SILex

A Scheme Implementation of Lex
Documentation for SILex version 1.0

Danny Dubé

Copyright (© 2001 Danny Dubé.
This is the first edition of the SILex documentation. It documents the version 1.0 of SILex.

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

Chapter 1: Overview 1

1 Overview

SlLex is a lexical analyser generator similar to the Lex and Flex programs, but for
Scheme. “SlLex” stands for “Scheme Implementation of Lex”.

SILex has many similarities with the C programs, but has many differences, too. The
syntax of the specification files for SILex is close to that of Lex and Flex. Of course, the
actions must be written in Scheme and not in C. The set of regular expressions is mostly
the same. An important difference is relative to the multiple start states in the C analysers.
SILex replaces them by allowing multiple analysers to take their input from the same source.
Different inputs can be analysed at the same time, possibly with different instances of one
or more lexical analysers. The analysers are created dynamically.

SILex provides many other features. The designer of a lexical analyser can specify
the actions to be taken when the end of file is reached or when an error occurs. The analyser
can keep track of the position in the input in terms of the number of the line, column and
offset. An analyser can take its input from an input port, a string or a function. SlLex is
portable; it does not depend on a particular character set. It can generate analysers that
are portable, too. Finally, the table encoding the behavior of the analyser can be compiled
to Scheme code. The fastest lexical analysers can be produced this way.

2 SILex

2 Syntax of the specification file

A specification file for a lexical analyser contains two parts: the macro definitions
part and the rules part. The two parts are separated by the mark %%. The first part is used
to define macros; that is, to give names to some regular expressions. The second part is
used to indicate the regular expressions with which the input will have to match and the
actions associated with each expression.

Comments can be inserted any place where white space is allowed and is considered
as white space itself. The syntax of the comments is the same as in Scheme. That is, it
begins with a semicolon ‘;” and extends up to the end of a line. The semicolon is a valid
token in many languages, so you should take care not to comment out an entire line when

you write a regular expression matching a semicolon.

The syntax of each part is presented, except for the regular expressions, which are
described apart. A small example follows.

2.1 Macro definitions part

The first part of a specification file contains zero or more macro definitions. A
definition consists of a name and a regular expression, separated by white space. It looks
better when each definition is written on a separate line.

The syntax for a macro name is that of a Scheme symbol. The case of the letters is
not significant. For example, abcd, +, ..., Digit and digit are all valid macro names; the
last two being the same. You cannot write two macro definitions with the same name.

The defined macro can be referenced in regular expressions using the syntax {name}
(see Section 2.3 [Regular expressions|, page 3). The scope of a macro definition includes the
remaining definitions and the rules part of the file. It is analogous to the let* is Scheme,
where the macro definitions correspond to the bindings and the rules part correspond to
the body.

End the macro definitions part with %%.

2.2 Rules part

The rules part contains the rules up to the end of the specification file. Each rule is
a pattern optionally followed by an action. The pattern is a regular expression. The action,
if there is one, is formed of one or more Scheme expressions.

The actions can span over several lines. To distinguish between the remaining of the
current action and the start of a new rule, SILex checks the indentation. A new rule must
start at the beginning of the line. That is, the action starts right after the pattern and
contains all the following lines that start with white space.

SILex does not parse the actions. It simply captures the text up to the start of the
next rule. So a syntax error in an action is not detected by SlLex.

Nevertheless, SILex is able to detect that an action has been omitted. In that case,
a default action is supplied.

Chapter 2: Syntax of the specification file 3

2.3 Regular expressions

We first describe the atomic regular expressions. Then, we show how to build more
complex regular expressions from simpler ones. Finally, the markers are introduced.

The following constructs are regular expressions:

c Ordinary character. It is a regular expression that matches the character c
itself' c CaDIlOt be one Of‘.’, (\77 ({77 C||77 4[77 Cl?, 4?77 (+77 (*77 ((77 ()77 Ch77 C$77 C;7
or any white space.

Wild card. It matches any character except the newline character.

\n

\integer

\c Backslash. The backslash is used for two things: protect a character from spe-
cial meaning; generating non-printable characters. The expression \n matches
the newline character. The expression \integer matches the character that has
number integer (in the sense of char->integer). integer must be a valid char-
acter number on the implementation that you use. It may be more than 3 digits
long and even negative'. The expression \c¢ matches the character c if ¢ is not

[N

n’, nor a digit.

