
Units Conversion
Edition 1.89e for units Version 1.89

Adrian Mariano

Copyright c© 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2007, 2011 Free Software
Foundation, Inc

The author gives unlimited permission to copy, translate and/or distribute this document,
with or without modifications, as long as this notice is preserved.

Units Conversion 1

Units Conversion

1 Overview of units

The units program converts quantities expressed in various systems of measurement to their
equivalents in other systems of measurement. Like many similar programs, it can handle
multiplicative scale changes. It can also handle nonlinear conversions such as Fahrenheit
to Celsius.1 See Section 6.1 [Temperature Conversions], page 10. The program can also
perform conversions from and to sums of units, such as converting between meters and feet
plus inches.

Beyond simple unit conversions, units can be used as a general-purpose scientific cal-
culator that keeps track of units in its calculations. You can form arbitrary complex math-
ematical expressions of dimensions including sums, products, quotients, powers, and even
roots of dimensions. Thus you can ensure accuracy and dimensional consistency when work-
ing with long expressions that involve many different units that may combine in complex
ways.

The units are defined in an external data file. You can use the extensive data file that
comes with this program, or you can provide your own data file to suit your needs. You
can also use your own data file to supplement the standard data file.

Basic operation is simple: you enter the units that you want to convert from and the
units that you want to convert to. You can use the program interactively with prompts, or
you can use it from the command line. This document describes the basic as well as the
advanced features of units in detail, with many examples.

2 Interacting with units

To invoke units for interactive use, type units at your shell prompt. The program will
print something like this:

2131 units, 53 prefixes, 24 nonlinear units

You have:

At the ‘You have:’ prompt, type the quantity and units that you are converting from. For
example, if you want to convert ten meters to feet, type 10 meters. Next, units will print
‘You want:’. You should type the units you want to convert to. To convert to feet, you
would type feet. Note that if the readline library was compiled in then the tab key can
be used to complete unit names. See Chapter 14 [Readline Support], page 24, for more
information about readline.

The answer will be displayed in two ways. The first line of output, which is marked with
a ‘*’ to indicate multiplication, gives the result of the conversion you have asked for. The
second line of output, which is marked with a ‘/’ to indicate division, gives the inverse of
the conversion factor. If you convert 10 meters to feet, units will print

1 But Fahrenheit to Celsius is linear, you insist. Not so. A transformation T is linear if T (x + y) =
T (x) + T (y) and this fails for T (x) = ax+ b. This transformation is affine, but not linear.

Units Conversion 2

* 32.808399

/ 0.03048

which tells you that 10 meters equals about 32.8 feet. The second number gives the con-
version in the opposite direction. In this case, it tells you that 1 foot is equal to about 0.03
dekameters since the dekameter is 10 meters. It also tells you that 1/32.8 is about 0.03.

The units program prints the inverse because sometimes it is a more convenient number.
In the example above, for example, the inverse value is an exact conversion: a foot is exactly
0.03048 dekameters. But the number given the other direction is inexact.

If you convert grains to pounds, you will see the following:

You have: grains

You want: pounds

* 0.00014285714

/ 7000

>From the second line of the output you can immediately see that a grain is equal to a
seven thousandth of a pound. This is not so obvious from the first line of the output. If
you find the output format confusing, try using the ‘--verbose’ option:

You have: grain

You want: aeginamina

grain = 0.00010416667 aeginamina

grain = (1 / 9600) aeginamina

If you request a conversion between units that measure reciprocal dimensions, then units

will display the conversion results with an extra note indicating that reciprocal conversion
has been done:

You have: 6 ohms

You want: siemens

reciprocal conversion

* 0.16666667

/ 6

Reciprocal conversion can be suppressed by using the ‘--strict’ option. As usual, use the
‘--verbose’ option to get more comprehensible output:

You have: tex

You want: typp

reciprocal conversion

1 / tex = 496.05465 typp

1 / tex = (1 / 0.0020159069) typp

You have: 20 mph

You want: sec/mile

reciprocal conversion

1 / 20 mph = 180 sec/mile

1 / 20 mph = (1 / 0.0055555556) sec/mile

If you enter incompatible unit types, the units program will print a message indicating
that the units are not conformable and it will display the reduced form for each unit:

Units Conversion 3

You have: ergs/hour

You want: fathoms kg^2 / day

conformability error

2.7777778e-11 kg m^2 / sec^3

2.1166667e-05 kg^2 m / sec

If you only want to find the reduced form or definition of a unit, simply press return at the
‘You want:’ prompt. Here is an example:

You have: jansky

You want:

Definition: fluxunit = 1e-26 W/m^2 Hz = 1e-26 kg / s^2

The output from units indicates that the jansky is defined to be equal to a fluxunit which
in turn is defined to be a certain combination of watts, meters, and hertz. The fully reduced
(and in this case somewhat more cryptic) form appears on the far right.

Some named units are treated as dimensionless in some situations. These units include
the radian and steradian. These units will be treated as equal to 1 in units conversions.
Power is equal to torque times angular velocity. This conversion can only be performed if
the radian is dimensionless.

You have: (14 ft lbf) (12 radians/sec)

You want: watts

* 227.77742

/ 0.0043902509

Note that named dimensionless units are not treated as dimensionless in other contexts.
They cannot be used as exponents so for example, ‘meter^radian’ is not allowed.

If you want a list of options you can type ? at the ‘You want:’ prompt. The program
will display a list of named units that are conformable with the unit that you entered at
the ‘You have:’ prompt above. Note that conformable unit combinations will not appear
on this list.

Typing help at either prompt displays a short help message. You can also type help

followed by a unit name. This will invoke a pager on the units data base at the point where
that unit is defined. You can read the definition and comments that may give more details
or historical information about the unit.

Typing search text will display a list of all of the units whose names contain text as a
substring along with their definitions. This may help in the case where you aren’t sure of
the right unit name.

3 Using units Non-Interactively

The units program can perform units conversions non-interactively from the command
line. To do this, type the command, type the original unit expression, and type the new
units you want. If a units expression contains non-alphanumeric characters, you may need
to protect it from interpretation by the shell using single or double quote characters.

If you type

units "2 liters" quarts

then units will print

Units Conversion 4

* 2.1133764

/ 0.47317647

and then exit. The output tells you that 2 liters is about 2.1 quarts, or alternatively that
a quart is about 0.47 times 2 liters.

If the conversion is successful, then units will return success (zero) to the calling en-
vironment. If you enter non-conformable units then units will print a message giving the
reduced form of each unit and it will return failure (nonzero) to the calling environment.

When you invoke units with only one argument, it will print out the definition of the
specified unit. It will return failure if the unit is not defined and success if the unit is
defined.

4 Unit Definitions

The conversion information is read from a units data file that is called ‘units.dat’ and is
usually located in the ‘/usr/share’ directory. If you invoke units with the ‘-V’ option, it
will print the location of this file. The default file includes definitions for all familiar units,
abbreviations and metric prefixes. It also includes many obscure or archaic units.

