameByNumber (prhs[0], i), j);
v = mxGetFieldByNumber (prhs[0], j, i);
mexCallMATLAB (0, 0, 1, &v, "disp");

}

v = mxCreateStructMatrix (2, 2, 2, keys);

mxSetFieldByNumber (v, 0, 0, mxCreateString ("this1"));
mxSetFieldByNumber (v, 0, 1, mxCreateString ("that1"));
mxSetFieldByNumber (v, 1, 0, mxCreateString ("this2"));
mxSetFieldByNumber (v, 1, 1, mxCreateString ("that2"));
mxSetFieldByNumber (v, 2, 0, mxCreateString ("this3"));
mxSetFieldByNumber (v, 2, 1, mxCreateString ("that3"));
mxSetFieldByNumber (v, 3, 0, mxCreateString ("this4"));
mxSetFieldByNumber (v, 3, 1, mxCreateString ("that4"));

if (nlhs)
plhs[0] = v;

}

An example of the behavior of this function within Octave is then

a(1).f1 = "f11"; a(1).f2 = "f12";
a(2).f1 = "f21"; a(2).f2 = "f22";
b = mystruct(a)
⇒ field f1(0) = f11

field f1(1) = f21
field f2(0) = f12
field f2(1) = f22
b =
{

this =

(,
[1] = this1
[2] = this2
[3] = this3
[4] = this4

,)

that =
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(,
[1] = that1
[2] = that2
[3] = that3
[4] = that4

,)

}

A.2.6 Sparse Matrices with Mex-Files

The Octave format for sparse matrices is identical to the mex format in that it is a com-
pressed column sparse format. Also in both, sparse matrices are required to be two-
dimensional. The only difference is that the real and imaginary parts of the matrix are
stored separately.

The mex-file interface, as well as using mxGetM, mxGetN, mxSetM, mxSetN, mxGetPr,
mxGetPi, mxSetPr and mxSetPi, the mex-file interface supplies the functions

mwIndex *mxGetIr (const mxArray *ptr);
mwIndex *mxGetJc (const mxArray *ptr);
mwSize mxGetNzmax (const mxArray *ptr);

void mxSetIr (mxArray *ptr, mwIndex *ir);
void mxSetJc (mxArray *ptr, mwIndex *jc);
void mxSetNzmax (mxArray *ptr, mwSize nzmax);

mxGetNzmax gets the maximum number of elements that can be stored in the sparse matrix.
This is not necessarily the number of non-zero elements in the sparse matrix. mxGetJc
returns an array with one additional value than the number of columns in the sparse matrix.
The difference between consecutive values of the array returned by mxGetJc define the
number of non-zero elements in each column of the sparse matrix. Therefore

mwSize nz, n;
mwIndex *Jc;
mxArray *m;
...
n = mxGetN (m);
Jc = mxGetJc (m);
nz = Jc[n];

returns the actual number of non-zero elements stored in the matrix in nz. As the arrays
returned by mxGetPr and mxGetPi only contain the non-zero values of the matrix, we also
need a pointer to the rows of the non-zero elements, and this is given by mxGetIr. A
complete example of the use of sparse matrices in mex-files is given by the file ‘mysparse.c’
as seen below

#include "mex.h"

void
mexFunction (int nlhs, mxArray *plhs[], int nrhs,
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const mxArray *prhs[])
{
mwSize n, m, nz;
mxArray *v;
mwIndex i;
double *pr, *pi;
double *pr2, *pi2;
mwIndex *ir, *jc;
mwIndex *ir2, *jc2;

if (nrhs != 1 || ! mxIsSparse (prhs[0]))
mexErrMsgTxt ("expects sparse matrix");

m = mxGetM (prhs [0]);
n = mxGetN (prhs [0]);
nz = mxGetNzmax (prhs [0]);

if (mxIsComplex (prhs[0]))
{

mexPrintf ("Matrix is %d-by-%d complex",
" sparse matrix", m, n);

mexPrintf (" with %d elements\n", nz);

pr = mxGetPr (prhs[0]);
pi = mxGetPi (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);

i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) =",

ir[nz-1]+ 1, i);
mexPrintf (" (%g, %g)\n", pr[nz-1], pi[nz-1]);

v = mxCreateSparse (m, n, nz, mxCOMPLEX);
pr2 = mxGetPr (v);
pi2 = mxGetPi (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)
{

pr2[i] = 2 * pr[i];
pi2[i] = 2 * pi[i];
ir2[i] = ir[i];

}
for (i = 0; i < n + 1; i++)
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jc2[i] = jc[i];

if (nlhs > 0)
plhs[0] = v;

}
else if (mxIsLogical (prhs[0]))
{

bool *pbr, *pbr2;
mexPrintf ("Matrix is %d-by-%d logical",

" sparse matrix", m, n);
mexPrintf (" with %d elements\n", nz);

pbr = mxGetLogicals (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);

i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) = %d\n",

ir[nz-1]+ 1, i, pbr[nz-1]);

v = mxCreateSparseLogicalMatrix (m, n, nz);
pbr2 = mxGetLogicals (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)
{

pbr2[i] = pbr[i];
ir2[i] = ir[i];

}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];

if (nlhs > 0)
plhs[0] = v;

}
else
{

mexPrintf ("Matrix is %d-by-%d real",
" sparse matrix", m, n);

mexPrintf (" with %d elements\n", nz);

pr = mxGetPr (prhs[0]);
ir = mxGetIr (prhs[0]);
jc = mxGetJc (prhs[0]);
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i = n;
while (jc[i] == jc[i-1] && i != 0) i--;
mexPrintf ("last non-zero element (%d, %d) = %g\n",

ir[nz-1]+ 1, i, pr[nz-1]);

v = mxCreateSparse (m, n, nz, mxREAL);
pr2 = mxGetPr (v);
ir2 = mxGetIr (v);
jc2 = mxGetJc (v);

for (i = 0; i < nz; i++)
{

pr2[i] = 2 * pr[i];
ir2[i] = ir[i];

}
for (i = 0; i < n + 1; i++)
jc2[i] = jc[i];

if (nlhs > 0)
plhs[0] = v;

}
}

A.2.7 Calling Other Functions in Mex-Files

It is also possible call other Octave functions from within a mex-file using mexCallMATLAB.
An example of the use of mexCallMATLAB can be see in the example below

#include "mex.h"

void
mexFunction (int nlhs, mxArray* plhs[], int nrhs,

const mxArray* prhs[])
{
char *str;

mexPrintf ("Hello, World!\n");

mexPrintf ("I have %d inputs and %d outputs\n", nrhs,
nlhs);

if (nrhs < 1 || ! mxIsString (prhs[0]))
mexErrMsgTxt ("function name expected");

str = mxArrayToString (prhs[0]);

mexPrintf ("I’m going to call the function %s\n", str);
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mexCallMATLAB (nlhs, plhs, nrhs-1, prhs+1, str);

mxFree (str);
}

If this code is in the file ‘myfeval.c’, and is compiled to ‘myfeval.mex’, then an example
of its use is

myfeval("sin", 1)
a = myfeval("sin", 1)
⇒ Hello, World!

I have 2 inputs and 1 outputs
I’m going to call the interpreter function sin
a = 0.84147

Note that it is not possible to use function handles or inline functions within a mex-file.

A.3 Standalone Programs

The libraries Octave itself uses, can be utilized in standalone applications. These appli-
cations then have access, for example, to the array and matrix classes as well as to all
the Octave algorithms. The following C++ program, uses class Matrix from liboctave.a or
liboctave.so.

#include <iostream>
#include <octave/oct.h>

int
main (void)
{
std::cout << "Hello Octave world!\n";
int n = 2;
Matrix a_matrix = Matrix (n, n);
for (octave_idx_type i = 0; i < n; i++)
{

for (octave_idx_type j = 0; j < n; j++)
{

a_matrix (i, j) = (i + 1) * 10 + (j + 1);
}

}
std::cout << a_matrix;
return 0;

}

mkoctfile can then be used to build a standalone application with a command like

$ mkoctfile --link-stand-alone standalone.cc -o standalone
$ ./standalone
Hello Octave world!
11 12
21 22

$
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Note that the application hello will be dynamically linked against the octave libraries
and any octave support libraries. The above allows the Octave math libraries to be used
by an application. It does not however allow the script files, oct-files or builtin functions
of Octave to be used by the application. To do that the Octave interpreter needs to be
initialized first. An example of how to do this can then be seen in the code
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#include <iostream>
#include <octave/oct.h>
#include <octave/octave.h>
#include <octave/parse.h>

int
main (void)
{
string_vector argv (2);
argv(0) = "embedded";
argv(1) = "-q";

octave_main (2, argv.c_str_vec(), 1);

octave_idx_type n = 2;
Matrix a_matrix = Matrix (1, 2);

std::cout << "GCD of [";
for (octave_idx_type i = 0; i < n; i++)
{

a_matrix (i) = 5 * (i + 1);
if (i != 0)
std::cout << ", " << 5 * (i + 2);

else
std::cout << 5 * (i + 2);

}
std::cout << "] is ";

octave_value_list in = octave_value (a_matrix);
octave_value_list out = feval ("gcd", in, 1);

if (!error_state && out.length () > 0)
{

a_matrix = out(0).matrix_value ();
if (a_matrix.numel () == 1)
std::cout << a_matrix(0) << "\n";

else
std::cout << "invalid\n";

}
else
std::cout << "invalid\n";

return 0;
}

which is compiled and run as before as a standalone application with
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$ mkoctfile --link-stand-alone embedded.cc -o embedded
$ ./embedded
GCD of [10, 15] is 5
$
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Appendix B Test and Demo Functions

Octave includes a number of functions to allow the integration of testing and demonstration
code in the source code of the functions themselves.

B.1 Test Functions

[Function File]test name
[Function File]test name quiet|normal|verbose
[Function File]test (’name ’, ’quiet|normal|verbose’, fid )
[Function File]test ([], ’explain’, fid )
[Function File]success = test (. . . )
[Function File][n, max] = test (. . . )
[Function File][code, idx] = test (’name ’,’grabdemo’)

Perform tests from the first file in the loadpath matching name. test can be called
as a command or as a function. Called with a single argument name, the tests are
run interactively and stop after the first error is encountered.
With a second argument the tests which are performed and the amount of output is
selected.

’quiet’ Don’t report all the tests as they happen, just the errors.

’normal’ Report all tests as they happen, but don’t do tests which require user
interaction.

’verbose’ Do tests which require user interaction.