{name} Macro reference. This expression matches the same lexemes as those matched
by the regular expression named name. You can imagine that the reference is re-
placed by the text of the named expression. However, it works as if parentheses
had been added to protect the substituting expression.

"some text"
String. A string matches a lexeme identical to its contents. In a string, the
only special characters are ‘"', which closes the string, and ‘\’ which keeps the
effect mentioned above.

Llist of characters]

[11ist of characters]

[-list of characters]

["list of characters]
Character class. The expression matches one of the enumerated characters.
For example, the expression ‘[abc]’ matches one of ‘a’, ‘b’ and ‘c’. You can
list a range of characters by writing the first character, the ‘-’ and the last
character. For example, ‘ [A-Za-z] matches one letter (if the letters are ordered
and contiguous in the character set used by your implementation). The special

characters in a class are ‘]’, which closes the class, ‘=’, which denotes a range of
character, and ‘\’, which keeps its usual meaning. There is an exception with
the first character in a class. If the first character is ‘]’ or ‘=7, it loses its special

meaning. If the first character is ‘*’, the expression matches one character if it
is not enumerated in list of characters.

Suppose r and s are regular expressions. Then the following expressions can be built:

! The Scheme standards do not impose a particular character set, such as Ascir. The
only requirement is that the function char->integer returns an integer.

rs

r?

r+

%

r{i}
r{i,}
r{i,j}

(r)

SILex

Union. This regular expression matches a lexeme if the lexeme is matched by r
or by s.

Concatenation. This expression matches a lexeme if the lexeme can be written
as the concatenation of a lexeme matched by r and a lexeme matched by s.

Optional expression. A lexeme matches this expression if it is the empty lexeme
or if it matches r.

Positive closure. This expression matches a lexeme that can be written as the
concatenation of one or more lexemes, where each of those matches r.

Kleene closure. A lexeme is matched by this expression if it can be written as
the concatenation of zero or more lexemes, where each of those matches r.

Power or repetition of an expression. These expressions allow the “repetition” of
a regular expression a certain number of times. i and j must be positive integers
and j must be greater or equal to i. The first form repeats the expression r
exactly i times. The second form repeats r at least i times. The last form
repeats r at least i times and at most j times. You should avoid using large
numbers (more than 10), because the finite automaton for r is copied once for
each repetition. The tables of the analyser may quickly become very large.
You should note that the syntax of these expressions does not conflict with the
syntax of the macro reference.

Parentheses. This expression matches the same lexemes as r. It is used to
override the precedence of the operators.

The building operators are listed in order of increasing precedence. The 7, +, * and
repetition operators have the same precedence.

The remaining “expressions” would better be called markers. They all match the
empty lexeme but require certain conditions to be respected in the input. They cannot be
used in all regular expressions. Suppose that r is a regular expression without markers.

~

r

r$

<<EQF>>

<<ERROR>>

Beginning and end of line. These markers require that the lexeme is found at
the beginning and at the end of the line, respectively. The markers lose their
special meaning if they are not placed at their end of the regular expression or
if they are used in the first part of the specification file. In those cases, they
are treated as regular characters.

End of file. This marker is matched only when the input is at the end of file.
The marker must be used alone in its pattern, and only in the second part of
the file. There can be at most one rule with this particular pattern.

Error. This marker is matched only when there is a parsing error. It can be
used under the same conditions as <<EQOF>>.

White space ends the regular expressions. In order to include white space in a regular
expression, it must be protected by a backslash or placed in a string.

Chapter 2: Syntax of the specification file 5

2.4 An example of a specification file

Here is an example of a SILex specification file. The file is syntactically correct from
the SILex point of view. However, many common mistakes are shown. The file is not a
useful one.