Many constants of nature are defined, including these:

pi ratio of circumference to diameter
c speed of light
e charge on an electron
force acceleration of gravity
mole Avogadro’s number
water pressure per unit height of water
Hg pressure per unit height of mercury
au astronomical unit
k Boltzman’s constant
mu0 permeability of vacuum
epsilon0 permittivity of vacuum
G Gravitational constant
mach speed of sound

The standard data file includes atomic masses for all of the elements and numerous other
constants. Also included are the densities of various ingredients used in baking so that ‘2
cups flour_sifted’ can be converted to ‘grams’. This is not an exhaustive list. Consult
the units data file to see the complete list, or to see the definitions that are used.

The unit ‘pound’ is a unit of mass. To get force, multiply by the force conversion
unit ‘force’ or use the shorthand ‘lbf’. (Note that ‘g’ is already taken as the standard
abbreviation for the gram.) The unit ‘ounce’ is also a unit of mass. The fluid ounce is
‘fluidounce’ or ‘floz’. British capacity units that differ from their US counterparts, such
as the British Imperial gallon, are prefixed with ‘br’. Currency is prefixed with its country
name: ‘belgiumfranc’, ‘britainpound’.

When searching for a unit, if the specified string does not appear exactly as a unit name,
then the units program will try to remove a trailing ‘s’, ‘es’ or ‘ies’. If that fails, units
will check for a prefix. The database includes all of the standard metric prefixes. Only

Units Conversion 5

one prefix is permitted per unit, so ‘micromicrofarad’ will fail. However, prefixes can
appear alone with no unit following them, so ‘micro*microfarad’ will work, as will ‘micro
microfarad’.

To find out which units and prefixes are available, read the standard units data file,
which is extensively annotated.

4.1 English Customary Length Measure

Before 1959, the value of a yard (and other units of measure defined in terms of it) differed
slightly among English-speaking countries. In 1959, Australia, Canada, New Zealand, the
United Kingdom, the United States, and South Africa adopted the Canadian value of 1 yard
= 0.9144 m (exactly), which was approximately halfway between the values used by the UK
and the US; it had the additional advantage of making 1 inch = 2.54 cm (exactly). This
new standard was termed the International Yard. Australia, Canada, and the UK then
defined all customary lengths in terms of the International Yard (Australia did not define
the furlong or rod); because many US land surveys were in terms of the pre-1959 units, the
US continued to define customary surveyors’ units (furlong, chain, rod, and link) in terms
of the previous value for the foot, which was termed the US survey foot. The US defined
a US survey mile as 5280 US survey feet, and defined a statute mile as a US survey mile.
The US values for these units differ from the international values by about 2 ppm.

The units program uses the international values for these units; the US values can
be obtained by using either the ‘US’ or the ‘survey’ prefix. In either case, the simple
familiar relationships among the units are maintained, e.g., 1 ‘furlong’ = 660 ‘ft’, and
1 ‘USfurlong’ = 660 ‘USft’, though the metric equivalents differ slightly between the two
cases. The ‘US’ prefix or the ‘survey’ prefix can also be used to obtain the US survey
mile and the value of the US yard prior to 1959, e.g., ‘USmile’ or ‘surveymile’ (but not
‘USsurveymile’). To get the US value of the statute mile, use either ‘USstatutemile’ or
‘USmile’.

Except for distances that extend over hundreds of miles (such as in the US State Plane
Coordinate System), the differences in the miles are usually insignificant:

You have: 100 surveymile - 100 mile

You want: inch

* 12.672025

/ 0.078913984

The pre-1959 UK values for these units can be obtained with the prefix ‘UK’.

In the US, the acre is officially defined in terms of the US survey foot, and here units

uses that definition. If you want an acre defined according to the international foot, use
‘intacre’; the difference between these units is about 4 parts per million.

5 Unit Expressions

5.1 Operators

You can enter more complicated units or fractions by combining units with operations such
as powers, multiplication, division, addition, subtraction, and parentheses for grouping.

Units Conversion 6

You can use the customary symbols for these operators when units is invoked with its
default options. Additionally, units supports some extensions, including high priority
multiplication using a space, and a high priority numerical division operator (‘|’) that can
simplify some expressions.

Powers of units can be specified using the ‘^’ character as shown in the following example,
or by simple concatenation of a unit and its exponent: ‘cm3’ is equivalent to ‘cm^3’; if the
exponent is more than one digit, the ‘^’ is required. An exponent like ‘2^3^2’ is evaluated
right to left as usual. The ‘^’ operator has the second highest precedence. You can also use
‘**’ as an exponent operator.

You have: cm^3

You want: gallons

* 0.00026417205

/ 3785.4118

You have: arabicfoot * arabictradepound * force

You want: ft lbf

* 0.7296

/ 1.370614

You multiply units using a space or an asterisk (‘*’). The example above shows both forms.
You can divide units using the slash (‘/’) or with ‘per’.

You have: furlongs per fortnight

You want: m/s

* 0.00016630986

/ 6012.8727

When a unit includes a prefix, exponent operators apply to the combination, so
‘centimeter^3’ gives cubic centimeters. If you separate the prefix from the unit with any
multiplication operator, such as ‘centi meter^3’, then the prefix is treated as a separate
unit, so the exponent does not apply. The second example would be a hundredth of a
cubic meter, not a centimeter.

Multiplication using a space has a higher precedence than division using a slash and is
evaluated left to right; in effect, the first ‘/’ character marks the beginning of the denom-
inator of a unit expression. This makes it simple to enter a quotient with several terms in
the denominator: ‘W / m^2 Hz’. If you multiply with ‘*’ then you must group the terms in
the denominator with parentheses: ‘ / (m^2 * Hz)’.

The higher precedence of the space operator may not always be advantageous. For
example, ‘m/s s/day’ is equivalent to ‘m / s s day’ and has dimensions of length per time
cubed. Similarly, ‘1/2 meter’ refers to a unit of reciprocal length equivalent to 0.5/meter,
perhaps not what you would intend if you entered that expression. The ‘*’ operator is
convenient for multiplying a sequence of quotients. With the ‘*’ operator, the example
above becomes ‘m/s * s/day’, which is equivalent to ‘m/day’. Similarly, you could write
‘1/2 * meter’ to get half a meter. Alternatively, parentheses can be used for grouping:
you could write ‘(1/2) meter)’ to get half a meter. See Section 5.5 [Complicated Unit
Expressions], page 9, for an illustration of the various options.

The units program supports another option for numerical fractions. You can indicate
division of numbers with the vertical bar (‘|’), so if you wanted half a meter you could write

Units Conversion 7

‘1|2 meter’. This operator has the highest precedence, so you can write the square root of
two thirds ‘2|3^1|2’. You cannot use the vertical bar to indicate division of non-numerical
units (e.g., ‘m|s’ results in an error message).

You have: 1|2 inch

You want: cm

* 1.27

/ 0.78740157

You can use parentheses for grouping:

You have: (1/2) kg / (kg/meter)

You want: league

* 0.00010356166

/ 9656.0833

5.2 Sums and Differences of Units

Outside of the SI, it is sometimes desirable to add values of different units. You may also
wish to use units as a calculator that keeps track of units. Sums of conformable units are
written with the ‘+’ character, and differences with the ‘-’ character.