The argument fid can be used to allow batch processing. Errors can be written to
the already open file defined by fid, and hopefully when Octave crashes this file will
tell you what was happening when it did. You can use stdout if you want to see the
results as they happen. You can also give a file name rather than an fid, in which
case the contents of the file will be replaced with the log from the current test.
Called with a single output argument success, test returns true if all of the tests were
successful. Called with two output arguments n and max, the number of successful
tests and the total number of tests in the file name are returned.
If the second argument is the string ’grabdemo’, the contents of the demo blocks are
extracted but not executed. Code for all code blocks is concatenated and returned as
code with idx being a vector of positions of the ends of the demo blocks.
If the second argument is ’explain’, then name is ignored and an explanation of the
line markers used is written to the file fid.

See also: [error], page 161, [assert], page 600, [fail], page 601, [demo], page 601,
[example], page 602.

test scans the named script file looking for lines which start with %!. The prefix is
stripped off and the rest of the line is processed through the Octave interpreter. If the code
generates an error, then the test is said to fail.

Since eval() will stop at the first error it encounters, you must divide your tests up into
blocks, with anything in a separate block evaluated separately. Blocks are introduced by
the keyword test immediately following the %!. For example,
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%!test error ("this test fails!");
%!test "test doesn’t fail. it doesn’t generate an error";

When a test fails, you will see something like:

***** test error (’this test fails!’)
!!!!! test failed
this test fails!

Generally, to test if something works, you want to assert that it produces a correct value.
A real test might look something like

%!test
%! a = [1, 2, 3; 4, 5, 6]; B = [1; 2];
%! expect = [ a ; 2*a ];
%! get = kron (b, a);
%! if (any(size(expect) != size(get)))
%! error ("wrong size: expected %d,%d but got %d,%d",
%! size(expect), size(get));
%! elseif (any(any(expect!=get)))
%! error ("didn’t get what was expected.");
%! endif

To make the process easier, use the assert function. For example, with assert the
previous test is reduced to:

%!test
%! a = [1, 2, 3; 4, 5, 6]; b = [1; 2];
%! assert (kron (b, a), [ a; 2*a ]);

assert can accept a tolerance so that you can compare results absolutely or relatively.
For example, the following all succeed:

%!test assert (1+eps, 1, 2*eps) # absolute error
%!test assert (100+100*eps, 100, -2*eps) # relative error

You can also do the comparison yourself, but still have assert generate the error:

%!test assert (isempty([]))
%!test assert ([ 1,2; 3,4 ] > 0)

Because assert is so frequently used alone in a test block, there is a shorthand form:

%!assert (...)

which is equivalent to:

%!test assert (...)

Sometimes during development there is a test that should work but is known to fail.
You still want to leave the test in because when the final code is ready the test should pass,
but you may not be able to fix it immediately. To avoid unnecessary bug reports for these
known failures, mark the block with xtest rather than test:

%!xtest assert (1==0)
%!xtest fail (’success=1’,’error’))

Another use of xtest is for statistical tests which should pass most of the time but are
known to fail occasionally.
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Each block is evaluated in its own function environment, which means that variables
defined in one block are not automatically shared with other blocks. If you do want to
share variables, then you must declare them as shared before you use them. For example,
the following declares the variable a, gives it an initial value (default is empty), then uses
it in several subsequent tests.

%!shared a

%! a = [1, 2, 3; 4, 5, 6];
%!assert (kron ([1; 2], a), [ a; 2*a ]);
%!assert (kron ([1, 2], a), [ a, 2*a ]);
%!assert (kron ([1,2; 3,4], a), [ a,2*a; 3*a,4*a ]);

You can share several variables at the same time:
%!shared a, b

You can also share test functions:
%!function a = fn(b)
%! a = 2*b;
%!assert (a(2),4);

Note that all previous variables and values are lost when a new shared block is declared.
Error and warning blocks are like test blocks, but they only succeed if the code generates

an error. You can check the text of the error is correct using an optional regular expression
<pattern>. For example:

%!error <passes!> error(’this test passes!’);

If the code doesn’t generate an error, the test fails. For example,
%!error "this is an error because it succeeds.";

produces
***** error "this is an error because it succeeds.";
!!!!! test failed: no error

It is important to automate the tests as much as possible, however some tests require
user interaction. These can be isolated into demo blocks, which if you are in batch mode,
are only run when called with demo or verbose. The code is displayed before it is executed.
For example,

%!demo
%! t=[0:0.01:2*pi]; x=sin(t);
%! plot(t,x);
%! you should now see a sine wave in your figure window

produces
> t=[0:0.01:2*pi]; x=sin(t);
> plot(t,x);
> you should now see a sine wave in your figure window
Press <enter> to continue:

Note that demo blocks cannot use any shared variables. This is so that they can be
executed by themselves, ignoring all other tests.

If you want to temporarily disable a test block, put # in place of the block type. This
creates a comment block which is echoed in the log file, but is not executed. For example:
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%!#demo
%! t=[0:0.01:2*pi]; x=sin(t);
%! plot(t,x);
%! you should now see a sine wave in your figure window

Block type summary:

%!test check that entire block is correct

%!error check for correct error message

%!warning
check for correct warning message

%!demo demo only executes in interactive mode

%!# comment: ignore everything within the block

%!shared x,y,z
declares variables for use in multiple tests

%!function
defines a function value for a shared variable

%!assert (x, y, tol)
shorthand for %!test assert (x, y, tol)

You can also create test scripts for builtins and your own C++ functions. Just put a file
of the function name on your path without any extension and it will be picked up by the
test procedure. You can even embed tests directly in your C++ code:

#if 0
%!test disp(’this is a test’)
#endif

or
/*
%!test disp(’this is a test’)
*/

but then the code will have to be on the load path and the user will have to remember
to type test(’name.cc’). Conversely, you can separate the tests from normal Octave script
files by putting them in plain files with no extension rather than in script files.

[Function File]assert (cond )
[Function File]assert (cond, errmsg, . . . )
[Function File]assert (cond, msg_id, errmsg, . . . )
[Function File]assert (observed,expected )
[Function File]assert (observed,expected,tol )

Produces an error if the condition is not met. assert can be called in three different
ways.

assert (cond)
assert (cond, errmsg, ...)
assert (cond, msg_id, errmsg, ...)

Called with a single argument cond, assert produces an error if cond
is zero. If called with a single argument a generic error message. With
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more than one argument, the additional arguments are passed to the
error function.

assert (observed, expected)
Produce an error if observed is not the same as expected. Note that
observed and expected can be strings, scalars, vectors, matrices, lists or
structures.

assert(observed, expected, tol)
Accept a tolerance when comparing numbers. If tol is positive use it as an
absolute tolerance, will produce an error if abs(observed - expected)
> abs(tol). If tol is negative use it as a relative tolerance, will produce
an error if abs(observed - expected) > abs(tol * expected). If ex-
pected is zero tol will always be used as an absolute tolerance.

See also: [test], page 597.

[Function File]fail (code,pattern )
[Function File]fail (code,’warning’,pattern )

Return true if code fails with an error message matching pattern, otherwise produce
an error. Note that code is a string and if code runs successfully, the error produced
is:

expected error but got none

If the code fails with a different error, the message produced is:

expected <pattern>
but got <text of actual error>

The angle brackets are not part of the output.

Called with three arguments, the behavior is similar to fail(code, pattern), but
produces an error if no warning is given during code execution or if the code fails.

B.2 Demonstration Functions

[Function File]demo (’name ’,n )
Runs any examples associated with the function ’name’. Examples are stored in
the script file, or in a file with the same name but no extension somewhere on your
path. To keep them separate from the usual script code, all lines are prefixed by %!.
Each example is introduced by the keyword ’demo’ flush left to the prefix, with no
intervening spaces. The remainder of the example can contain arbitrary Octave code.
For example:

%!demo
%! t=0:0.01:2*pi; x = sin(t);
%! plot(t,x)
%! %-------------------------------------------------
%! % the figure window shows one cycle of a sine wave

Note that the code is displayed before it is executed, so a simple comment at the end
suffices. It is generally not necessary to use disp or printf within the demo.
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Demos are run in a function environment with no access to external variables. This
means that all demos in your function must use separate initialization code. Alter-
natively, you can combine your demos into one huge demo, with the code:

%! input("Press <enter> to continue: ","s");

between the sections, but this is discouraged. Other techniques include using multiple
plots by saying figure between each, or using subplot to put multiple plots in the same
window.
Also, since demo evaluates inside a function context, you cannot define new functions
inside a demo. Instead you will have to use eval(example(’function’,n)) to see
them. Because eval only evaluates one line, or one statement if the statement crosses
multiple lines, you must wrap your demo in "if 1 <demo stuff> endif" with the ’if’ on
the same line as ’demo’. For example,

%!demo if 1
%! function y=f(x)
%! y=x;
%! endfunction
%! f(3)
%! endif

See also: [test], page 597, [example], page 602.

[Function File]rundemos (directory )

[Function File]example (’name ’,n )
[Function File][x, idx] = example (’name ’,n )

Display the code for example n associated with the function ’name’, but do not run
it. If n is not given, all examples are displayed.
Called with output arguments, the examples are returned in the form of a string x,
with idx indicating the ending position of the various examples.
See demo for a complete explanation.

See also: [demo], page 601, [test], page 597.

[Function File]speed (f, init, max_n, f2, tol )
[Function File][order, n, T_f, T_f2] = speed (. . . )

Determine the execution time of an expression for various n. The n are log-spaced
from 1 to max n. For each n, an initialization expression is computed to create
whatever data are needed for the test. If a second expression is given, the execution
times of the two expressions will be compared. Called without output arguments the
results are presented graphically.

f The expression to evaluate.

max_n The maximum test length to run. Default value is 100. Alternatively, use
[min_n,max_n] or for complete control, [n1,n2,...,nk].

init Initialization expression for function argument values. Use k for the test
number and n for the size of the test. This should compute values for all
variables listed in args. Note that init will be evaluated first for k = 0,
so things which are constant throughout the test can be computed then.
The default value is x = randn (n, 1);.
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f2 An alternative expression to evaluate, so the speed of the two can be
compared. Default is [].

tol If tol is Inf, then no comparison will be made between the results of
expression f and expression f2. Otherwise, expression f should produce
a value v and expression f2 should produce a value v2, and these shall
be compared using assert(v,v2,tol). If tol is positive, the tolerance is
assumed to be absolute. If tol is negative, the tolerance is assumed to be
relative. The default is eps.

order The time complexity of the expression O(a n^p). This is a structure with
fields a and p.

n The values n for which the expression was calculated and the execution
time was greater than zero.