; This is a syntactically correct but silly file.

partial hel
complete {partial}lo ; Backward macro ref. only
digit [0-9]
letter [a-zA-Z]
e
-7{digit}+ (cons ’integer yytext) ; yytext contains
; the lexeme
-?{digit}+\.{digit}+[eE]l [-+]7{digit}+
(cons ; A long action
’float
yytext)
; (1ist ’semicolon) ; Probably a mistake
begin J1list ’begin(; No error detected here
end ; The action is optional
\73 (list ’bell-3) ; It does not match the
; char. # 7 followed by ‘3’
\0073 (list ’bell-3) ; Neither does it
(\7)3 (list ’bell-3) ; This does it

"x()+|{}[]1.? are ordinary but \" and \\ are special"

["\nl] (1ist ’char) ; Same thing as ‘.’
({letter}|_) ({letter}|_l|{digit})* ; A C identifier
(10l ; One of the square brackets

Repe(ti){2}on (list ’repetition)

“{letter}+: (cons ’label yytext) ; A label placed at the

; beginning of the line
$- ; No special meaning
<<EOF>> (list ’eof) ; Detection of the end of file
<<ERROR>> (my-error) ; Error handling

6 SILex

3 Semantics of the specification file

An important part of the semantics of a specification file is described with the syntax
of the regular expressions. The remainder is presented here. We begin with the role of the
actions. Information on the matching method follows.

3.1 Evaluation of the actions

The action of a rule is evaluated when the corresponding pattern is matched. The
result of its evaluation is the result that the lexical analyser returns to its caller.

There are a few local variables that are accessible by the action when it is evaluated.
Those are yycontinue, yygetc, yyungetc, yytext, yyline, yycolumn and yyoffset. Each
one is described here:

yycontinue
This variable contains the lexical analysis function itself. Use (yycontinue)
to ask for the next token. Typically, the action associated with a pattern that
matches white space is a call to yycontinue; it has the effect of skipping the
white space.

yygetc
yyungetc These variables contain functions to get and unget characters from the input of

the analyser. They take no argument. yygetc returns a character or the symbol
‘eof’ if the end of file is reached. They should be used to read characters instead
of accessing directly the input port because the analyser may have read more
characters in order to have a look-ahead. It is incorrect to try to unget more
characters than has been gotten since the parsing of the last token. If such an
attempt is made, yyungetc silently refuses.

yytext This variable is bound to a string containing the lexeme. This string is guar-
anteed not to be mutated. The string is created only if the action ‘seems’ to
need it. The action is considered to need the lexeme when ‘yytext’ appears
somewhere in the text of the action.

yyline

yycolumn

yyoffset These variablesindicate the position in the input at the beginning of the lexeme.
yyline is the number of the line; the first line is the line 1. yycolumn is the
number of the column; the first column is the column 1. It is important to
mention that characters such as the tabulation generate a variable length output
when they are printed. So it would be more accurate to say that yycolumn is
the number of the first character of the lexeme, starting at the beginning of
the line. yyoffset indicates the distance from the beginning of the input; the
first lexeme has offset 0. The three variables may not all be existant depending
on the kind of counting you want the analyser to do for you (see Section 4.3.1
[Counters], page 11).

There is a default action that is provided for a rule when its action is omitted. If
the pattern is ‘<<EQF>>’, the default action returns the object ‘(0)’. If the pattern is

Chapter 3: Semantics of the specification file 7

‘<<ERROR>>’, the default action displays an error message and returns the symbol ‘error’.
The default action for the other patterns is to call the analyser again. It is clearer (and
normally more useful) to specify explicitly the action associated with each rule.

3.2 Matching the rules

Each time the analyser is asked to return a token, it tries to match a prefix of the
input with a pattern. There may be more than one possible match; when it is the case, we
say there is a conflict. For example, suppose we have those regular expressions:

begin

[a-z]*
and the input is ‘beginningl ...’. We have a match with the first expression and we have
many different matches with the second. To resolve such a conflict, the longest match is
chosen. So the chosen match is the one between the lexeme ‘beginning’ and the second
expression.

Suppose we have the same regular expressions but the input is ‘begin+ ...’. We
have two longest match. This conflict is resolved by choosing the first pattern that allows
a longest match. So the chosen match is between the lexeme ‘begin’ and the first pattern.

The analyser generated by SlLex allows the empty lexeme to be matched if there
is no longer match. However, you should take care not to call the analyser again without
consuming at least one character of the input. It would cause an infinite loop.

The pattern ‘<<EOF>>’ is matched when the analyser is called and the input is at
end of file. In this situation, the marker is matched even if there is a pattern that matches
the empty lexeme. The analyser can be called again and again and the ‘<<EQF>>’ pattern
will be matched each time, causing its corresponding action to be evaluated each time, too.

The pattern ‘<<ERROR>>’ is matched when the input is not at end of file and no other
match is possible. Depending on the action associated with this pattern, your program may
choose to stop or choose to try to recover from the error. To recover from the error, your
program has to read some characters from the input before it can call the analyser again.