You have: 2 hours + 23 minutes + 32 seconds

You want: seconds

* 8612

/ 0.00011611705

You have: 12 ft + 3 in

You want: cm

* 373.38

/ 0.0026782366

You have: 2 btu + 450 ft lbf

You want: btu

* 2.5782804

/ 0.38785542

The expressions that are added or subtracted must reduce to identical expressions in prim-
itive units, or an error message will be displayed:

You have: 12 printerspoint - 4 heredium

^

Illegal sum of non-conformable units

As usual, the precedence for ‘+’ and ‘-’ is lower than that of the other operators. A fractional
quantity such as 2 1/2 cups can be given as ‘(2+1|2) cups’; the parentheses are necessary
because multiplication has higher precedence than addition. If you omit the parentheses,
units attempts to add ‘2’ and ‘1|2 cups’, and you get an error message:

You have: 2+1|2 cups

^

Illegal sum or difference of non-conformable units

The expression could also be correctly written as ‘(2+1/2) cups’. Note that if you write ‘2
1|2 cups’ the space is interpreted as multiplication so the result is the same as ‘1 cup’.

Units Conversion 8

The ‘+’ and ‘-’ characters sometimes appears in exponents like ‘3.43e+8’. This leads to
an ambiguity in an expression like ‘3e+2 yC’. The unit ‘e’ is a small unit of charge, so this
can be regarded as equivalent to ‘(3e+2) yC’ or ‘(3 e)+(2 yC)’. This ambiguity is resolved
by always interpreting ‘+’ and ‘-’ as part of an exponent if possible.

5.3 Numbers as Units

For units, numbers are just another kind of unit. They can appear as many times as you
like and in any order in a unit expression. For example, to find the volume of a box that is
2 ft by 3 ft by 12 ft in steres, you could do the following:

You have: 2 ft 3 ft 12 ft

You want: stere

* 2.038813

/ 0.49048148

You have: $ 5 / yard

You want: cents / inch

* 13.888889

/ 0.072

And the second example shows how the dollar sign in the units conversion can precede the
five. Be careful: units will interpret ‘$5’ with no space as equivalent to ‘dollar^5’.

5.4 Built-in Functions

Several built-in functions are provided: ‘sin’, ‘cos’, ‘tan’, ‘ln’, ‘log’, ‘log2’, ‘exp’, ‘acos’,
‘atan’ and ‘asin’. The ‘sin’, ‘cos’, and ‘tan’ functions require either a dimensionless
argument or an argument with dimensions of angle.

You have: sin(30 degrees)

You want:

Definition: 0.5

You have: sin(pi/2)

You want:

Definition: 1

You have: sin(3 kg)

^

Unit not dimensionless

The other functions on the list require dimensionless arguments. The inverse trigonometric
functions return arguments with dimensions of angle.

If you wish to take roots of units, you may use the ‘sqrt’ or ‘cuberoot’ functions. These
functions require that the argument have the appropriate root. You can obtain higher roots
by using fractional exponents:

Units Conversion 9

You have: sqrt(acre)

You want: feet

* 208.71074

/ 0.0047913202

You have: (400 W/m^2 / stefanboltzmann)^(1/4)

You have:

Definition: 289.80882 K

You have: cuberoot(hectare)

^

Unit not a root

5.5 Complicated Unit Expressions

The units program is especially helpful in ensuring accuracy and dimensional consistency
when converting lengthy unit expressions. For example, one form of the Darcy–Weisbach
fluid-flow equation is

ΔP =
8

π2
ρfL

Q2

d5

where ΔP is the pressure drop, ρ is the mass density, f is the (dimensionless) friction factor,
L is the length of the pipe, Q is the volumetric flow rate, and d is the pipe diameter. It
might be desired to have the equation in the form

ΔP = A1ρfL
Q2

d5

that accepted the user’s normal units; for typical units used in the US, the required con-
version could be something like

You have: (8/pi^2)(lbm/ft^3)ft(ft^3/s)^2(1/in^5)

You want: psi

* 43.533969

/ 0.022970568

The parentheses allow individual terms in the expression to be entered naturally, as they
might be read from the formula. Alternatively, the multiplication could be done with the
‘*’ rather than a space; then parentheses are needed only around ‘ft^3/s’ because of its
exponent:

You have: 8/pi^2 * lbm/ft^3 * ft * (ft^3/s)^2 /in^5

You want: psi

* 43.533969

/ 0.022970568

Without parentheses, and using spaces for multiplication, the previous conversion would
need to be entered as

You have: 8 lb ft ft^3 ft^3 / pi^2 ft^3 s^2 in^5

You want: psi

* 43.533969

/ 0.022970568

Units Conversion 10

5.6 Backwards Compatibility: ‘*’ and ‘-’

The original units assigned multiplication a higher precedence than division using the slash.
This differs from the usual precedence rules, which give multiplication and division equal
precedence, and can be confusing for people who think of units as a calculator.

The star operator (‘*’) included in this units program has, by default, the same prece-
dence as division, and hence follows the usual precedence rules. For backwards compatibility
you can invoke units with the ‘--oldstar’ option. Then ‘*’ has a higher precedence than
division, and the same precedence as multiplication using the space.

Historically, the hyphen (‘-’) has been used in technical publications to indicate products
of units, and the original units program treated it as a multiplication operator. Because
units provides several other ways to obtain unit products, and because ‘-’ is a subtraction
operator in general algebraic expressions, units treats the binary ‘-’ as a subtraction op-
erator by default. For backwards compatibility use the ‘--product’ option, which causes
units to treat the binary ‘-’ operator as a product operator. Note that when ‘-’ is a mul-
tiplication operator it has the same precedence as multiplication with a space, giving it a
higher precedence than division.

When ‘-’ is used as a unary operator it negates its operand. Regardless of the units

options, if ‘-’ appears after ‘(’ or after ‘+’ then it will act as a negation operator. So you
can always compute 20 degrees minus 12 minutes by entering ‘20 degrees + -12 arcmin’.
You must use this construction when you define new units because you cannot know what
options will be in force when your definition is processed.

6 Nonlinear Unit Conversions

Nonlinear units are represented using functional notation. They make possible nonlinear
unit conversions such as temperature.

6.1 Temperature Conversions

Conversions between temperatures are different from linear conversions between tempera-
ture increments—see the example below. The absolute temperature conversions are handled
by units starting with ‘temp’, and you must use functional notation. The temperature-
increment conversions are done using units starting with ‘deg’ and they do not require
functional notation.

You have: tempF(45)

You want: tempC

7.2222222

You have: 45 degF

You want: degC

* 25

/ 0.04

Think of ‘tempF(x)’ not as a function but as a notation that indicates that x should have
units of ‘tempF’ attached to it. See Section 9.3 [Defining Nonlinear Units], page 20. The
first conversion shows that if it’s 45 degrees Fahrehneit outside, it’s 7.2 degrees Celsius. The

Units Conversion 11

second conversion indicates that a change of 45 degrees Fahrenheit corresponds to a change
of 25 degrees Celsius. The conversion from ‘tempF(x)’ is to absolute temperature, so that

You have: tempF(45)

You want: degR

* 504.67

/ 0.0019814929

gives the same result as

You have: tempF(45)

You want: tempR

* 504.67

/ 0.0019814929

But if you convert ‘tempF(x)’ to ‘degC’, the output is probably not what you expect:

You have: tempF(45)

You want: degC

* 280.37222

/ 0.0035666871

The result is the temperature in K, because ‘degC’ is defined as ‘K’, the Kelvin. For consis-
tent results, use the ‘tempX ’ units when converting to a temperature rather than converting
a temperature increment.