T_f The nonzero execution times recorded for the expression f in seconds.

T_f2 The nonzero execution times recorded for the expression f2 in seconds. If
it is needed, the mean time ratio is just mean(T_f./T_f2).

The slope of the execution time graph shows the approximate power of the asymptotic
running time O(n^p). This power is plotted for the region over which it is approxi-
mated (the latter half of the graph). The estimated power is not very accurate, but
should be sufficient to determine the general order of your algorithm. It should in-
dicate if for example your implementation is unexpectedly O(n^2) rather than O(n)
because it extends a vector each time through the loop rather than preallocating one
which is big enough. For example, in the current version of Octave, the following is
not the expected O(n):

speed ("for i = 1:n, y{i} = x(i); end", "", [1000,10000])

but it is if you preallocate the cell array y:

speed ("for i = 1:n, y{i} = x(i); end", ...
"x = rand (n, 1); y = cell (size (x));", [1000, 10000])

An attempt is made to approximate the cost of the individual operations, but it is
wildly inaccurate. You can improve the stability somewhat by doing more work for
each n. For example:

speed ("airy(x)", "x = rand (n, 10)", [10000, 100000])

When comparing a new and original expression, the line on the speedup ratio graph
should be larger than 1 if the new expression is faster. Better algorithms have a
shallow slope. Generally, vectorizing an algorithm will not change the slope of the
execution time graph, but it will shift it relative to the original. For example:

speed ("v = sum (x)", "", [10000, 100000], ...
"v = 0; for i = 1:length (x), v += x(i); end")

A more complex example, if you had an original version of xcorr using for loops and
another version using an FFT, you could compare the run speed for various lags as
follows, or for a fixed lag with varying vector lengths as follows:
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speed ("v = xcorr (x, n)", "x = rand (128, 1);", 100,
"v2 = xcorr_orig (x, n)", -100*eps)

speed ("v = xcorr (x, 15)", "x = rand (20+n, 1);", 100,
"v2 = xcorr_orig (x, n)", -100*eps)

Assuming one of the two versions is in xcorr orig, this would compare their speed
and their output values. Note that the FFT version is not exact, so we specify an
acceptable tolerance on the comparison 100*eps, and the errors should be computed
relatively, as abs((x - y)./y) rather than absolutely as abs(x - y).
Type example(’speed’) to see some real examples. Note for obscure reasons,
you can’t run examples 1 and 2 directly using demo(’speed’). Instead use,
eval(example(’speed’,1)) and eval(example(’speed’,2)).
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Appendix C Tips and Standards

This chapter describes no additional features of Octave. Instead it gives advice on making
effective use of the features described in the previous chapters.

C.1 Writing Clean Octave Programs

Here are some tips for avoiding common errors in writing Octave code intended for wide-
spread use:
• Since all global variables share the same name space, and all functions share another

name space, you should choose a short word to distinguish your program from other
Octave programs. Then take care to begin the names of all global variables, constants,
and functions with the chosen prefix. This helps avoid name conflicts.
If you write a function that you think ought to be added to Octave under a certain
name, such as fiddle_matrix, don’t call it by that name in your program. Call it
mylib_fiddle_matrix in your program, and send mail to maintainers@octave.org
suggesting that it be added to Octave. If and when it is, the name can be changed
easily enough.
If one prefix is insufficient, your package may use two or three alternative common
prefixes, so long as they make sense.
Separate the prefix from the rest of the symbol name with an underscore ‘_’. This will
be consistent with Octave itself and with most Octave programs.

• When you encounter an error condition, call the function error (or usage). The error
and usage functions do not return. See Section 2.5 [Errors], page 27.

• Please put a copyright notice on the file if you give copies to anyone. Use the same
lines that appear at the top of the function files distributed with Octave. If you have
not signed papers to assign the copyright to anyone else, then place your name in the
copyright notice.

C.2 Tips for Making Code Run Faster.

Here are some ways of improving the execution speed of Octave programs.
• Vectorize loops. For instance, rather than

for i = 1:n-1
a(i) = b(i+1) - b(i);

endfor

write
a = b(2:n) - b(1:n-1);

This is especially important for loops with "cheap" bodies. Often it suffices to vectorize
just the innermost loop to get acceptable performance. A general rule of thumb is that
the "order" of the vectorized body should be greater or equal to the "order" of the
enclosing loop.

• Use built-in and library functions if possible. Built-in and compiled functions are very
fast. Even with a m-file library function, chances are good that it is already optimized,
or will be optimized more in a future release.

mailto:maintainers@octave.org
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• Avoid computing costly intermediate results multiple times. Octave currently does not
eliminate common subexpressions.

• Be aware of lazy copies (copy-on-write). When a copy of an object is created, the data
is not immediately copied, but rather shared. The actual copying is postponed until
the copied data needs to be modified. For example:

a = zeros (1000); # create a 1000x1000 matrix
b = a; # no copying done here
b(1) = 1; # copying done here

Lazy copying applies to whole Octave objects such as matrices, cells, struct, and also
individual cell or struct elements (not array elements).

Additionally, index expressions also use lazy copying when Octave can determine that
the indexed portion is contiguous in memory. For example:

a = zeros (1000); # create a 1000x1000 matrix
b = a(:,10:100); # no copying done here
b = a(10:100,:); # copying done here

This applies to arrays (matrices), cell arrays, and structs indexed using (). Index
expressions generating cs-lists can also benefit of shallow copying in some cases. In
particular, when a is a struct array, expressions like {a.x}, {a(:,2).x} will use lazy
copying, so that data can be shared between a struct array and a cell array.

Most indexing expressions do not live longer than their ‘parent’ objects. In rare cases,
however, a lazily copied slice outlasts its parent, in which case it becomes orphaned,
still occupying unnecessarily more memory than needed. To provide a remedy working
in most real cases, Octave checks for orphaned lazy slices at certain situations, when a
value is stored into a "permanent" location, such as a named variable or cell or struct
element, and possibly economizes them. For example

a = zeros (1000); # create a 1000x1000 matrix
b = a(:,10:100); # lazy slice
a = []; # the original a array is still allocated
c{1} = b; # b is reallocated at this point

• Avoid deep recursion. Function calls to m-file functions carry a relatively significant
overhead, so rewriting a recursion as a loop often helps. Also, note that the maximum
level of recursion is limited.

• Avoid resizing matrices unnecessarily. When building a single result matrix from a
series of calculations, set the size of the result matrix first, then insert values into it.
Write

result = zeros (big_n, big_m)
for i = over:and_over
r1 = ...
r2 = ...
result (r1, r2) = new_value ();

endfor

instead of
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result = [];
for i = ever:and_ever
result = [ result, new_value() ];

endfor

Sometimes the number of items can’t be computed in advance, and stack-like operations
are needed. When elements are being repeatedly inserted at/removed from the end of
an array, Octave detects it as stack usage and attempts to use a smarter memory
management strategy preallocating the array in bigger chunks. Likewise works for cell
and struct arrays.

a = [];
while (condition)
...
a(end+1) = value; # "push" operation
...
a(end) = []; # "pop" operation
...

endwhile

• Use cellfun intelligently. The cellfun function is a useful tool for avoiding loops.
See Section 6.2.5 [Processing Data in Cell Arrays], page 91. cellfun is often use
with anonymous function handles; however, calling an anonymous function involves an
overhead quite comparable to the overhead of an m-file function. Passing a handle to
a built-in function is faster, because the interpreter is not involved in the internal loop.
For example:

a = {...}
v = cellfun (@(x) det(x), a); # compute determinants
v = cellfun (@det, a); # faster

• Avoid calling eval or feval excessively, because they require Octave to parse input or
look up the name of a function in the symbol table.

If you are using eval as an exception handling mechanism and not because you need
to execute some arbitrary text, use the try statement instead. See Section 10.9 [The
try Statement], page 134.

• If you are calling lots of functions but none of them will need to change during your
run, set the variable ignore_function_time_stamp to "all" so that Octave doesn’t
waste a lot of time checking to see if you have updated your function files.

C.3 Tips on Writing Comments

Here are the conventions to follow when writing comments.

‘#’ Comments that start with a single sharp-sign, ‘#’, should all be aligned to the
same column on the right of the source code. Such comments usually explain
how the code on the same line does its job. In the Emacs mode for Octave, the
M-; (indent-for-comment) command automatically inserts such a ‘#’ in the
right place, or aligns such a comment if it is already present.
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‘##’ Comments that start with a double sharp-sign, ‘##’, should be aligned to the
same level of indentation as the code. Such comments usually describe the
purpose of the following lines or the state of the program at that point.

The indentation commands of the Octave mode in Emacs, such as M-; (indent-for-
comment) and TAB (octave-indent-line) automatically indent comments according to
these conventions, depending on the number of semicolons. See Section “Manipulating
Comments” in The GNU Emacs Manual.

C.4 Conventional Headers for Octave Functions

Octave has conventions for using special comments in function files to give information such
as who wrote them. This section explains these conventions.

The top of the file should contain a copyright notice, followed by a block of comments
that can be used as the help text for the function. Here is an example:

## Copyright (C) 1996, 1997, 2007 John W. Eaton
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.

## usage: [IN, OUT, PID] = popen2 (COMMAND, ARGS)
##
## Start a subprocess with two-way communication. COMMAND
## specifies the name of the command to start. ARGS is an
## array of strings containing options for COMMAND. IN and
## OUT are the file ids of the input and streams for the
## subprocess, and PID is the process id of the subprocess,
## or -1 if COMMAND could not be executed.
##
## Example:
##
## [in, out, pid] = popen2 ("sort", "-nr");
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## fputs (in, "these\nare\nsome\nstrings\n");
## fclose (in);
## while (ischar (s = fgets (out)))
## fputs (stdout, s);
## endwhile
## fclose (out);

Octave uses the first block of comments in a function file that do not appear to be a
copyright notice as the help text for the file. For Octave to recognize the first comment
block as a copyright notice, it must start with the word ‘Copyright’ after stripping the
leading comment characters.

After the copyright notice and help text come several header comment lines, each be-
ginning with ‘## header-name:’. For example,

## Author: jwe
## Keywords: subprocesses input-output
## Maintainer: jwe

Here is a table of the conventional possibilities for header-name:

‘Author’ This line states the name and net address of at least the principal author of the
library.