All lexical analysers generated by SlLex are interactive. That is, they read as few
characters as possible to get the longest match. This is a useful property when the input
is coming from a terminal. A lexical analyser is normally based on a finite automaton; it
is the case for the analysers generated by SILex. A non-interactive analyser always needs
an extra character to provoke an invalid transition in the automaton. The longest match is
detected this way. With an interactive analyser, an extra character is not required when it
is impossible to obtain a longer match.

A lexical analyser generated by SILex does not impose any a priori limit on the size
of the lexemes. The internal buffer is extended each time it is necessary.

! Note that there is no portable way for the analyser to end the execution of the
program when an error occurs.

8 SILex

4 Generating and using a lexical analyser

The most common use of SILex is to generate a single complete lexical analyser. In
some situations however, it is preferable to only generate the tables describing the analysers
and leaving to the program to build complete analysers at run time. It is the case when
the program has to parse many files simultaneously with the same analyser; and when a file
is to be parsed using many different analysers. After the description of the two modes, we
describe the SILex options and the different input methods.

4.1 One complete analyser

The function lex generates a complete lexical analyser. We first describe its param-
eters. Then the interface with the generated analyser is presented.

4.1.1 The lex command

Here is the template of a call to lex:
(1lex input-file output-file [options ...])

input-file is a string containing the name of the specification file. output-file is a string
containing the name of the file in which the lexical analyser is written. For a description of
the options, see Section 4.3 [Options], page 11.

This is an example of a call to lex:

(lex "pascal.l" "pascal.l.scm")

4.1.2 The functions in the lexical analyser

The file generated by lex contains a few global definitions. A program using the
analyser needs only the following functions: lexer, lexer-get-line, lexer-get-column,
lexer-get-offset, lexer-getc, lexer-ungetc and lexer-init.

lexer The lexical analysis function.

lexer-get-line
lexer-get-column
lexer-get-offset
Functions to obtain the current position in the input.

lexer-getc

lexer—ungetc
Reading and returning characters. These functions have the advantage of being
accessible from outside the actions.

lexer-init
Initializing the analyser with the input source.

To avoid name conflicts, these variables and others that we did not mention all begin
with ‘lexer...’.

Chapter 4: Generating and using a lexical analyser 9

4.1.3 Using the lexical analyser

The first function that must be called is the initialization function. It is necessary to
give to the analyser its source of characters. Here is the template of a call to this function:

(lexer-init input-type input)
The values input-type and input are described in Section 4.4 [Input], page 13.

Once the initialization is done, the program can get tokens from the analyser by
calling the lexical analysing function:

(lexer)

The token is the result of the evaluation of the action corresponding to the matched pattern.
The current position can be obtained with:

(lexer-get-line)
(lexer-get-column)
(lexer-get-offset)

As is described in Section 4.3 [Options], page 11, some or all of these functions may not be
available. Characters can be gotten and ungotten from the input this way:

(lexer-getc)
(lexer-ungetc)

It is important to note that the analyser remembers the characters previously gotten. Your
program does not have to keep those itself.

Even after the end of file has been reached or an error has occured, the lexer function
can be called again. Its behavior depends on the remaining characters in the input.

The analyser can be reinitialized in any time with a new input.

4.2 Many analysers

There are applications where it is necessary to have more than one lexical analyser
parsing more than one file at a time. For example:

— The parsing of a C file (with cpp) may cause the parsing of other files recursively
because of the #include commands.

— An interactive compiler has to be able to compile a file without closing the communi-
cation with the standard input.

— SlLex itself parses the macro names, the regular expressions, the interior of a string,
..., with different sets of patterns.

We first begin with an overview on how SlLex allows the programmer to create
multiple lexical analysers. We continue with a description of the function lex-tables. We
end the explanations with the functions used to creat analysers dynamically.

4.2.1 Creating analysers dynamically

It is quite easy to create new analysers at run-time. Suppose there is an input that
you want to analyse. There are just two steps to make.
e Create an input system from the input. An input system provides the buffering, the
line counting and similar low level services.

10 SILex

e Create one or more analysers from the input system and the analyser tables. The tables
are generated by the function lex-tables from a specification file. A table contains
all the necessary information to build up an analyser. Normally, you have to use more
than one analyser per input when you expect the syntax to vary greatly in the input.