6.2 Other Nonlinear Units

Some other examples of nonlinear units are numerous different ring sizes and wire gauges,
the grit sizes used for abrasives, the decibel scale, shoe size, scales for the density of sugar
(e.g. baume). The standard data file also supplies units for computing the area of a circle
and the volume of a sphere. See the standard units data file for more details. Note that
wire gauges with multiple zeroes are signified using negative numbers where two zeroes is
‘-1’. Alternatively, you can use the synonyms ‘g00’, ‘g000’, and so on that are defined in
the standard units data file.

You have: wiregauge(11)

You want: inches

* 0.090742002

/ 11.020255

You have: brwiregauge(g00)

You want: inches

* 0.348

/ 2.8735632

You have: 1 mm

You want: wiregauge

18.201919

You have: grit_P(600)

You want: grit_ansicoated

342.76923

Units Conversion 12

The last example shows the conversion from P graded sand paper, which is the European
standard and may be marked “P600” on the back, to the USA standard.

You can compute the area of a circle using the nonlinear unit, ‘circlearea’. You can
also do this using the circularinch or circleinch. The next example shows two ways to
compute the area of a circle with a five inch radius and one way to compute the volume of
a sphere with a radius of one meter.

You have: circlearea(5 in)

You want: in2

* 78.539816

/ 0.012732395

You have: 10^2 circleinch

You want: in2

* 78.539816

/ 0.012732395

You have: spherevol(meter)

You want: ft3

* 147.92573

/ 0.0067601492

7 Unit Lists: Conversion to Sums of Units

Outside of the SI, it is sometimes desirable to convert a single unit to a sum of units—
for example, feet to feet plus inches. The conversion from sums of units was described in
Section 5.2 [Sums and Differences of Units], page 7, and is a simple matter of adding the
units with the ‘+’ sign:

You have: 12 ft + 3 in + 3|8 in

You want: ft

* 12.28125

/ 0.081424936

Although you can similarly write a sum of units to convert to, the result will not be the
conversion to the units in the sum, but rather the conversion to the particular sum that
you have entered:

You have: 12.28125 ft

You want: ft + in + 1|8 in

* 11.228571

/ 0.089058524

The unit expression given at the ‘You want:’ prompt is equivalent to asking for conversion
to multiples of ‘1 ft + 1 in + 1|8 in’, which is 1.09375 ft, so the conversion in the previous
example is equivalent to

You have: 12.28125 ft

You want: 1.09375 ft

* 11.228571

/ 0.089058524

Units Conversion 13

In converting to a sum of units like miles, feet and inches, you typically want the largest
integral value for the first unit, followed by the largest integral value for the next, and the
remainder converted to the last unit. You can do this conversion easily with units using
a special syntax for lists of units. You must list the desired units in order from largest to
smallest, separated by the semicolon (‘;’) character:

You have: 12.28125 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3|8 in

The conversion always gives integer coefficients on the units in the list, except possibly the
last unit when the conversion is not exact:

You have: 12.28126 ft

You want: ft;in;1|8 in

12 ft + 3 in + 3.00096 * 1|8 in

Note that the order in which you list the units is important:

You have: 3 kg

You want: oz;lb

105 oz + 0.051367866 lb

You have: 3 kg

You want: lb;oz

6 lb + 9.8218858 oz

Listing ounces before pounds produces a technically correct result, but not a very useful
one. You must list the units in descending order of size in order to get the most useful
result. Ending a unit list with the separator ‘;’ adds the previous unit to the list; with the
example above, this gives

You have: 12.28126 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in + 0.00096 * 1|8 in

in effect separating the integer and fractional parts of the coefficient for the last unit. In
many cases, you may prefer to round the last coefficient to an integer; you can do this with
the ‘--round’ option. With the previous example, the result is

You have: 12.28126 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in (rounded down to nearest 1|8 in)

Each unit that appears on the list must be conformable with the first unit on the list, and
of course the listed units must also be comformable with the You have unit that you enter.

Units Conversion 14

You have: meter

You want: ft;kg

^

conformability error

ft = 0.3048 m

kg = 1 kg

You have: meter

You want: lb;oz

conformability error

1 m

0.45359237 kg

In the first case, units reports the disagreement between units appearing on the list. In
the second case, units reports disagreement between the unit you entered and the desired
conversion. Note that the conformability error is based on the first unit on the unit list.

Other common candidates for conversion to sums of units are angles and time:

You have: 23.437754 deg

You want; deg;arcmin;arcsec

23 deg + 26 arcmin + 15.9144 arcsec

You have: 7.2319 hr

You want: hr;min;sec

7 hr + 13 min + 54.84 sec

In North America, recipes for cooking typically measure ingredients by volume, and use
units that are not always convenient multiples of each other. Suppose that you have a
recipe for 6 and you wish to make a portion for 1. If the recipe calls for 2 1/2 cups of an
ingredient, you might wish to know the measurements in terms of measuring devices you
have available, you could use units and enter

You have: (2+1|2) cup / 6

You want: cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

1|3 cup + 1 tbsp + 1 tsp

By default, if a unit in a list begins with fraction of the form 1|x and its multiplier is
an integer, the fraction is given as the product of the multiplier and the numerator; for
example,

You have: 12.28125 ft

You want: ft;in;1|8 in;

12 ft + 3 in + 3|8 in

In many cases, such as the example above, this is what is wanted, but sometimes it is not.
For example, a cooking recipe for 6 might call for 5 1/4 cup of an ingredient, but you want
a portion for 2, and your 1-cup measure is not available; you might try

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3|2 cup + 1|4 cup

This result might be fine for a baker who has a 1 1/2-cup measure (and recognizes the
equivalence), but it may not be as useful to someone with more limited set of measures,

Units Conversion 15

who does want to do additional calculations, and only wants to know “How many 1/2-
cup measures to I need to add?” After all, that’s what was actually asked. With the
‘--show-factor’ option, the factor will not be combined with a unity numerator, so that
you get

You have: (5+1|4) cup / 3

You want: 1|2 cup;1|3 cup;1|4 cup

3 * 1|2 cup + 1|4 cup

A user-specified fractional unit with a numerator other than 1 is never overridden, however—
if a unit list specifies ‘3|4 cup;1|2 cup’, a result equivalent to 1 1/2 cups will always be
shown as ‘2 * 3|4 cup’ whether or not the ‘--show-factor’ option is given.

Some applications for unit lists may be less obvious. Suppose that you have a postal
scale and wish to ensure that it’s accurate at 1 oz, but have only metric calibration weights.
You might try

You have: 1 oz

You want: 100 g;50 g; 20 g;10 g;5 g;2 g;1 g;

20 g + 5 g + 2 g + 1 g + 0.34952312 * 1 g

You might then place one each of the 20 g, 5 g, 2 g, and 1 g weights on the scale and hope
that it indicates close to

You have: 20 g + 5 g + 2 g + 1 g

You want: oz;

0.98767093 oz

Appending ‘;’ to ‘oz’ forces a one-line display that includes the unit.