## Author: John W. Eaton <jwe@octave.org>

‘Maintainer’
This line should contain a single name/address as in the Author line, or an
address only, or the string ‘jwe’. If there is no maintainer line, the person(s)
in the Author field are presumed to be the maintainers. The example above is
mildly bogus because the maintainer line is redundant.
The idea behind the ‘Author’ and ‘Maintainer’ lines is to make possible a
function to “send mail to the maintainer” without having to mine the name
out by hand.
Be sure to surround the network address with ‘<...>’ if you include the person’s
full name as well as the network address.

‘Created’ This optional line gives the original creation date of the file. For historical
interest only.

‘Version’ If you wish to record version numbers for the individual Octave program, put
them in this line.

‘Adapted-By’
In this header line, place the name of the person who adapted the library for
installation (to make it fit the style conventions, for example).

‘Keywords’
This line lists keywords. Eventually, it will be used by an apropos command
to allow people will find your package when they’re looking for things by topic
area. To separate the keywords, you can use spaces, commas, or both.

Just about every Octave function ought to have the ‘Author’ and ‘Keywords’ header
comment lines. Use the others if they are appropriate. You can also put in header lines
with other header names—they have no standard meanings, so they can’t do any harm.
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C.5 Tips for Documentation Strings

As noted above, documentation is typically in a commented header block on an Octave
function following the copyright statement. The help string shown above is an unformat-
ted string and will be displayed as is by Octave. Here are some tips for the writing of
documentation strings.

• Every command, function, or variable intended for users to know about should have a
documentation string.

• An internal variable or subroutine of an Octave program might as well have a docu-
mentation string.

• The first line of the documentation string should consist of one or two complete sen-
tences that stand on their own as a summary.
The documentation string can have additional lines that expand on the details of how
to use the function or variable. The additional lines should also be made up of complete
sentences.

• For consistency, phrase the verb in the first sentence of a documentation string as
an infinitive with “to” omitted. For instance, use “Return the frob of A and B.” in
preference to “Returns the frob of A and B.” Usually it looks good to do likewise for
the rest of the first paragraph. Subsequent paragraphs usually look better if they have
proper subjects.

• Write documentation strings in the active voice, not the passive, and in the present
tense, not the future. For instance, use “Return a list containing A and B.” instead of
“A list containing A and B will be returned.”

• Avoid using the word “cause” (or its equivalents) unnecessarily. Instead of, “Cause
Octave to display text in boldface,” write just “Display text in boldface.”

• Do not start or end a documentation string with whitespace.
• Format the documentation string so that it fits in an Emacs window on an 80-column

screen. It is a good idea for most lines to be no wider than 60 characters.
However, rather than simply filling the entire documentation string, you can make it
much more readable by choosing line breaks with care. Use blank lines between topics
if the documentation string is long.

• Do not indent subsequent lines of a documentation string so that the text is lined up
in the source code with the text of the first line. This looks nice in the source code,
but looks bizarre when users view the documentation. Remember that the indentation
before the starting double-quote is not part of the string!

• The documentation string for a variable that is a yes-or-no flag should start with words
such as “Nonzero means. . . ”, to make it clear that all nonzero values are equivalent
and indicate explicitly what zero and nonzero mean.

• When a function’s documentation string mentions the value of an argument of the
function, use the argument name in capital letters as if it were a name for that value.
Thus, the documentation string of the operator / refers to its second argument as
‘DIVISOR’, because the actual argument name is divisor.
Also use all caps for meta-syntactic variables, such as when you show the decomposition
of a list or vector into subunits, some of which may vary.
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Octave also allows extensive formatting of the help string of functions using Texinfo. The
effect on the online documentation is relatively small, but makes the help string of functions
conform to the help of Octave’s own functions. However, the effect on the appearance of
printed or online documentation will be greatly improved.

The fundamental building block of Texinfo documentation strings is the Texinfo-macro
@deftypefn, which takes three arguments: The class the function is in, its output argu-
ments, and the function’s signature. Typical classes for functions include Function File
for standard Octave functions, and Loadable Function for dynamically linked functions.
A skeletal Texinfo documentation string therefore looks like this

-*- texinfo -*-
@deftypefn{Function File} {@var{ret} =} fn (...)
@cindex index term
Help text in Texinfo format. Code samples should be marked
like @code{sample of code} and variables should be marked
as @var{variable}.
@seealso{fn2}
@end deftypefn

This help string must be commented in user functions, or in the help string of the
DEFUN_DLD macro for dynamically loadable functions. The important aspects of the docu-
mentation string are

-*- texinfo -*-
This string signals Octave that the following text is in Texinfo format, and
should be the first part of any help string in Texinfo format.

@deftypefn{class} . . . @end deftypefn
The entire help string should be enclosed within the block defined by deftypefn.

@cindex index term
This generates an index entry, and can be useful when the function is included
as part of a larger piece of documentation. It is ignored within Octave’s help
viewer. Only one index term may appear per line but multiple @cindex lines
are valid if the function should be filed under different terms.

@var{variable}
All variables should be marked with this macro. The markup of variables is
then changed appropriately for display.

@code{sample of code}
All samples of code should be marked with this macro for the same reasons as
the @var macro.

@seealso{function2}
This is a comma separated list of function names that allows cross referencing
from one function documentation string to another.

Texinfo format has been designed to generate output for online viewing with text termi-
nals as well as generating high-quality printed output. To these ends, Texinfo has commands
which control the diversion of parts of the document into a particular output processor.
Three formats are of importance: info, html and TEX. These are selected with
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@ifinfo
Text area for info only
@end ifinfo

@ifhtml
Text area for HTML only
@end ifhtml

@tex
Text area for TeX only
@end tex

Note that often TEX output can be used in html documents and so often the @ifhtml
blocks are unnecessary. If no specific output processor is chosen, by default, the text goes
into all output processors. It is usual to have the above blocks in pairs to allow the same
information to be conveyed in all output formats, but with a different markup. Currently,
most Octave documentation only makes a distinction between TEX and all other formats.
Therefore, the following construct is seen repeatedly.

@tex
text for TeX only
@end tex
@ifnottex
text for info, HTML, plaintext
@end ifnottex

Another important feature of Texinfo that is often used in Octave help strings is the
@example environment. An example of its use is

@example
@group
@code{2 * 2}
@result{} 4
@end group
@end example

which produces

2 * 2
⇒ 4

The @group block prevents the example from being split across a page boundary, while
the @result{} macro produces a right arrow signifying the result of a command. If your
example is larger than 20 lines it is better NOT to use grouping so that a reasonable page
boundary can be calculated.

In many cases a function has multiple ways in which it can be called, and the
@deftypefnx macro can be used to give alternatives. For example

-*- texinfo -*-
@deftypefn{Function File} {@var{a} =} fn (@var{x}, ...)
@deftypefnx{Function File} {@var{a} =} fn (@var{y}, ...)
Help text in Texinfo format.
@end deftypefn



Appendix C: Tips and Standards 613

Many complete examples of Texinfo documentation can be taken from the help strings for
the Octave functions themselves. A relatively complete example of which is the nchoosek
function. The Texinfo documentation string for nchoosek is

-*- texinfo -*-
@deftypefn {Function File} {} nchoosek (@var{n}, @var{k})

Compute the binomial coefficient or all combinations of
@var{n}. If @var{n} is a scalar then, calculate the
binomial coefficient of @var{n} and @var{k}, defined as

@tex
$$
{n \choose k} = {n (n-1) (n-2) \cdots (n-k+1) \over k!}
$$
@end tex
@ifnottex

@example
@group
/ \
| n | n (n-1) (n-2) ... (n-k+1)
| | = -------------------------
| k | k!
\ /
@end group
@end example
@end ifnottex

If @var{n} is a vector, this generates all combinations
of the elements of @var{n}, taken @var{k} at a time,
one row per combination. The resulting @var{c} has size
@code{[nchoosek (length (@var{n}),@var{k}), @var{k}]}.

@code{nchoosek} works only for non-negative integer arguments; use
@code{bincoeff} for non-integer scalar arguments and for using vector
arguments to compute many coefficients at once.

@seealso{bincoeff}
@end deftypefn

which demonstrates most of the concepts discussed above. This documentation string
renders as
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-- Function File: C = nchoosek (N, K)
Compute the binomial coefficient or all combinations
of N. If N is a scalar then, calculate the binomial
coefficient of N and K, defined as

/ \
| n | n (n-1) (n-2) ... (n-k+1) n!
| | = ------------------------- = ---------
| k | k! k! (n-k)!
\ /

If N is a vector generate all combinations of the
elements of N, taken K at a time, one row per
combination. The resulting C has size ‘[nchoosek
(length (N), K), K]’.

‘nchoosek’ works only for non-negative integer
arguments; use ‘bincoeff’ for non-integer scalar
arguments and for using vector arguments to compute
many coefficients at once.

See also: bincoeff.

using info, whereas in a printed documentation using TEX it will appear as

[Function File]c = nchoosek (n, k )
Compute the binomial coefficient or all combinations of n. If n is a scalar then,
calculate the binomial coefficient of n and k, defined as(

n

k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

k!

If n is a vector generate all combinations of the elements of n, taken k at a time, one
row per combination. The resulting c has size [nchoosek (length (n), k), k].
nchoosek works only for non-negative integer arguments; use bincoeff for non-
integer scalar arguments and for using vector arguments to compute many coefficients
at once.

See also: bincoeff.



Appendix D: Contributing Guidelines 615

Appendix D Contributing Guidelines

This chapter is dedicated to those who wish to contribute code to Octave.

D.1 How to Contribute

The mailing list for Octave development discussion and sending contributions is
maintainers@octave.org. This concerns the development of Octave core, i.e., code that
goes to Octave directly. You may consider developing and publishing a package instead; a
great place for this is the allied Octave-Forge project (http://octave.sf.net). Note that
the Octave project is inherently more conservative and follows narrower rules.

The preferable form of contribution is creating a Mercurial changeset and sending it via
e-mail to the octave-maintainers mailing list. Mercurial is the source code management
system currently used to develop Octave. Other forms of contributions (e.g., simple diff
patches) are also acceptable, but they slow down the review process. If you want to make
more contributions, you should really get familiar with Mercurial. A good place to start
is http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial. There you will also
find help how to install Mercurial.