The following example shows a typical organization for a multi-analyser lexical anal-
ysis. Note that one table may have been used to produce many instances of analysers.
Those analysers would simply be connected to different input systems?.

Inputi Input2 Input3
I I I
I I I
IS1 IS2 IS3

I I I
+————— +————— + | +——t———+
I I I I I I

Anl1.1 An1.2 Anl.3 An2.1 An3.1 An3.2

There is no a priori limit on the number of input systems and analysers that you
can create dynamically.

4.2.2 The lex-tables command

The function lex-tables produces a table describing an analyser from a specification
file. A call to lex-tables looks like:

(lex-tables input-file table-name output-file [options ...])

input-file must be a string containing the name of the specification file. output-file is a
string containing the name in which the result is printed. A definition is written in the
output file. table-name must be a string and it is the name appearing in the definition.
The options are defined in Section 4.3 [Options], page 11.

This is an example of a call to lex-tables:

(lex-tables "c.l1l" "c-table" "c.l.scm")

4.2.3 Building and using lexical analysers dynamically

In order to be able to create dynamically the analysers the program needs, the files
containing the tables and the file ‘multilex.scm’ must be loaded as part of the program.
The name convention is the following: all definitions in ‘multilex.scm’ introduce names
beginning with ‘lexer...’ and the definitions in the other files introduce names that are
specified by the programmer. This way, it is easy to avoid name conflicts.

Input systems are created with the function lexer-make-IS. A call to this function
looks like:

(lexer-make-1IS input-type input [counters])

! It would make no sense to create two instances coming from the same table and
being connected to the same input system. They would both have exactly the same
behavior.

Chapter 4: Generating and using a lexical analyser 11

The values input-type and input are described in Section 4.4 [Input], page 13. The value of
counters determines which counters the input system should maintain. This is discussed in
Section 4.4 [Input], page 13. Input systems are associative lists that cannot be used directly.

Useful functions can be extracted from an input system. The following calls return
functions that allows the program to interact with the input system:

(lexer-get-func-line input-system)

(lexer-get-func-column input-system)

(lexer-get-func-offset input-system)

(lexer-get-func-getc input-system)

(lexer-get-func-ungetc input-system)

Lexical analysers are created with the function lexer-make-lexer. The template of
a call to this function is:

(lexer-make-lexer table input-system)

table is a table generated by SlLex. input-system is the input system from which the
analyser will take its input. The result of the call is the analysis function. The analysis
function takes no argument and returns tokens.
This example summarizes all the step in the creation of an analyser:
(let* ((my-port (open-input-file "my-file"))
(my-IS (lexer-make-IS ’port my-port))
(my-get-line (lexer-get-func-line IS))
(my-get-column (lexer-get-func-column IS))
(my-get-offset (lexer-get-func-offset IS))
(my-getc (lexer-get-func-getc IS))
(my-ungetc (lexer-get-func-ungetc IS))
(my-analyser (lexer-make-lexer my-table IS)))
(let loop ((tok (my-analyser)))
(cond ((eq? tok ’eof)

4.3 Options at generation time

We describe the options that can be passed to lex and lex-tables. They indicate
which counters (line, column and offset) the actions need; which table encoding should be
used; and whether the tables should be pretty-printed.

4.3.1 Line, column and offset counters

There are three different counting modes: no counter, line counter and all counters.
The more counters the input system maintains, the more it is slowed down. The default is
the line counting.

This option is specified when the program calls the functions lex, lex-tables and
lexer-make-IS. The three modes are represented by the symbols ‘none’, ‘line’ and ‘all’.
When one of the first two functions is called the mode must be preceded by the symbol
‘counters’. These examples illustrate the use of the option:

(lex "html.1l" "html.l.scm" ’counters ’none)

12 SILex

(lex-tables "cobol.l" "cobol-table" "cobol.l.scm" ’counters ’line)

(lexer-make-IS ’port my-port ’all)

You should be careful when you build analysers dynamically. The mode specified at
the input system creation must be consistent with the mode specified at the tables creation.

4.3.2 Encoding of the table of an analyser

SILex provides three different encodings of the tables: the default encoding, the
portable encoding and the “compilation” to Scheme code.