A unit list such as

cup;1|2 cup;1|3 cup;1|4 cup;tbsp;tsp;1|2 tsp;1|4 tsp

can be tedious to enter. The units program provides shorthand names for some common
combinations:

hms hours, minutes, seconds
dms angle: degrees, minutes, seconds
time years, days, hours, minutes and seconds
usvol US cooking volume: cups and smaller

Using these shorthands, or unit list aliases, you can do the following conversions:

You have: anomalisticyear

You want: time

1 year + 25 min + 3.4653216 sec

You have: 1|6 cup

You want: usvol

2 tbsp + 2 tsp

You have: usvol

Unknown unit ’usvol’

Note that unit list aliases have no effect at the ‘You have:’ prompt, and units treats them
as unknown units. You cannot combine a unit list alias with other units: it must appear
alone at the ‘You want:’ prompt.

When you specify compact output with ‘--compact’, ‘--terse’ or ‘-t’ and perform
conversion to a unit list, units lists the conversion factors for each unit in the list, separated

Units Conversion 16

by semicolons. Note that unlike the case of regular output, zeros are included in this output
list:

You have: year

You want: day;min;sec

365 day + 348 min + 45.974678 sec

You have: liter

You want: cup;1|2 cup;1|4 cup;tbsp

4;0;0;3.6280454

8 Invoking units

You invoke units like this:

units [options] [from-unit [to-unit]]

If the from-unit and to-unit are omitted, then the program will use interactive prompts
to determine which conversions to perform. See Chapter 2 [Interactive Use], page 1. If
both from-unit and to-unit are given, units will print the result of that single conversion
and then exit. If only from-unit appears on the command line, units will display the
definition of that unit and exit. Units specified on the command line may need to be
quoted to protect them from shell interpretation and to group them into two arguments.
See Chapter 3 [Command Line Use], page 3.

The following options allow you to read in an alternative units file, check your units file,
or change the output format:

-c

--check Check that all units and prefixes defined in the units data file reduce to primitive
units. Print a list of all units that cannot be reduced. Also display some other
diagnostics about suspicious definitions in the units data file. Only definitions
active in the current locale are checked. You should always run units with this
option after modifying a units data file.

--check-verbose

Like the ‘--check’ option, this option prints a list of units that cannot be
reduced. But to help find unit definitions that cause endless loops, it lists the
units as they are checked. If units hangs, then the last unit to be printed has
a bad definition. Only definitions active in the current locale are checked.

-o format

--output-format format

Use the specified format for numeric output; the format is a subset of that
for the printf function in the ANSI C standard. Only a numeric format (‘E’
or ‘e’ for scientific notation, ‘f’ for fixed-point decimal, or ‘G’ or ‘g’ to specify
the number of significant figures) is allowed. The default format is ‘%.8g’;
for greater precision, you could specify ‘-o %.15g’. See Chapter 10 [Numeric
Output Format], page 23, and the documentation for printf for more detailed
descriptions of the format specification.

Units Conversion 17

-e

--exponential

Set the numeric output format to exponential (i.e., scientific notation), like that
used in the Unix units program.

-f filename

--file filename

Instruct units to load the units file filename. If filename is the empty string
(‘-f ""’) then the default units file will be loaded. This enables you to load
the default file plus a personal units file. You can specify up to 25 units files
on the command line. When you use this option, units will load only the files
you list on the command line. It will not load the standard file nor will it load
your personal units file unless you explicitly list them.

-h

--help Print out a summary of the options for units.

-m

--minus Causes ‘-’ to be interpreted as a subtraction operator. This is the default
behavior.

-p

--product

Causes ‘-’ to be interpreted as a multiplication operator when it has two
operands. It will act as a negation operator when it has only one operand:
‘(-3)’. Note that by default ‘-’ is treated as a subtraction operator.

--oldstar

Causes ‘*’ to have the old-style precedence, higher than the precedence of divi-
sion so that ‘1/2*3’ will equal ‘1/6’.

--newstar

Forces ‘*’ to have the new (default) precedence that follows the usual rules
of algebra: the precedence of ‘*’ is the same as the precedence of ‘/’, so that
‘1/2*3’ will equal ‘3/2’.

--compact

Give compact output featuring only the conversion factor. This turns off the
‘--verbose’ option.

-q

--quiet

--silent Suppress prompting of the user for units and the display of statistics about the
number of units loaded.

-n

--nolists

Disable conversion to unit lists.

-r

--round When converting to a combination of units given by a unit list, round the value
of the last unit in the list to the nearest integer.

Units Conversion 18

-S

--show-factor

When converting to a combination of units specified in a list, always show a
non-unity factor before a unit that begins with a fraction with a unity denom-
inator. By default, if the unit in a list begins with fraction of the form ‘1|x’
and its multiplier is an integer other than 1, the fraction is given as the product
of the multiplier and the numerator (e.g., ‘3|8 in’ rather than ‘3 * 1|8 in’).
In some cases, this is not what is wanted; for example, the results for a cook-
ing recipe might show ‘3 * 1|2 cup’ as ‘3|2 cup’. With the ‘--show-factor’
option, a result equivalent to 1.5 cups will display as ‘3 * 1|2 cup’ rather than
‘3|2 cup’. A user-specified fractional unit with a numerator other than 1 is
never overridden, however—if a unit list specifies ‘3|4 cup;1|2 cup’, a result
equivalent to 1 1/2 cups will always be shown as ‘2 * 3|4 cup’ whether or not
the ‘--show-factor’ option is given.

-s

--strict Suppress conversion of units to their reciprocal units. For example, units will
normally convert hertz to seconds because these units are reciprocals of each
other. The strict option requires that units be strictly conformable to perform
a conversion, and will give an error if you attempt to convert hertz to seconds.

-1

--one-line

Give only one line of output (the forward conversion). Do not print the reverse
conversion. Note that if a reciprocal conversion is performed then units will
still print the “reciprocal conversion” line.

-t

--terse Give terse output when converting units. This option can be used when calling
units from another program so that the output is easy to parse. This option
has the combined effect of these options: ‘--strict’ ‘--quiet’ ‘--one-line’
‘--compact’.

-v

--verbose

Give slightly more verbose output when converting units. When combined with
the ‘-c’ option this gives the same effect as ‘--check-verbose’.

-V

--version

Print program version number, tell whether the readline library has been
included, and give the location of the default units data file.

9 Adding Your Own Definitions

9.1 Units Data Files

The units and prefixes that units can convert are defined in the units data file, typically
‘/usr/share/units.dat’. Although you can extend or modify this data file if you have

Units Conversion 19

appropriate user privileges, it’s usually better to put extensions in separate files so that the
definitions will be preserved if the units program is updated.

Additional data files can be included in the units database by use of the ‘!include’
command in the standard units data file, for example

!include /usr/local/share/localunits.dat

might be appropriate for a site-wide supplemental data file. The location of the ‘!include’
statement in the standard units data file is important; later definitions replace earlier ones,
so any definitions in an included file will override definitions before the ‘!include’ state-
ment in the standard units data file. With normal invocation, no warning is given about
redefinitions; to ensure that you don’t have an unintended redefinition, run ‘units -c’ after
making changes to any units data file.

If you want to add your own units in addition to or in place of standard or site-wide
supplemental units data files, you can include them in the ‘.units.dat’ file in your home
directory. If this file exists it is read after the standard units data file, so that any definitions
in this file will replace definitions of the same units in the standard data file or in files
included from the standard data file. This file will not be read if any units files are specified
on the command line.