A simple contribution sequence could look like this:
hg clone http://www.octave.org/hg/octave

# make a local copy of the octave
# source repository

cd octave
# change some sources...
hg commit -m "make Octave the coolest software ever"

# commit the changeset into your
# local repository

hg export -o ../cool.diff tip
# export the changeset to a diff
# file

# send ../cool.diff via email

You may want to get familiar with Mercurial queues to manage your changesets. Here
is a slightly less simple example using Mercurial queues, where you work on two unrelated
changesets in parallel and update one of the changesets after discussion in the maintainers
mailing list:

hg qnew nasty_bug # create a new patch
# change sources...
hg qref # save the changes into the patch
# change even more...
hg qref -m "solution to nasty bug!"

# save again with commit message
hg export -o ../nasty.diff tip

# export the patch
# send ../nasty.diff via email
hg qpop # undo the application of the patch

# and remove the changes from the

mailto:maintainers@octave.org
http://octave.sf.net
http://www.selenic.com/mercurial/wiki/index.cgi/Tutorial
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# source tree
hg qnew doc_improvements # create an unrelated patch
# change doc sources...
hg qref -m "could not find myfav.m in the doc"

# save the changes into the patch
hg export -o ../doc.diff tip

# export the second patch
# send ../doc.diff tip via email
hg qpop
# discussion in the maintainers mailing list ...
hg qpush nasty_bug # apply the patch again
# change sources yet again ...
hg qref
hg export -o ../nasty2.diff tip
# send ../nasty2.diff via email

D.2 General Guidelines

All Octave’s sources are distributed under the General Public License (GPL).
Currently, Octave uses GPL version 3. For details about this license, see
http://www.gnu.org/licenses/gpl.html. Therefore, whenever you create a new source
file, it should have the following comment header (use appropriate year, name and
comment marks):

## Copyright (C) 1996, 1997, 2007 John W. Eaton <jwe@octave.org>
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.

Always include ChangeLog entries in changesets. After making your source changes,
record and briefly describe the changes in the nearest ChangeLog file upwards in the direc-
tory tree. Use the previous entries as a template. Your entry should contain your name
and email, and the path to the modified source file relative to the parent directory of the

http://www.gnu.org/licenses/gpl.html
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ChangeLog file. If there are more functions in the file, you should also include the name of
the modified function (in parentheses after file path). Example:

2008-04-02 David Bateman <dbateman@free.fr>

* graphics.cc (void gnuplot_backend::close_figure (const
octave_value&) const): Allow for an input and output stream.

The ChangeLog entries should describe what is changed, not why. Any explanation of why
a change is needed should appear as comments in the code, particularly if there is something
that might not be obvious to someone reading it later.

The preferred comment mark for places that may need further attention is FIXME.

D.3 Octave Sources (m-files)

Don’t use tabs. Tabs cause trouble. If you are used to them, set up your editor so that
it converts tabs to spaces. Indent the bodies of the statement blocks. Recommended
indent is 2 spaces. When calling functions, put spaces after commas and before the calling
parentheses, like this:

x = max (sin (y+3), 2);

An exception are matrix and vector constructors:

[sin(x), cos(x)]

Here, putting spaces after sin, cos would result in a parse error. In indexing expression, do
not put a space after the identifier (this differentiates indexing and function calls nicely).
The space after comma is not necessary if index expressions are simple, i.e., you may write

A(:,i,j)

but

A([1:i-1;i+1:n], XI(:,2:n-1))

Use lowercase names if possible. Uppercase is acceptable for variable names consisting
of 1-2 letters. Do not use mixed case names. Function names must be lowercase. Function
names are global, so choose them wisely.

Always use a specific end-of-block statement (like endif, endswitch) rather than generic
end. Enclose the if, while, until and switch conditions in parentheses, like in C:

if (isvector (a))
s = sum(a);

endif

Do not do this, however, with for:

for i = 1:n
b(i) = sum (a(:,i));

endfor

D.4 C++ Sources

Don’t use tabs. Tabs cause trouble. If you are used to them, set up your editor so that it
converts tabs to spaces. Format function headers like this:
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static bool
matches_patterns (const string_vector& patterns, int pat_idx,
int num_pat, const std::string& name)

The function name should start in column 1, and multi-line argument lists should be aligned
on the first char after the open parenthesis. You should put a space after the left open
parenthesis and after commas, for both function definitions and function calls.

Recommended indent is 2 spaces. When indenting, indent the statement after control
structures (like if, while, etc.). If there is a compound statement, indent both the curly
braces and the body of the statement (so that the body gets indented by two indents).
Example:

if (have_args)
{
idx.push_back (first_args);
have_args = false;

}
else
idx.push_back (make_value_list (*p_args, *p_arg_nm, &tmp));

If you have nested if statements, use extra braces for extra clarification.

Split long expressions in such a way that a continuation line starts with an operator
rather than identifier. If the split occurs inside braces, continuation should be aligned with
the first char after the innermost braces enclosing the split. Example:

SVD::type type = ((nargout == 0 || nargout == 1)
? SVD::sigma_only
: (nargin == 2) ? SVD::economy : SVD::std);

Consider putting extra braces around a multiline expression to make it more readable, even
if they are not necessary. Also, do not hesitate to put extra braces anywhere if it improves
clarity.

Try declaring variables just before they’re needed. Use local variables of blocks - it helps
optimization. Don’t write multi-line variable declaration with a single type specification
and multiple variables. If the variables don’t fit on single line, repeat the type specification.
Example:

octave_value retval;

octave_idx_type nr = b.rows ();
octave_idx_type nc = b.cols ();

double d1, d2;

Use lowercase names if possible. Uppercase is acceptable for variable names consisting
of 1-2 letters. Do not use mixed case names.

Try to use Octave’s types and classes if possible. Otherwise, try to use C++ standard
library. Use of STL containers and algorithms is encouraged. Use templates wisely to reduce
code duplication. Avoid comma expressions, labels and gotos, and explicit typecasts. If
you need to typecast, use the modern C++ casting operators. In functions, try to reduce
the number of return statements - use nested if statements if possible.
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D.5 Other Sources

Apart from C++ and Octave language (m-files), Octave’s sources include files written in C,
Fortran, M4, perl, unix shell, AWK, texinfo and TEX. There are not many rules to follow
when using these other languages; some of them are summarized below. In any case, the
golden rule is: if you modify a source file, try to follow any conventions you can detect in
the file or other similar files.

For C you should obviously follow all C++ rules that can apply.
If you happen to modify a Fortran file, you should stay within Fortran 77 with common

extensions like END DO. Currently, we want all sources to be compilable with the f2c and g77
compilers, without special flags if possible. This usually means that non-legacy compilers
also accept the sources.

The M4 macro language is mainly used for autoconf configuration files. You should
follow normal M4 rules when contributing to these files. Some M4 files come from external
source, namely the Autoconf archive http://autoconf-archive.cryp.to.

If you give a code example in the documentation written in texinfo with the @example
environment, you should be aware that the text within such an environment will not be
wrapped. It is recommended that you keep the lines short enough to fit on pages in the
generated pdf or ps documents. Here is a ruler (in an @example environment) for finding
the appropriate line width:

1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890

http://autoconf-archive.cryp.to
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Appendix E Known Causes of Trouble

This section describes known problems that affect users of Octave. Most of these are not
Octave bugs per se—if they were, we would fix them. But the result for a user may be like
the result of a bug.

Some of these problems are due to bugs in other software, some are missing features that
are too much work to add, and some are places where people’s opinions differ as to what is
best.

E.1 Actual Bugs We Haven’t Fixed Yet

• Output that comes directly from Fortran functions is not sent through the pager and
may appear out of sequence with other output that is sent through the pager. One way
to avoid this is to force pending output to be flushed before calling a function that will
produce output from within Fortran functions. To do this, use the command

fflush (stdout)

Another possible workaround is to use the command

page_screen_output (false);

to turn the pager off.

A list of ideas for future enhancements is distributed with Octave. See the file ‘PROJECTS’
in the top level directory in the source distribution.

E.2 Reporting Bugs

Your bug reports play an essential role in making Octave reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See
Appendix E [Trouble], page 621. If it isn’t known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
In any case, the principal function of a bug report is to help the entire community by
making the next version of Octave work better. Bug reports are your contribution to the
maintenance of Octave.

In order for a bug report to serve its purpose, you must include the information that
makes it possible to fix the bug.

If you have Octave working at all, the easiest way to prepare a complete bug report
is to use the Octave function bug_report. When you execute this function, Octave will
prompt you for a subject and then invoke the editor on a file that already contains all the
configuration information. When you exit the editor, Octave will mail the bug report for
you.

[Function File]bug_report ()
Have Octave create a bug report template file, invoke your favorite editor, and submit
the report to the bug-octave mailing list when you are finished editing.
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E.3 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If Octave gets a fatal signal, for any input whatever, that is a bug. Reliable interpreters
never crash.

• If Octave produces incorrect results, for any input whatever, that is a bug.
• Some output may appear to be incorrect when it is in fact due to a program whose

behavior is undefined, which happened by chance to give the desired results on another
system. For example, the range operator may produce different results because of
differences in the way floating point arithmetic is handled on various systems.

• If Octave produces an error message for valid input, that is a bug.
• If Octave does not produce an error message for invalid input, that is a bug. However,

you should note that your idea of “invalid input” might be my idea of “an extension”
or “support for traditional practice”.

• If you are an experienced user of programs like Octave, your suggestions for improve-
ment are welcome in any case.

E.4 Where to Report Bugs

If you have Octave working at all, the easiest way to prepare a complete bug report is to use
the Octave function bug_report. When you execute this function, Octave will prompt you
for a subject and then invoke the editor on a file that already contains all the configuration
information. When you exit the editor, Octave will mail the bug report for you.

If for some reason you cannot use Octave’s bug_report function, send bug reports for
Octave to bug@octave.org.

Do not send bug reports to ‘help-octave’. Most users of Octave do not want to receive
bug reports. Those that do have asked to be on the mailing list.

E.5 How to Report Bugs

Send bug reports for Octave to one of the addresses listed in Section E.4 [Bug Lists],
page 622.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
they conclude that some details don’t matter. Thus, you might assume that the name of
the variable you use in an example does not matter. Well, probably it doesn’t, but one
cannot be sure. Perhaps the bug is a stray memory reference which happens to fetch from
the location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the interpreter into doing the right thing despite the
bug. Play it safe and give a specific, complete example.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it
is not known. Always write your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot
help us fix a bug. It is better to send a complete bug report to begin with.

mailto:bug@octave.org
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Try to make your bug report self-contained. If we have to ask you for more information, it
is best if you include all the previous information in your response, as well as the information
that was missing.

To enable someone to investigate the bug, you should include all these things:

• The version of Octave. You can get this by noting the version number that is printed
when Octave starts, or running it with the ‘-v’ option.