With the default encoding, the finite automaton of the analyser is represented with
data structures that contain the numbers of the characters (in the sense of char->integer).
Since the numbers associated with the characters may depend on the Scheme implemen-
tation, an analyser generated with an implementation can be safely used only with the
same implementation. An analyser encoded in the default style is not portable. But this
representation is the most compact.

With the portable encoding, the data structures describing the automaton contain
characters directly. If the automaton, as generated, contains a transition from state s to
state t on character c, then somewhere in the table there is the Scheme character ‘#\c’.
When the file containing the analyser is loaded in any implementation, the character is
read as is, and not as the number ‘(char->integer #\c)’ as evaluated by the original
implementation. As long as the implementation using the analyser recognizes the characters
mentionned in it, there is no problem.

So this encoding is portable. However, it is less compact. This is because something
like ‘(65 90)’ is more compact than something like ‘(#\A #\B ... #\Y #\Z)’ to represent
‘[A-Z]’. The construction of an analyser from a portable table takes more time than the
construction from a default table. But, once built, the performance of the analyser is the
same in both cases.

It is important to note that in some character sets, the letters or the digits are not
contiguous. So, in those cases, the regular expression ‘[A-Z]’ does not necessarily accept
only the uppercase letters.

The last encoding is the compilation to Scheme code. This produces a fast lexical
analyser. Instead of containing data structures representing the behavior of the automaton,
the table contains Scheme code that “hard-codes” the automaton. This encoding often
generates big tables. Such an analyser is not portable.

The encoding of the tables can be specified as an option when lex and lex-tables
are called. The symbols ‘portable’ and ‘code’ are used to specify that the table must
be portable and that the table must be compiled, respectively. For example, these calls
illustrate the use of the options:

(lex "c.1" "c.l.scm") ; Default encoding
(lex "c.1" "c.l.scm" ’portable) ; Portable encoding

(lex "c.1" "c.l.scm" ’code) ; Compilation of the automaton

Chapter 4: Generating and using a lexical analyser 13

4.3.3 Pretty printing the tables

The pretty-print option (specified with the symbol ‘pp’) tells SILex to pretty-print
the contents of the table. Normally, the table is displayed as a compact mass of characters
fitting in about 75 columns. The option is useful only for a developer of SILex. The Scheme
code generated with the ‘code’ option is always pretty-printed.

4.4 Input methods

An analyser can take its input from three different objects: an input port, a string
or a function. The type of input and the input itself must be passed when an analyser is
initialized and when an input system is created. The input type is specified using one of
the three symbols: ‘port’, ‘string’ or ‘procedure’. For example:

(lexer-init ’port (current-input-port))

(lexer-make-IS ’string "Input string.")

When an input port is used by an analyser, the program should avoid reading char-
acters directly from the port. This is because the analyser may have needed a look-ahead to
do the analysis of the preceding token. The program would not find what it expects on the
port. The analyser provides safe functions to get characters from the input. The analyser
never closes itself the port it has received, this task is left to the program.

When the analyser is initialized with a string, it takes a copy of it. This way, eventual
mutations of the string do not affect the analysis.

The use of a function as character source allows the analyser to parse any character
stream, no matter how it is obtained. For example, the characters may come from the
decompression or decryption of a huge file, the task being done lazily in order to save space.
The function must take no argument and return a character each time it is called. When
the end of file (or its logical equivalent) is reached, the function must return an object that
is not a character (for example, the symbol ‘eof’). After the function has returned an end
of file indicator, it is not called again.

14 SILex

Appendix A Interfacing with an LALR(1) parser

A nice LALR(1) parser generator for Scheme has been written by Dominique Boucher.
The generator is accessible at the Scheme Repository at ftp://ftp.cs.indiana.eduin the
file ‘/pub/scheme-repository/code/lang/lalr-scm.tar.gz’.

The parsers that are generated need two functions to operate: a lexical analysis
function and an error function. The analysis function must take no argument and return
a token each time it is called. This is exactly the behavior of the lexical analysis functions
created by SlLex.

The LALR(1) parsers expect that the tokens are pairs with a number in the CAR, the
token number, and any value in the CDR, the token attribute. It is easy to respect this
convention with a SILex lexical analyser since the actions can be any Scheme expressions.
Furthermore, the file created by the LALR(1) parser generator contains definitions that give
names to the number of the tokens. A lexical analyser can use those names in its actions
in order to simplify the coordination between the two analysers.