The units program first tries to determine your home directory from the HOME envi-
ronment variable. On systems running Microsoft Windows, if HOME does not exist, units
attempts to find your home directory from HOMEDRIVE and HOMEPATH.

You can specify an arbitrary file as your personal units data file with the MYUNITSFILE

environment variable; if this variable exists, its value is used without searching your home
directory.

9.2 Defining New Units and Prefixes

A unit is specified on a single line by giving its name and an equivalence. Comments start
with a ‘#’ character, which can appear anywhere in a line. The backslash character (‘\’) acts
as a continuation character if it appears as the last character on a line, making it possible
to spread definitions out over several lines if desired. A file can be included by giving the
command ‘!include’ followed by the file’s name. The ‘!’ must be the first character on the
line. The file will be sought in the same directory as the parent file unless you give a full
path. The name of the file to be included cannot contain the comment character ‘#’.

Unit names must not contain any of the operator characters ‘+’, ‘-’, ‘*’, ‘/’, ‘|’, ‘^’, ‘;’,
the comment character ‘#’, or parentheses. They cannot begin with a digit, or a decimal
point (‘.’), and cannot begin or end with an underscore (‘_’). If a name ends in a digit
other than zero, the digit must be preceded by a string beginning with an underscore,
and afterwards consisting only of digits, decimal points, or commas. For example, ‘foo_2’,
‘foo_2,1’, or ‘foo_3.14’ would be valid names but ‘foo2’ or ‘foo_a2’ would be invalid.
You could define nitrous oxide as

N2O nitrogen 2 + oxygen

but would need to define nitrogen dioxide as

NO_2 nitrogen + oxygen 2

Units Conversion 20

Be careful to define new units in terms of old ones so that a reduction leads to the primitive
units, which are marked with ‘!’ characters. Dimensionless units are indicated by using the
string ‘!dimensionless’ for the unit definition.

When adding new units, be sure to use the ‘-c’ option to check that the new units reduce
properly. If you create a loop in the units definitions, then units will hang when invoked
with the ‘-c’ option. You will need to use the ‘--check-verbose’ option, which prints out
each unit as it is checked. The program will still hang, but the last unit printed will be the
unit that caused the infinite loop.

If you define any units that contain ‘+’ characters, carefully check them because the
‘-c’ option will not catch non-conformable sums. Be careful with the ‘-’ operator as well.
When used as a binary operator, the ‘-’ character can perform addition or multiplication
depending on the options used to invoke units. To ensure consistent behavior use ‘-’ only
as a unary negation operator when writing units definitions. To multiply two units leave a
space or use the ‘*’ operator with care, recalling that it has two possible precedence values
and may require parentheses to ensure consistent behavior. To compute the difference of
‘foo’ and ‘bar’ write ‘foo+(-bar)’ or even ‘foo+-bar’.

Here is an example of a short data file that defines some basic units:

m ! # The meter is a primitive unit

sec ! # The second is a primitive unit

rad !dimensionless # A dimensionless primitive unit

micro- 1e-6 # Define a prefix

minute 60 sec # A minute is 60 seconds

hour 60 min # An hour is 60 minutes

inch 0.0254 m # Inch defined in terms of meters

ft 12 inches # The foot defined in terms of inches

mile 5280 ft # And the mile

A unit that ends with a ‘-’ character is a prefix. If a prefix definition contains any ‘/’ charac-
ters, be sure they are protected by parentheses. If you define ‘half- 1/2’ then ‘halfmeter’
would be equivalent to ‘1 / (2 meter)’.

9.3 Defining Nonlinear Units

Some unit conversions of interest are nonlinear; for example, temperature conversions be-
tween the Fahrenheit and Celsius scales cannot be done by simply multiplying by conversion
factors.

When you give a linear unit definition such as ‘inch 2.54 cm’ you are providing informa-
tion that units uses to convert values in inches into primitive units of meters. For nonlinear
units, you give a functional definition that provides the same information.

Nonlinear units are represented using a functional notation. It is best to regard this
notation not as a function call but as a way of adding units to a number, much the same
way that writing a linear unit name after a number adds units to that number. Internally,
nonlinear units are defined by a pair of functions that convert to and from linear units in
the data file, so that an eventual conversion to primitive units is possible.

Here is an example nonlinear unit definition:

tempF(x) [1;K] (x+(-32)) degF + stdtemp ; (tempF+(-stdtemp))/degF + 32

Units Conversion 21

A nonlinear unit definition comprises a unit name, a dummy parameter name, two functions,
and two corresponding units. The functions tell units how to convert to and from the new
unit. In order to produce valid results, the arguments of these functions need to have the
correct dimensions. To facilitate error checking, you may specify the dimensions.

The definition begins with the unit name followed immediately (with no spaces) by a
‘(’ character. In parentheses is the name of the parameter. Next is an optional specifica-
tion of the units required by the functions in this definition. In the example above, the
‘tempF’ function requires an input argument conformable with ‘1’. For normal nonlinear
units definitions the forward function will always take a dimensionless argument. The in-
verse function requires an input argument conformable with ‘K’. In general the inverse
function will need units that match the quantity measured by your nonlinear unit. The sole
purpose of the expression in brackets to enable units to perform error checking on function
arguments.

Next the function definitions appear. In the example above, the ‘tempF’ function is
defined by

tempF(x) = (x+(-32)) degF + stdtemp

This gives a rule for converting ‘x’ in the units ‘tempF’ to linear units of absolute tempera-
ture, which makes it possible to convert from tempF to other units.

In order to make conversions to Fahrenheit possible, you must give a rule for the inverse
conversions. The inverse will be ‘x(tempF)’ and its definition appears after a ‘;’ character.
In our example, the inverse is

x(tempF) = (tempF+(-stdtemp))/degF + 32

This inverse definition takes an absolute temperature as its argument and converts it to the
Fahrenheit temperature. The inverse can be omitted by leaving out the ‘;’ character, but
then conversions to the unit will be impossible. If the inverse is omitted then the ‘--check’
option will display a warning. It is up to you to calculate and enter the correct inverse
function to obtain proper conversions. The ‘--check’ option tests the inverse at one point
and print an error if it is not valid there, but this is not a guarantee that your inverse is
correct.