• A complete input file that will reproduce the bug.
A single statement may not be enough of an example—the bug might depend on other
details that are missing from the single statement where the error finally occurs.

• The command arguments you gave Octave to execute that example and observe the
bug. To guarantee you won’t omit something important, list all the options.
If we were to try to guess the arguments, we would probably guess wrong and then we
would not encounter the bug.

• The type of machine you are using, and the operating system name and version number.
• The command-line arguments you gave to the configure command when you installed

the interpreter.
• A complete list of any modifications you have made to the interpreter source.

Be precise about these changes—show a context diff for them.
• Details of any other deviations from the standard procedure for installing Octave.
• A description of what behavior you observe that you believe is incorrect. For example,

"The interpreter gets a fatal signal," or, "The output produced at line 208 is incorrect."
Of course, if the bug is that the interpreter gets a fatal signal, then one can’t miss it.
But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the interpreter is out
of synch, or you have encountered a bug in the C library on your system. Your copy
might crash and the copy here would not. If you said to expect a crash, then when the
interpreter here fails to crash, we would know that the bug was not happening. If you
don’t say to expect a crash, then we would not know whether the bug was happening.
We would not be able to draw any conclusion from our observations.
Often the observed symptom is incorrect output when your program is run. Unfortu-
nately, this is not enough information unless the program is short and simple. It is very
helpful if you can include an explanation of the expected output, and why the actual
output is incorrect.

• If you wish to suggest changes to the Octave source, send them as context diffs. If you
even discuss something in the Octave source, refer to it by context, not by line number,
because the line numbers in the development sources probably won’t match those in
your sources.

Here are some things that are not necessary:

• A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it. Such
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information is usually not necessary to enable us to fix bugs in Octave, but if you can
find a simpler example to report instead of the original one, that is a convenience.
Errors in the output will be easier to spot, running under the debugger will take less
time, etc. Most Octave bugs involve just one function, so the most straightforward way
to simplify an example is to delete all the function definitions except the one in which
the bug occurs.
However, simplification is not vital; if you don’t want to do this, report the bug anyway
and send the entire test case you used.

• A patch for the bug. Patches can be helpful, but if you find a bug, you should report
it, even if you cannot send a fix for the problem.

E.6 Sending Patches for Octave

If you would like to write bug fixes or improvements for Octave, that is very helpful. When
you send your changes, please follow these guidelines to avoid causing extra work for us in
studying the patches.

If you don’t follow these guidelines, your information might still be useful, but using it
will take extra work. Maintaining Octave is a lot of work in the best of circumstances, and
we can’t keep up unless you do your best to help.
• Send an explanation with your changes of what problem they fix or what improvement

they bring about. For a bug fix, just include a copy of the bug report, and explain why
the change fixes the bug.

• Always include a proper bug report for the problem you think you have fixed. We need
to convince ourselves that the change is right before installing it. Even if it is right, we
might have trouble judging it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.
If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for us to install
reliably. More than that, they make it hard for us to study the diffs to decide whether
we want to install them. Unidiff format is better than contextless diffs, but not as easy
to read as ‘-c’ format.
If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each
change occurs in.

• Write the change log entries for your changes.
Read the ‘ChangeLog’ file to see what sorts of information to put in, and to learn the
style that we use. The purpose of the change log is to show people where to find what
was changed. So you need to be specific about what functions you changed; in large
functions, it’s often helpful to indicate where within the function the change was made.
On the other hand, once you have shown people where to find the change, you need
not explain its purpose. Thus, if you add a new function, all you need to say about it
is that it is new. If you feel that the purpose needs explaining, it probably does—but
the explanation will be much more useful if you put it in comments in the code.
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If you would like your name to appear in the header line for who made the change,
send us the header line.

E.7 How To Get Help with Octave

The mailing list help@octave.org exists for the discussion of matters related to using and
installing Octave. If would like to join the discussion, please send a short note to help-
request@octave.org.

Please do not send requests to be added or removed from the mailing list, or other
administrative trivia to the list itself.

If you think you have found a bug in the installation procedure, however, you should
send a complete bug report for the problem to bug@octave.org. See Section E.5 [Bug
Reporting], page 622, for information that will help you to submit a useful report.

mailto:help@octave.org
mailto:help{�am =�ffam def rm{bf}	enbf -request}@octave.org
mailto:help{�am =�ffam def rm{bf}	enbf -request}@octave.org
mailto:bug@octave.org
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Appendix F Installing Octave

Here is the procedure for installing Octave from scratch on a Unix system.
• Run the shell script ‘configure’. This will determine the features your system has

(or doesn’t have) and create a file named ‘Makefile’ from each of the files named
‘Makefile.in’.
Here is a summary of the configure options that are most frequently used when building
Octave:

--prefix=prefix
Install Octave in subdirectories below prefix. The default value of prefix is
‘/usr/local’.

--srcdir=dir
Look for Octave sources in the directory dir.

--enable-bounds-check
Enable bounds checking for indexing operators in the internal array classes.
This option is primarily used for debugging Octave. Building Octave with
this option has a negative impact on performance and is not recommended
for general use.

--enable-64
This is an experimental option to enable Octave to use 64-bit integers for
array dimensions and indexing on 64-bit platforms. You probably don’t
want to use this option unless you know what you are doing.
If you use --enable-64, you must ensure that your Fortran compiler gen-
erates code with 8 byte signed INTEGER values, and that your blas and
lapack libraries are compiled to use 8 byte signed integers for array di-
mensions and indexing.

--enable-shared
Create shared libraries (this is the default). If you are planning to use
the dynamic loading features, you will probably want to use this option.
It will make your ‘.oct’ files much smaller and on some systems it may
be necessary to build shared libraries in order to use dynamically linked
functions.
You may also want to build a shared version of libstdc++, if your system
doesn’t already have one.

--enable-dl
Use dlopen and friends to make Octave capable of dynamically linking
externally compiled functions (this is the default if --enable-shared is
specified). This option only works on systems that actually have these
functions. If you plan on using this feature, you should probably also use
--enable-shared to reduce the size of your ‘.oct’ files.

--without-blas
Compile and use the generic blas and lapack versions included with Oc-
tave. By default, configure first looks for blas and lapack matrix libraries
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on your system, including optimized blas implementations such as the free
ATLAS 3.0, as well as vendor-tuned libraries. (The use of an optimized
blas will generally result in several-times faster matrix operations.) Only
use this option if your system has blas/lapack libraries that cause prob-
lems for some reason. You can also use --with-blas=lib to specify a
particular blas library that configure doesn’t check for automatically.

--without-ccolamd
Don’t use CCOLAMD, disable some sparse matrix functionality.

--without-colamd
Don’t use COLAMD, disable some sparse matrix functionality.

--without-curl
Don’t use the cURL, disable the urlread and urlwrite functions.

--without-cxsparse
Don’t use CXSPARSE, disable some sparse matrix functionality.

--without-umfpack
Don’t use UMFPACK, disable some sparse matrix functionality.

--without-fftw
Use the included fftpack library instead of the fftw library.

--without-glpk
Don’t use the GLPK library for linear programming.

--without-hdf5
Don’t use the HDF5 library for reading and writing HDF5 files.

--without-zlib
Don’t use the zlib library, disable data file compression and support for
recent MAT file formats.

--without-lapack
Compile and use the generic blas and lapack versions included with Oc-
tave. By default, configure first looks for blas and lapack matrix libraries
on your system, including optimized blas implementations such as the free
ATLAS 3.0, as well as vendor-tuned libraries. (The use of an optimized
blas will generally result in several-times faster matrix operations.) Only
use this option if your system has blas/lapack libraries that cause prob-
lems for some reason. You can also use --with-blas=lib to specify a
particular blas library that configure doesn’t check for automatically.

--without-framework-carbon
Don’t use framework Carbon headers, libraries and specific source code
for compilation even if the configure test succeeds (the default value is --
with-framework-carbon). This is a platform specific configure option for
Mac systems.

--without-framework-opengl
Don’t use framework OpenGL headers, libraries and specific source code for
compilation even if the configure test succeeds. If this option is given then
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OpenGL headers and libraries in standard system locations are tested (the
default value is --with-framework-opengl). This is a platform specific
configure option for Mac systems.

--help Print a summary of the options recognized by the configure script.

See the file ‘INSTALL’ for more general information about the command line options
used by configure. That file also contains instructions for compiling in a directory other
than where the source is located.

• Run make.

You will need a recent version of GNU Make. Modifying Octave’s makefiles to work
with other make programs is probably not worth your time. We recommend you get
and compile GNU Make instead.

For plotting, you will need to have gnuplot installed on your system. Gnuplot is a
command-driven interactive function plotting program. Gnuplot is copyrighted, but
freely distributable. The ‘gnu’ in gnuplot is a coincidence—it is not related to the
GNU project or the FSF in any but the most peripheral sense.

To compile Octave, you will need a recent version of GNU Make. You will also need
a recent version of g++ or other ANSI C++ compiler. You will also need a Fortran 77
compiler or f2c. If you use f2c, you will need a script like fort77 that works like a
normal Fortran compiler by combining f2c with your C compiler in a single script.

If you plan to modify the parser you will also need GNU bison and flex. If you modify
the documentation, you will need GNU Texinfo, along with the patch for the makeinfo
program that is distributed with Octave.

GNU Make, gcc, and libstdc++, gnuplot, bison, flex, and Texinfo are all available
from many anonymous ftp archives. The primary site is ftp.gnu.org, but it is often
very busy. A list of sites that mirror the software on ftp.gnu.org is available by
anonymous ftp from ftp://ftp.gnu.org/pub/gnu/GNUinfo/FTP.

You will need about 1 gigabyte of disk storage to work with when building Octave from
source (considerably less if you don’t compile with debugging symbols). To do that,
use the command

make CFLAGS=-O CXXFLAGS=-O LDFLAGS=

instead of just ‘make’.

• If you encounter errors while compiling Octave, first check the list of known prob-
lems below to see if there is a workaround or solution for your problem. If not, see
Appendix E [Trouble], page 621, for information about how to report bugs.

• Once you have successfully compiled Octave, run ‘make install’.

This will install a copy of Octave, its libraries, and its documentation in the destination
directory. As distributed, Octave is installed in the following directories. In the table
below, prefix defaults to ‘/usr/local’, version stands for the current version number
of the interpreter, and arch is the type of computer on which Octave is installed (for
example, ‘i586-unknown-gnu’).