Acknowledgements

I would like to thank my comrades of the laboratory for their support in this project.
Especially Martin Larose and Marc Feeley for their numerous suggestions.

I hope SILex will be useful for many Scheme programmers.

If you find a bug, please let me know at mailto:dube@iro.umontreal.ca.

Index

Index

-~

[

[list of characters]ccccuiuo...

"some text" e

15
NG e et 3
\Integer. 3
R P 3
<
KKEOF>> . o e 4
KKERROR>>. i 4
Action ... 2
A1l e 11
Alternatives ... 3
Atomic regular expression 3
B
Backslasho 3
Beginning of line marker 4
Building an analyser dynamically 10
Character class, 3
Closure of a regular expression................. 3
COAR . vttt 12
Column number 6
Commentoouiiii 2
Concatenation of regular expressions 3
Conflict between patterns 7
Counters. 11
D
Default action i 6
Dominique Boucher.......................... 14
Dot ... 3
Dynamic creation of analysers 9
E
Encoding of the table 12
End of file marker 4
End of line marker............................ 4

Error marker 4

16

F

Fast analyser................................ 12
Function, input from a.................... ... 13

G

Generating a lexical analyser 8
Getting characters 6
Grouping regular expressions 3

I

Indentation in actions......................... 2
Initialization of the analyser................... 9
Input ... 13
Input port, input froman 13
Input system il 9
Interactive analyser 7

K

Kleene closure................................ 3

L

LALR(1) parser generator 14
leX o 8
lex-tables il 10
Lexemeooi i 6
leXer . .o 8
lexer-get-column............................ 8
lexer-get-func-column 10
lexer-get-func-getc........................ 10
lexer-get-func-line........................ 10
lexer-get-func-offset 10
lexer-get-func-ungetc 10
lexer-get-line.............................. 8
lexer-get-offset............................ 8
lexer-getcl 8
lexer—init il 8
lexer-make-IS 10
lexer-make-lexer..................oiinn... 10
lexer-ungetcl 8
line. ... 11
Line number..................... 6

SILex

MaCIO vttt e 2
Macro definitions part......................... 2
Macro reference.ccoiiiiiiii 3
Marker...... ..o 4
Matching conflict 7
Matching method 7
multileX.SCmovriinie .. 10

N

Offset ..o ove e 6
Optional regular expression.................... 3
Options. ...ttt 11
Ordinary character............................ 3
Overriding the precedence..................... 3

P

Pattern 2
Portability 12
portable........... 12
Positive closure................ 3
Precedence 3
Pretty-printing the tables 13
Protecting a character......................... 3

R

Regular expression............................ 3
Repetition of a regular expression.............. 3
Rulespart............cooiiii i 2

S

Scope of a macro definition 2
Semantics of the specification file 6
Skipping a lexeme 6
Specification file 2
String. ... 3
String, input from a................... 13

Index

Ungetting characters..........................
Union of regular expressions
Using a lexical analyser

\%%

White space.............. i

17
White space in regular expressions 4
Wildcard L 3
Y
JYCOLUMN. ..ottt 6
yycontinue i 6
yygetc. . o 6
yyline. 6
yyoffset.......... ... 6
YytexXt 6

18

SILex

Table of Contents

1 Overview.......ooiiiiiiniiiennnneennnnn 1
2 Syntax of the specification file.............. 2
2.1 Macro definitions part 2
22 Rulespart........oooiiiiii 2
2.3 Regular expressionscoviiiiiiiiii, 3
2.4 An example of a specification file......................... 5
3 Semantics of the specification file........... 6
3.1 Evaluation of the actions. 6
3.2 Matching therules 7
4 Generating and using a lexical analyser 8
4.1 One complete analyser................... oot 8
4.1.1 Thelexcommand................c... ... 8
4.1.2 The functions in the lexical analyser 8
4.1.3 Using the lexical analyser 9
4.2 Many analysers 9
4.2.1 Creating analysers dynamically 9
4.2.2 The lex-tables command..................... 10
4.2.3 Building and using lexical analysers dynamically
.. 10
4.3 Options at generation time.............................. 11
4.3.1 Line, column and offset counters................ 11
4.3.2 Encoding of the table of an analyser 12
4.3.3 Pretty printing the tables 13
44 Inputmethods............ i 13
Appendix A Interfacing with an LALR(1) parser
.. 14

ii

SILex