If you wish to make synonyms for nonlinear units, you still need to define both the
forward and inverse functions. Inverse functions can be obtained using the ‘~’ operator. So
to create a synonym for ‘tempF’ you could write

fahrenheit(x) [1;K] tempF(x); ~tempF(fahrenheit)

You may occasionally wish to define a function that operates on units. This can be done
using a nonlinear unit definition. For example, the definition below provides conversion
between radius and the area of a circle. Note that this definition requires a length as input
and produces an area as output, as indicated by the specification in brackets.

circlearea(r) [m;m^2] pi r^2 ; sqrt(circlearea/pi)

Sometimes you may be interested in a piecewise linear unit such as many wire gauges.
Piecewise linear units can be defined by specifying conversions to linear units on a list of
points. Conversion at other points will be done by linear interpolation. A partial definition
of zinc gauge is

zincgauge[in] 1 0.002, 10 0.02, 15 0.04, 19 0.06, 23 0.1

Units Conversion 22

In this example, ‘zincgauge’ is the name of the piecewise linear unit. The definition of such
a unit is indicated by the embedded ‘[’ character. After the bracket, you should indicate
the units to be attached to the numbers in the table. No spaces can appear before the ‘]’
character, so a definition like ‘foo[kg meters]’ is illegal; instead write ‘foo[kg*meters]’.
The definition of the unit consists of a list of pairs optionally separated by commas. This
list defines a function for converting from the piecewise linear unit to linear units. The first
item in each pair is the function argument; the second item is the value of the function at
that argument (in the units specified in brackets). In this example, we define ‘zincgauge’
at five points. For example, we set ‘zincgauge(1)’ equal to ‘0.002 in’. Definitions like
this may be more readable if written using continuation characters as

zincgauge[in] \

1 0.002 \

10 0.02 \

15 0.04 \

19 0.06 \

23 0.1

With the preceding definition, the following conversion can be performed:

You have: zincgauge(10)

You want: in

* 0.02

/ 50

You have: .01 inch

You want: zincgauge

5

If you define a piecewise linear unit that is not strictly monotonic, then the inverse will not
be well defined. If the inverse is requested for such a unit, units will return the smallest
inverse. The ‘--check’ option will print a warning if a non-monotonic piecewise linear unit
is encountered.

9.4 Defining Unit List Aliases

Unit list aliases are treated differently from unit definitions, because they are a data entry
shorthand rather than a true definition for a new unit. A unit list alias definition begins
with ‘!unitlist’ and includes the alias and the definition; for example, the aliases included
in the standard units data file are

!unitlist hms hr;min;sec

!unitlist time year;day;hr;min;sec

!unitlist dms deg;arcmin;arcsec

!unitlist ftin ft;in;1|8 in

!unitlist usvol cup;3|4 cup;2|3 cup;1|2 cup;1|3 cup;1|4 cup;\

tbsp;tsp;1|2 tsp;1|4 tsp;1|8 tsp

Unit list aliases are only for unit lists, so the definition must include a ‘;’. Unit list aliases
can never be combined with units or other unit list aliases, so the definition of ‘time’ shown
above could not have been shortened to ‘year;day;hms’. As usual, be sure to run units

--check to ensure that the units listed in unit list aliases are conformable.

Units Conversion 23

10 Numeric Output Format

By default, results of conversions are shown to eight significant figures; this can be changed
with the ‘--exponential’ and ‘--output-format’ options. The former sets an exponential
format (i.e., scientifc notation) like that used in the original Unix units program; the latter
allows the format to be given as that of the printf function in the ANSI C standard.

The format recognized with the ‘--output-format’ option is a subset of that for printf.
Only a floating-point format of the form %[flag][width][.precision]type is allowed: it must
begin with ‘%’, and must end with a floating-point type specifier (‘E’ or ‘e’ for scientific
notation, ‘f’ for fixed-point decimal, or ‘G’ or ‘g’ to specify the number of significant figures).
The format specification may include one optional flag (‘+’, ‘-’, ‘#’, or a space), followed
by an optional value for the minimum field width, and an optional precision specification
that begins with a period (e.g., ‘.6’). In addition to the digits, the field width includes the
decimal point, the exponent, and the sign if any of these are shown. A width specification
is typically used with fixed-point decimal to have columns of numbers align at the decimal
point; it normally is not useful with units. Non-floating-point type specifiers make no sense
for units, and are forbidden.

The default format is ‘%.8g’; for greater precision, you could specify ‘-o %.15g’. The
‘G’ and ‘g’ formats use exponential format whenever the exponent would be less than −5,
so the value 0.000013 displays as ‘1.3e-005’. If you prefer fixed-point display, you might
specify ‘-o %.8f’; however, very small numbers may display very few significant figures, and
for very small numbers, may show nothing but zeros.

See the documentation for printf for more detailed descriptions of the format specifica-
tion.

11 Localization

Some units have different values in different locations. The localization feature accommo-
dates this by allowing a units data file to specify region dependent definitions. A locale
region in a units data file begins with ‘!locale’ followed by the name of the locale. The
leading ‘!’ must appear in the first column of a units data file. The locale region is ter-
minated by ‘!endlocale’. The following example shows how to define a couple units in a
locale.

!locale en_GB

ton brton

gallon brgallon

!endlocale

The current locale is specified using the standard environment variables LC_CTYPE or LANG.
Note that the ‘-c’ option only checks the definitions that are active for the current locale.

Units Conversion 24

12 Environment Variables

The units program uses the following environment variables:

HOME Specifies the location of your home directory; it is used by units to find a
personal units data file ‘.units.dat’. On systems running Microsoft Win-
dows, units tries to determine your home directory from the HOMEDRIVE and
HOMEPATH environment variables if HOME does not exist.

LANG Specifies the locale. The default is ‘en_US’. Sections of the standard units data
file are specific to certain locales.

MYUNITSFILE

Specifies your personal units data file. If this variable exists, units uses its
value rather than searching your home directory for ‘.units.dat’.

PAGER Specifies the pager to use for help and for displaying the conformable units.
The help function browses the units database and calls the pager using the
‘+n’n syntax for specifying a line number. The default pager is more; PAGER can
be used to specify alternatives such as less, pg, emacs, or vi.

UNITSFILE

Specifies the units data file to use (instead of the default). This will be overrid-
den by the ‘-f’ option. Note that you can only specify a single units data file
using this environment variable. You can override this variable and cause the
default data file to be loaded either by invoking units with UNITSFILE set to
null (‘UNITSFILE= units’) or by giving the ‘-f’ option with the empty string
(‘units -f ""’).

13 Unicode Support

The standard units data file is written in Unicode using the UTF-8 encoding. Portions of
the file that are not plain ASCII begin with ‘!utf8’ and end with ‘!endutf8’. As usual,
the ‘!’ must appear as the first character on the line. If a line of a data file contains byte
sequences that are invalid UTF-8 or non-printing UTF-8 then units ignores the entire line.

When units runs it checks the locale to determine the character set. If UTF-8 is listed,
then the utf8 definitions are read into the program. If any other character set is in use,
then units works in plain ASCII without support for extended characters.

14 Readline Support

If the readline package has been compiled in, then when units is used interactively,
numerous command line editing features are available. To check if your version of units
includes readline, invoke the program with the ‘--version’ option.

For complete information about readline, consult the documentation for the readline
package. Without any configuration, units will allow editing in the style of emacs. Of
particular use with units are the completion commands.

Units Conversion 25

If you type a few characters and then hit ESC followed by ? then units will display a
list of all the units that start with the characters typed. For example, if you type metr and
then request completion, you will see something like this:

You have: metr

metre metriccup metrichorsepower metrictenth

metretes metricfifth metricounce metricton

metriccarat metricgrain metricquart metricyarncount

You have: metr

If there is a unique way to complete a unitname, you can hit the TAB key and units

will provide the rest of the unit name. If units beeps, it means that there is no unique
completion. Pressing the TAB key a second time will print the list of all completions.