‘prefix/bin’
Octave and other binaries that people will want to run directly.

ftp.gnu.org
ftp.gnu.org
ftp://ftp.gnu.org/pub/gnu/GNUinfo/FTP
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‘prefix/lib’
Libraries like libcruft.a and liboctave.a.

‘prefix/share’
Architecture-independent data files.

‘prefix/include/octave’
Include files distributed with Octave.

‘prefix/man/man1’
Unix-style man pages describing Octave.

‘prefix/info’
Info files describing Octave.

‘prefix/share/octave/version/m’
Function files distributed with Octave. This includes the Octave version,
so that multiple versions of Octave may be installed at the same time.

‘prefix/lib/octave/version/exec/arch ’
Executables to be run by Octave rather than the user.

‘prefix/lib/octave/version/oct/arch ’
Object files that will be dynamically loaded.

‘prefix/share/octave/version/imagelib’
Image files that are distributed with Octave.

F.1 Installation Problems

This section contains a list of problems (and some apparent problems that don’t really mean
anything is wrong) that may show up during installation of Octave.
• On some SCO systems, info fails to compile if HAVE_TERMIOS_H is defined in

‘config.h’. Simply removing the definition from ‘info/config.h’ should allow it to
compile.

• If configure finds dlopen, dlsym, dlclose, and dlerror, but not the header file
‘dlfcn.h’, you need to find the source for the header file and install it in the directory
‘usr/include’. This is reportedly a problem with Slackware 3.1. For Linux/GNU
systems, the source for ‘dlfcn.h’ is in the ldso package.

• Building ‘.oct’ files doesn’t work.
You should probably have a shared version of libstdc++. A patch is needed to build
shared versions of version 2.7.2 of libstdc++ on the HP-PA architecture. You can find
the patch at ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix.

• On some alpha systems there may be a problem with the libdxml library, resulting in
floating point errors and/or segmentation faults in the linear algebra routines called by
Octave. If you encounter such problems, then you should modify the configure script
so that SPECIAL_MATH_LIB is not set to -ldxml.

• On FreeBSD systems Octave may hang while initializing some internal constants. The
fix appears to be to use

options GPL_MATH_EMULATE

rather than

ftp://ftp.cygnus.com/pub/g++/libg++-2.7.2-hppa-gcc-fix
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options MATH_EMULATE

in the kernel configuration files (typically found in the directory ‘/sys/i386/conf’.
After making this change, you’ll need to rebuild the kernel, install it, and reboot.

• If you encounter errors like
passing ‘void (*)()’ as argument 2 of
‘octave_set_signal_handler(int, void (*)(int))’

or
warning: ANSI C++ prohibits conversion from ‘(int)’

to ‘(...)’

while compiling ‘sighandlers.cc’, you may need to edit some files in the gcc include
subdirectory to add proper prototypes for functions there. For example, Ultrix 4.2
needs proper declarations for the signal function and the SIG_IGN macro in the file
‘signal.h’.
On some systems the SIG_IGN macro is defined to be something like this:

#define SIG_IGN (void (*)())1

when it should really be something like:
#define SIG_IGN (void (*)(int))1

to match the prototype declaration for the signal function. This change should also
be made for the SIG_DFL and SIG_ERR symbols. It may be necessary to change the
definitions in ‘sys/signal.h’ as well.
The gcc fixincludes and fixproto scripts should probably fix these problems when
gcc installs its modified set of header files, but I don’t think that’s been done yet.
You should not change the files in ‘/usr/include’. You can find the gcc include
directory tree by running the command

gcc -print-libgcc-file-name

The directory of gcc include files normally begins in the same directory that contains
the file ‘libgcc.a’.

• Some of the Fortran subroutines may fail to compile with older versions of the Sun
Fortran compiler. If you get errors like

zgemm.f:
zgemm:
warning: unexpected parent of complex expression subtree
zgemm.f, line 245: warning: unexpected parent of complex
expression subtree

warning: unexpected parent of complex expression subtree
zgemm.f, line 304: warning: unexpected parent of complex
expression subtree

warning: unexpected parent of complex expression subtree
zgemm.f, line 327: warning: unexpected parent of complex
expression subtree

pcc_binval: missing IR_CONV in complex op
make[2]: *** [zgemm.o] Error 1

when compiling the Fortran subroutines in the ‘libcruft’ subdirectory, you should
either upgrade your compiler or try compiling with optimization turned off.
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• On NeXT systems, if you get errors like this:
/usr/tmp/cc007458.s:unknown:Undefined local

symbol LBB7656
/usr/tmp/cc007458.s:unknown:Undefined local

symbol LBE7656

when compiling ‘Array.cc’ and ‘Matrix.cc’, try recompiling these files without -g.
• Some people have reported that calls to shell cmd and the pager do not work on SunOS

systems. This is apparently due to having G_HAVE_SYS_WAIT defined to be 0 instead of
1 when compiling libg++.

• On NeXT systems, linking to ‘libsys_s.a’ may fail to resolve the following functions
_tcgetattr
_tcsetattr
_tcflow

which are part of ‘libposix.a’. Unfortunately, linking Octave with -posix results in
the following undefined symbols.

.destructors_used

.constructors_used
_objc_msgSend
_NXGetDefaultValue
_NXRegisterDefaults
.objc_class_name_NXStringTable
.objc_class_name_NXBundle

One kluge around this problem is to extract ‘termios.o’ from ‘libposix.a’, put it in
Octave’s ‘src’ directory, and add it to the list of files to link together in the makefile.
Suggestions for better ways to solve this problem are welcome!

• If Octave crashes immediately with a floating point exception, it is likely that it is
failing to initialize the IEEE floating point values for infinity and NaN.
If your system actually does support IEEE arithmetic, you should be able to fix this
problem by modifying the function octave_ieee_init in the file ‘lo-ieee.cc’ to cor-
rectly initialize Octave’s internal infinity and NaN variables.
If your system does not support IEEE arithmetic but Octave’s configure script incor-
rectly determined that it does, you can work around the problem by editing the file
‘config.h’ to not define HAVE_ISINF, HAVE_FINITE, and HAVE_ISNAN.
In any case, please report this as a bug since it might be possible to modify Octave’s
configuration script to automatically determine the proper thing to do.

• If Octave is unable to find a header file because it is installed in a location that is not
normally searched by the compiler, you can add the directory to the include search
path by specifying (for example) CPPFLAGS=-I/some/nonstandard/directory as an
argument to configure. Other variables that can be specified this way are CFLAGS,
CXXFLAGS, FFLAGS, and LDFLAGS. Passing them as options to the configure script also
records them in the ‘config.status’ file. By default, CPPFLAGS and LDFLAGS are
empty, CFLAGS and CXXFLAGS are set to "-g -O" and FFLAGS is set to "-O".
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Appendix G Emacs Octave Support

The development of Octave code can greatly be facilitated using Emacs with Octave mode,
a major mode for editing Octave files which can e.g. automatically indent the code, do some
of the typing (with Abbrev mode) and show keywords, comments, strings, etc. in different
faces (with Font-lock mode on devices that support it).

It is also possible to run Octave from within Emacs, either by directly entering commands
at the prompt in a buffer in Inferior Octave mode, or by interacting with Octave from within
a file with Octave code. This is useful in particular for debugging Octave code.

Finally, you can convince Octave to use the Emacs info reader for help -i.
All functionality is provided by the Emacs Lisp package EOS (for “Emacs Octave Sup-

port”). This chapter describes how to set up and use this package.
Please contact <Kurt.Hornik@wu-wien.ac.at> if you have any questions or suggestions on

using EOS.

G.1 Installing EOS

The Emacs package EOS consists of the three files ‘octave-mod.el’, ‘octave-inf.el’,
and ‘octave-hlp.el’. These files, or better yet their byte-compiled versions, should be
somewhere in your Emacs load-path.

If you have GNU Emacs with a version number at least as high as 19.35, you are all set
up, because EOS is respectively will be part of GNU Emacs as of version 19.35.

Otherwise, copy the three files from the ‘emacs’ subdirectory of the Octave distribution
to a place where Emacs can find them (this depends on how your Emacs was installed).
Byte-compile them for speed if you want.

G.2 Using Octave Mode

If you are lucky, your sysadmins have already arranged everything so that Emacs automat-
ically goes into Octave mode whenever you visit an Octave code file as characterized by its
extension ‘.m’. If not, proceed as follows.
1. To begin using Octave mode for all ‘.m’ files you visit, add the following lines to a file

loaded by Emacs at startup time, typically your ‘~/.emacs’ file:
(autoload ’octave-mode "octave-mod" nil t)
(setq auto-mode-alist

(cons ’("\\.m$" . octave-mode) auto-mode-alist))

2. Finally, to turn on the abbrevs, auto-fill and font-lock features automatically, also add
the following lines to one of the Emacs startup files:

(add-hook ’octave-mode-hook
(lambda ()
(abbrev-mode 1)
(auto-fill-mode 1)
(if (eq window-system ’x)

(font-lock-mode 1))))

See the Emacs manual for more information about how to customize Font-lock mode.
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In Octave mode, the following special Emacs commands can be used in addition to the
standard Emacs commands.

C-h m Describe the features of Octave mode.

LFD Reindent the current Octave line, insert a newline and indent the new line
(octave-reindent-then-newline-and-indent). An abbrev before point is
expanded if abbrev-mode is non-nil.

TAB Indents current Octave line based on its contents and on previous lines (indent-
according-to-mode).

; Insert an “electric” semicolon (octave-electric-semi). If octave-auto-
indent is non-nil, reindent the current line. If octave-auto-newline is
non-nil, automagically insert a newline and indent the new line.

‘ Start entering an abbreviation (octave-abbrev-start). If Abbrev mode is
turned on, typing ‘C-h or ‘? lists all abbrevs. Any other key combination is
executed normally. Note that all Octave abbrevs start with a grave accent.

M-LFD Break line at point and insert continuation marker and alignment (octave-
split-line).

M-TAB Perform completion on Octave symbol preceding point, comparing that sym-
bol against Octave’s reserved words and built-in variables (octave-complete-
symbol).

M-C-a Move backward to the beginning of a function (octave-beginning-of-defun).
With prefix argument N, do it that many times if N is positive; otherwise, move
forward to the N-th following beginning of a function.

M-C-e Move forward to the end of a function (octave-end-of-defun). With prefix
argument N, do it that many times if N is positive; otherwise, move back to
the N-th preceding end of a function.

M-C-h Puts point at beginning and mark at the end of the current Octave function,
i.e., the one containing point or following point (octave-mark-defun).

M-C-q Properly indents the Octave function which contains point (octave-indent-
defun).

M-; If there is no comment already on this line, create a code-level comment (started
by two comment characters) if the line is empty, or an in-line comment (started
by one comment character) otherwise (octave-indent-for-comment). Point
is left after the start of the comment which is properly aligned.

C-c ; Puts the comment character ‘#’ (more precisely, the string value of octave-
comment-start) at the beginning of every line in the region (octave-comment-
region). With just C-u prefix argument, uncomment each line in the region.
A numeric prefix argument N means use N comment characters.

C-c : Uncomments every line in the region (octave-uncomment-region).

C-c C-p Move one line of Octave code backward, skipping empty and comment lines
(octave-previous-code-line). With numeric prefix argument N, move that
many code lines backward (forward if N is negative).
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C-c C-n Move one line of Octave code forward, skipping empty and comment lines
(octave-next-code-line). With numeric prefix argument N, move that many
code lines forward (backward if N is negative).

C-c C-a Move to the ‘real’ beginning of the current line (octave-beginning-of-line).
If point is in an empty or comment line, simply go to its beginning; otherwise,
move backwards to the beginning of the first code line which is not inside a
continuation statement, i.e., which does not follow a code line ending in ‘...’
or ‘\’, or is inside an open parenthesis list.

C-c C-e Move to the ‘real’ end of the current line (octave-end-of-line). If point is in
a code line, move forward to the end of the first Octave code line which does
not end in ‘...’ or ‘\’ or is inside an open parenthesis list. Otherwise, simply
go to the end of the current line.

C-c M-C-n Move forward across one balanced begin-end block of Octave code (octave-
forward-block). With numeric prefix argument N, move forward across n
such blocks (backward if N is negative).

C-c M-C-p Move back across one balanced begin-end block of Octave code (octave-
backward-block). With numeric prefix argument N, move backward across N
such blocks (forward if N is negative).

C-c M-C-d Move forward down one begin-end block level of Octave code (octave-down-
block). With numeric prefix argument, do it that many times; a negative
argument means move backward, but still go down one level.

C-c M-C-u Move backward out of one begin-end block level of Octave code (octave-
backward-up-block). With numeric prefix argument, do it that many times;
a negative argument means move forward, but still to a less deep spot.

C-c M-C-h Put point at the beginning of this block, mark at the end (octave-mark-block).
The block marked is the one that contains point or follows point.

C-c ] Close the current block on a separate line (octave-close-block). An error is
signaled if no block to close is found.

C-c f Insert a function skeleton, prompting for the function’s name, arguments and
return values which have to be entered without parentheses (octave-insert-
defun).

C-c C-h Search the function, operator and variable indices of all info files with docu-
mentation for Octave for entries (octave-help). If used interactively, the entry
is prompted for with completion. If multiple matches are found, one can cycle
through them using the standard ‘,’ (Info-index-next) command of the Info
reader.
The variable octave-help-files is a list of files to search through and defaults
to ’("octave"). If there is also an Octave Local Guide with corresponding info
file, say, ‘octave-LG’, you can have octave-help search both files by

(setq octave-help-files ’("octave" "octave-LG"))

in one of your Emacs startup files.
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A common problem is that the RET key does not indent the line to where the new text
should go after inserting the newline. This is because the standard Emacs convention is
that RET (aka C-m) just adds a newline, whereas LFD (aka C-j) adds a newline and indents
it. This is particularly inconvenient for users with keyboards which do not have a special
LFD key at all; in such cases, it is typically more convenient to use RET as the LFD key
(rather than typing C-j).

You can make RET do this by adding
(define-key octave-mode-map "\C-m"
’octave-reindent-then-newline-and-indent)

to one of your Emacs startup files. Another, more generally applicable solution is
(defun RET-behaves-as-LFD ()
(let ((x (key-binding "\C-j")))
(local-set-key "\C-m" x)))

(add-hook ’octave-mode-hook ’RET-behaves-as-LFD)

(this works for all modes by adding to the startup hooks, without having to know the
particular binding of RET in that mode!). Similar considerations apply for using M-RET
as M-LFD. As Barry A. Warsaw <bwarsaw@cnri.reston.va.us> says in the documentation
for his cc-mode, “This is a very common question. :-) If you want this to be the default
behavior, don’t lobby me, lobby RMS!”

The following variables can be used to customize Octave mode.

octave-auto-indent
Non-nil means auto-indent the current line after a semicolon or space. Default
is nil.

octave-auto-newline
Non-nil means auto-insert a newline and indent after semicolons are typed.
The default value is nil.

octave-blink-matching-block
Non-nil means show matching begin of block when inserting a space, newline
or ‘;’ after an else or end keyword. Default is t. This is an extremely useful
feature for automatically verifying that the keywords match—if they don’t, an
error message is displayed.

octave-block-offset
Extra indentation applied to statements in block structures. Default is 2.

octave-continuation-offset
Extra indentation applied to Octave continuation lines. Default is 4.

octave-continuation-string
String used for Octave continuation lines. Normally ‘\’.

octave-mode-startup-message
If t (default), a startup message is displayed when Octave mode is called.

If Font Lock mode is enabled, Octave mode will display
• strings in font-lock-string-face

• comments in font-lock-comment-face
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• the Octave reserved words (such as all block keywords) and the text functions (such as
‘cd’ or ‘who’) which are also reserved using font-lock-keyword-face

• the built-in operators (‘&&’, ‘==’, . . . ) using font-lock-reference-face

• and the function names in function declarations in font-lock-function-name-face.

There is also rudimentary support for Imenu (currently, function names can be indexed).
You can generate TAGS files for Emacs from Octave ‘.m’ files using the shell script

octave-tags that is installed alongside your copy of Octave.
Customization of Octave mode can be performed by modification of the variable octave-

mode-hook. If the value of this variable is non-nil, turning on Octave mode calls its value.
If you discover a problem with Octave mode, you can conveniently send a bug report

using C-c C-b (octave-submit-bug-report). This automatically sets up a mail buffer
with version information already added. You just need to add a description of the problem,
including a reproducible test case and send the message.

G.3 Running Octave From Within Emacs

The package ‘octave’ provides commands for running an inferior Octave process in a special
Emacs buffer. Use

M-x run-octave

to directly start an inferior Octave process. If Emacs does not know about this command,
add the line

(autoload ’run-octave "octave-inf" nil t)

to your ‘.emacs’ file.
This will start Octave in a special buffer the name of which is specified by the variable

inferior-octave-buffer and defaults to "*Inferior Octave*". From within this buffer,
you can interact with the inferior Octave process ‘as usual’, i.e., by entering Octave com-
mands at the prompt. The buffer is in Inferior Octave mode, which is derived from the
standard Comint mode, a major mode for interacting with an inferior interpreter. See the
documentation for comint-mode for more details, and use C-h b to find out about available
special keybindings.

You can also communicate with an inferior Octave process from within files with Octave
code (i.e., buffers in Octave mode), using the following commands.

C-c i l Send the current line to the inferior Octave process (octave-send-line). With
positive prefix argument N, send that many lines. If octave-send-line-auto-
forward is non-nil, go to the next unsent code line.

C-c i b Send the current block to the inferior Octave process (octave-send-block).

C-c i f Send the current function to the inferior Octave process (octave-send-defun).

C-c i r Send the region to the inferior Octave process (octave-send-region).

C-c i s Make sure that ‘inferior-octave-buffer’ is displayed (octave-show-process-
buffer).

C-c i h Delete all windows that display the inferior Octave buffer (octave-hide-
process-buffer).
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C-c i k Kill the inferior Octave process and its buffer (octave-kill-process).

The effect of the commands which send code to the Octave process can be customized
by the following variables.

octave-send-echo-input
Non-nil means echo input sent to the inferior Octave process. Default is t.

octave-send-show-buffer
Non-nil means display the buffer running the Octave process after sending a
command (but without selecting it). Default is t.

If you send code and there is no inferior Octave process yet, it will be started automat-
ically.

The startup of the inferior Octave process is highly customizable. The variable
inferior-octave-startup-args can be used for specifying command lines arguments
to be passed to Octave on startup as a list of strings. For example, to suppress the
startup message and use ‘traditional’ mode, set this to ’("-q" "--traditional"). You
can also specify a startup file of Octave commands to be loaded on startup; note that
these commands will not produce any visible output in the process buffer. Which file to
use is controlled by the variable inferior-octave-startup-file. If this is nil, the file
‘~/.emacs-octave’ is used if it exists.

And finally, inferior-octave-mode-hook is run after starting the process and putting
its buffer into Inferior Octave mode. Hence, if you like the up and down arrow keys to
behave in the interaction buffer as in the shell, and you want this buffer to use nice colors,
add

(add-hook ’inferior-octave-mode-hook
(lambda ()
(turn-on-font-lock)
(define-key inferior-octave-mode-map [up]

’comint-previous-input)
(define-key inferior-octave-mode-map [down]

’comint-next-input)))

to your ‘.emacs’ file. You could also swap the roles of C-a (beginning-of-line) and C-c
C-a (comint-bol) using this hook.

Note that if you set your Octave prompts to something different from the de-
faults, make sure that inferior-octave-prompt matches them. Otherwise,
nothing will work, because Emacs will not know when Octave is waiting for
input, or done sending output.

G.4 Using the Emacs Info Reader for Octave

You may also use the Emacs Info reader with Octave’s doc function. For this, the package
‘gnuserv’ needs to be installed.

If ‘gnuserv’ is installed, add the lines
(autoload ’octave-help "octave-hlp" nil t)
(require ’gnuserv)
(gnuserv-start)
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to your ‘.emacs’ file.
You can use either ‘plain’ Emacs Info or the function octave-help as your Octave info

reader (for ‘help -i’). In the former case, use info_program ("info-emacs-info"). The
latter is perhaps more attractive because it allows to look up keys in the indices of several
info files related to Octave (provided that the Emacs variable octave-help-files is set
correctly). In this case, use info_program ("info-emacs-octave-help").

If you use Octave from within Emacs, it is best to add these settings to your
‘~/.emacs-octave’ startup file (or the file pointed to by the Emacs variable
inferior-octave-startup-file).
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Appendix H GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/
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Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.
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The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.
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When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this Li-

cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:
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a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
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The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:
a. Disclaiming warranty or limiting liability differently from the terms of sections 15

and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices or author attributions

in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or
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d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
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However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.
An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
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available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
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The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.
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END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:
program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
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