Units Conversion 26

Index

!
‘!’ to indicate primitive units 19
‘!endlocale’ . 23
‘!endutf8’ . 24
‘!include’ . 18
‘!locale’ . 23
‘!unitlist’ . 22
‘!utf8’ . 24

*
‘*’ operator . 6
‘**’ operator . 6

+
‘+’ operator . 7

-
‘-’ as multiplication operator 10
‘-’ as subtraction operator . 7
--check (option for units) . 16
--check-verbose (option for units) 16
--compact (option for units) 17
--file (option for units) . 17
--help (option for units) . 17
--minus (option for units) . 17
--newstar (option for units) 17
--oldstar (option for units) 17
--one-line (option for units) 18
--output-format (option for units) 16
--product (option for units) 17
--quiet (option for units) . 17
--silent (option for units) 17
--strict (option for units) 18
--terse (option for units) . 18
--verbose (option for units) 18
--verbose-check (option for units) 16
--version (option for units) 18
-1 (option for units) . 18
-c (option for units) . 16
-f (option for units) . 17
-h (option for units) . 17
-m (option for units) . 17
-o (option for units) . 16
-p (option for units) . 17
-q (option for units) . 17
-s (option for units) . 18
-t (option for units) . 18
-v (option for units) . 18
-V (option for units) . 18

?
‘?’ for unit completion with readline 24
‘?’ to show conformable units 3

|
‘|’ operator . 7

A
abrasive grit size . 12
addition of units . 7
additional units data files . 18

B
backwards compatibility . 10
British Imperial measure . 4

C
circle, area of . 12
command, ‘!’ to indicate primitive units 19
command, ‘!endlocale’ . 23
command, ‘!endutf8’ . 24
command, ‘!include’ . 18
command, ‘!locale’ . 23
command, ‘!unitlist’ . 22
command, ‘!utf8’ . 24
command-line options . 16
command-line unit conversion 3
compatibility . 10
compatibility with earlier versions 10
completion, unit, using ‘?’ (readline only) 24
conformable units, ‘?’ to show 3

D
Darcy–Weisbach equation . 9
data files, additional . 18
defining nonlinear units . 20
defining prefixes . 19
defining units . 19
defining units with ‘-’ . 10
differences of units . 7
dimensionless units . 3
dimensionless units, defining 20
division of numbers . 7
division of units . 6

E
environment variable, HOME 24
environment variable, LANG 24

Units Conversion 27

environment variable, MYUNITSFILE 19, 24
environment variable, PAGER 24
environment variable, UNITSFILE 24
environment variables . 24
exponent operator . 6

F
fractions, numerical . 7
functions of units . 21
functions, built in . 8

H
help . 3, 24
HOME environment variable 24
hyphen as multiplication operator 10

I
Imperial measure . 4
include files . 19
including additional units data files 18
incompatible units . 2
interactive use . 1
international mile . 5
international yard . 5
invoking units . 16

L
LANG environment variable 24
length measure, English customary 5
length measure, UK . 5
linear interpolation . 21
localization . 23

M
measure, Imperial . 4
mile, international . 5
minus (‘-’) operator, subtraction 7
multiplication of units . 6
multiplication, hyphen . 10
MYUNITSFILE environment variable 19, 24

N
non-conformable units . 2
non-interactive unit conversion 3
nonlinear unit conversions 10, 20
nonlinear units, defining . 20
nonlinear units, other . 11
numbers as units . 8
numeric output format . 23
numerical fractions . 7

O
operator precedence . 6
operator, (‘**’) . 6
operator, caret (‘^’) . 6
operator, hyphen (‘-’) as multiplication 10
operator, hyphen (‘-’) as subtraction 7
operator, minus (‘-’) . 7
operator, ‘per’ . 6
operator, plus (‘+’) . 7
operator, slash (‘/’) . 6
operator, solidus (‘/’) . 6
operator, space . 6
operator, star (‘*’) . 6
operator, vertical bar (‘|’) . 7
operators . 5
output format . 23

P
PAGER environment variable 24
parentheses . 6, 7, 9, 20, 21
‘per’ operator . 6
personal units data file . 19
piecewise linear units . 21
plus (‘+’) operator . 7
powers . 6
prefixes . 5
prefixes and exponents . 6
prefixes, definition of . 19
primitive units . 19
products of units . 6

Q
quotients of units . 6

R
readline, use with units . 24
reciprocal conversion . 2
roots . 8

S
slash (‘/’) operator . 6
solidus (‘/’) operator . 6
sphere, volume of . 12
square roots . 8
star (‘*’) operator . 6
State Plane Coordinate System, US 5
strict conversion . 2
subtraction of units . 7
sums and differences of units . 7
sums of units . 7, 12
survey foot, US . 5
survey measure, US . 5
survey mile, US . 5

Units Conversion 28

T
temperature conversions . 10

U
Unicode support . 24
unit completion using ‘?’ (readline only) 24
unit definitions . 4
unit expressions . 5
unit expressions, complicated 9
unit list aliases, defining . 22
unit lists . 12
unit name completion . 25
units data file, personal . 19
units data files, additional . 18
units definitions, adding . 19
units definitions, changing . 19
units functions . 21
units quotients . 6
units, definition of . 19
units, lookup method . 4
units, piecewise linear . 21

units, primitive . 19
units, sums and differences . 7
units, sums of . 12
UNITSFILE environment variable 24
US State Plane Coordinate System 5
US survey foot . 5
US survey measure . 5
US survey mile . 5
UTF-8 . 24

V
verbose output . 2
vertical bar (‘|’) operator . 7

W
wire gauge . 11

Y
yard, international . 5

Units Conversion i

Table of Contents

Units Conversion . 1

1 Overview of units . 1

2 Interacting with units . 1

3 Using units Non-Interactively 3

4 Unit Definitions . 4
4.1 English Customary Length Measure . 5

5 Unit Expressions . 5
5.1 Operators . 5
5.2 Sums and Differences of Units . 7
5.3 Numbers as Units . 8
5.4 Built-in Functions . 8
5.5 Complicated Unit Expressions . 9
5.6 Backwards Compatibility: ‘*’ and ‘-’ . 10

6 Nonlinear Unit Conversions 10
6.1 Temperature Conversions . 10
6.2 Other Nonlinear Units . 11

7 Unit Lists: Conversion to Sums of Units 12

8 Invoking units . 16

9 Adding Your Own Definitions 18
9.1 Units Data Files . 18
9.2 Defining New Units and Prefixes . 19
9.3 Defining Nonlinear Units . 20
9.4 Defining Unit List Aliases . 22

10 Numeric Output Format . 23

11 Localization . 23

12 Environment Variables . 24

Units Conversion ii

13 Unicode Support . 24

14 Readline Support . 24

Index . 26

	Units Conversion
	Overview of units
	Interacting with units
	Using units Non-Interactively
	Unit Definitions
	English Customary Length Measure

	Unit Expressions
	Operators
	Sums and Differences of Units
	Numbers as Units
	Built-in Functions
	Complicated Unit Expressions
	Backwards Compatibility: * and -

	Nonlinear Unit Conversions
	Temperature Conversions
	Other Nonlinear Units

	Unit Lists: Conversion to Sums of Units
	Invoking units
	Adding Your Own Definitions
	Units Data Files
	Defining New Units and Prefixes
	Defining Nonlinear Units
	Defining Unit List Aliases

	Numeric Output Format
	Localization
	Environment Variables
	Unicode Support
	Readline Support
	Index

